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Abstract

In this study we address the question to what
extent syntactic word-order traits of different
languages have evolved under correlation and
whether such dependencies can be found uni-
versally across all languages or restricted to
specific language families. To do so, we use
logistic Brownian Motion under a Bayesian
framework to model the trait evolution for 768
languages from 34 language families. We test
for trait correlations both in single families and
universally over all families.

Separate models reveal no universal correlation
patterns and Bayes Factor analysis of models
over all covered families also strongly indicate
lineage specific correlation patters instead of
universal dependencies.

1 Introduction

Over the long time of their history, humans have
come to develop a wide variety of languages. Over-
all, these languages share basic structural similar-
ities. The nature and extent of these similarities
have been subject of many theories. As language
structure is mostly described in terms of syntax
trees, these are often used as explanatory models
for structural confines of possibly observable word
orders in different languages. The explanations
for such confines differ from Chomskian innate
universal grammar (Chomsky, 1986), to more gen-
eral aspects of computational ease of for the brain
(Hawkins, 2009). On the other hand, increasing
data about languages and computational means
have prompted examinations of which structural
universalities can be found empirically (Greenberg,
1963; Dryer, 1992; Dunn et al., 2011; Jäger, 2018).

More recent representatives of this start also to
account for the historical evolution and relation-
ships of the researched languages (Dunn et al.,
2011; Jäger, 2018). By treating the evolution of
languages analogous to biological evolution, they
apply a method from bioinformatics (Pagel et al.,

2004) to model historical transition rates between
word-order traits. For Dunn et al (2011) the fo-
cus lay on four language families: Austronesian,
Bantu, Indo-European and Uto-Aztecan. Across
those they found widely differing trait correlations,
proposing that correlations arise only specific to
lineages and not from cognitive factors universally
determining language evolution, but instead due to
more local cultural evolution.

Jäger (2018) applied the models on a set of 34
families including models which cover all families
at once comparing universal with lineage-specific
correlations. This comparison resulted in a group
of word-order traits being correlated universally.
This suggests that phylogenetic models for indi-
vidual language families cannot fully capture the
universal correlations between different families.

In this work, we attempted to test this assump-
tion with a different phylogenetic model. We used
Brownian Motion to describe the evolutionary pro-
cess of the trait change over time. This type of
application is common in a biological phylogenetic
context. It is described by, e.g., Harmon (2018).
The Brownian Motion part of the model below is
also based on this description. We then applied
logistic linkage to model the observed categorical
features of word order with a binomial distribution.

The paper is structured as follows. Section 2 de-
scribes the Brownian Motion models used. Section
3 will give a short overview of the data. The ex-
perimental setup is described in Section 4. Finally,
we present the results in Section 5, followed by the
conclusions in Section 6.

2 Brownian Motion Model

A Brownian Motion model is used in this study.
It describes the process of evolutionary change of
specified traits through time as a multivariate nor-
mal distribution. We denote it here as

x ∼ MultiNormal(a, V ) (1)
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with means a and Variance-Covariance matrix V ,
describing the distribution of the observed traits x.

Let V be the variance-covariance matrix which
is computed of two matrices C and R. C encodes
the degree of relation t between species such that
languages with a longer shared history in a phylo-
genetic tree have a stronger covariance. We then
define R as the correlation matrix. It is composed
of the traits’ evolutionary rates σ2

n and their corre-
lations σ12:

R =

(
σ2
1 σ12

σ12 σ2
2

)
(2)

V is computed by the Kronecker product as
shown below on the example of a family with two
traits and two species:

V = R⊗ C =

(
σ2
1 σ12

σ12 σ2
2

)
⊗
(
t1 t12
t12 t2

)

=




σ2
1 · t1 σ12 · t1 σ2

1 · t12 σ12 · t12
σ12 · t1 σ2

2 · t1 σ12 · t12 σ2
2 · t12

σ2
1 · t12 σ12 · t12 σ2

1 · t2 σ12 · t2
σ12 · t12 σ2

2 · t12 σ12 · t2 σ2
2 · t2




The means a and the correlation R are parame-
ters to be estimated. The traits x and phylogenetic
matrix C are observed data as described in the fol-
lowing section.

Finally, logistic linking is introduced to model
the categorical word-order traits x as a binomial
distribution with probabilities p. Their logits,
logistic(p) are modelled as Brownian Motion:

x ∼ Binomial(p) (3)

logistic(p) ∼ MultiNormal(a, V ) (4)

3 Word-order Traits & language families

The data used in this paper are of two kinds. The
first are language features that are to be modeled.
The second are phylogenetic data used as basis for
the evolutionary model. Combined, these provide
data for 768 languages from 34 language fami-
lies as described in more detail by Wichman et al.
(Wichman et al., 2016). All data were kindly pro-
vided by Gerhard Jäger(2018). We provide the data
as part of this work1.

We considered the same eight word-order traits
(table 1) as in Dunn et al.(2011) and Jäger (2018).

1https://github.com/Hartunka/
TypologicalWordOrderCorrelations/tree/
main/dataprep/dat

Figure 1: Example phylogenetic tree of the Sko lan-
guage family.

These word order traits are based on the World At-
las of Languages (Dryer and Haspelmath, 2013),
but their respective values are summarized into
three possible values per trait. Each of these three
values represents order configurations for the con-
cerned syntactic elements. The first two classes
represent the most dominant values. The third class
summarizes all alternative configurations, appear-
ing more rarely overall. For this work, we summa-
rized the data as binary to be used in the binomial
model. The distinction is only between a language
having a value of the first majority class or not.

The phylogenetic data represent the languages’
historical relations in the form of binary trees as
for example in Figure 1. The trees’ edge lengths
represent the time since the last common ancestor
split up. They have been estimated by Jäger (2018)
and range from 10 to 1000 samples per family.

4 Experiments

In our experiments, we compared variations of this
model with different base assumptions:

(A), we fitted two models to each of the 34 lan-
guage families separately and pairwise to each of
the eight traits. One version assumes strict indepen-
dence of the traits by defining the trait correlations
σ12 in R as constants with value 0. In the other
version, the correlation between the characteristics
is taken into account by keeping the values in R as
parameters to be estimated. In this way, we could
test whether we could find any correlation patterns
by examining the families separately.

(B), we fitted three models for each trait pair,
describing all language families together. Here
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trait 0 1
AN !adjective-noun adjective-noun
PN !postpositions postpositions
ND !demonstrative-noun demonstrative-noun
NG !genitive-noun genitive-noun

NNum !numeral-noun numeral-noun
VO !object-verb object-verb

NRc !relative clause-noun clause relative clause-noun
VS !subject-verb subject-verb

Table 1: Word-order features based on WALS (Dryer and Haspelmath, 2013). The features are summarised as
binary such that every feature is given either ’1’ for the listed value being present, or ’0’ for it being absent.

the first version assumes the same universal cor-
relation R over all families. The second assumes
distinct lineage-specific correlation RF for each
family. The last assumes strict universal indepen-
dence for all families. The different versions were
each compared with three different metrics. The
first of these are Bayes Factors (Kass and Raftery,
1995), which allow a comparison with previous
works (Dunn et al., 2011; Jäger, 2018). Bayes Fac-
tors above 10 indicate strong, values above 100
decisive evidence (Kass and Raftery, 1995). Fur-
ther, we adopted 5 as minimum threshold for mean-
ingful comparisons from Dunn et al. (2011). The
Bayes Factors were obtained using bridgesampling
(Gronau et al., 2020).

In addition, we used the information criteria
WAIC (Watanabe and Opper, 2010) & LOOIC
(Vehtari et al., 2016). These were added to test
for consistency across different metrics. They are
both based on pointwise log-likelihoods and can
become unreliable, when dealing with strongly de-
pendent data points (McElreath, 2020). Both ex-
press model comparisons primarily in differences
where the value of the difference is not directly
amenable to assess how strongly one model is
favoured over another. To address this, we utilized
the rethinking package by McElreath (2020).
This offers a convenient function to compare mod-
els via WAIC including the assignment of weights
ranging from 0 to 1 to give an accessible overview
over the relative quality of the models.

The models were implemented in the Stan Mod-
eling Language (2020) which uses the NUTS sam-
pler (Hoffman et al., 2014) for parameter estima-
tion. The code is available here2 . Based on the
suggestion of (Gronau et al., 2020) the models are

2https://github.com/Hartunka/
TypologicalWordOrderCorrelations

run for 21,000 iterations after warm-up, to achieve
reliable Bayes factors. Distributed on 14 chains,
this becomes 1.500 iterations per chain, in addition
to 1,500 warm-up iterations each. The sampling
was done with the default control parameters for
Stan’s sampler. With these parameters the lineage-
specific models of the ND-NNum trait pair and the
independent models of the NG-VO & AN-VO trait
pairs did return a too small effective sample size
for the bridgesampling to be effective. So these
models were rerun with max_treedepth raised
from 10 to 15.

Figure 2: Numbers of families for which each trait pair
was estimated to be correlated. Counts all cases for
which Bayes Factors in favour of the dependent model
have a value of at least five.
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5 Results

For the single-family models, the comparisons did
not yield Bayes factors above 5 for 15 of the 34
families. Therefore, no conclusions about preferred
models are possible in those cases. Those trait
correlations that did come up, only appeared in
a minority of the covered families, not providing
any pattern for universal correlations. Figure 2
shows for each trait pair in how many families it
was estimated to be correlated.

The information criteria at face value find up to
22 families for which the same trait-pair is corre-
lated. We filtered cases close to equivalence with
WAIC weights to test how many cases have a robust
preference. We chose the cutoff at 0.6. Filtering
such cases results in less cross-family similarities,
with no more than 3 families sharing the same trait
pair as correlated. Cross-metric agreement: The
percentage of model comparisons where Bayes Fac-
tors & WAIC weights favoured the same model or
both don’t favour any model at all is 85.5% with a
LOOIC & WAIC agreement of 99.8%.

The model comparison between universal and
lineage specific models strongly favour lineage
specificity, with Bayes Factors favouring lineage-
specific correlation for each trait pair (Figure 3).

In contrast to single family models, Bayes Fac-
tors and information criteria strongly disagree.
Both WAIC & LOOIC strongly favour univer-
sal correlation models for each trait pair. WAIC
weights are fully assigned to the universal mod-
els. Comparing lineage specificity with universal
independence shows similar results. Bayes Factors
strongly favour lineage-specificity but information
criteria favour independence.

Universal trait pair correlations, based on the
dependent-independent model comparisons center
around the Adposition-Noun order (Figure 4).

6 Conclusions

We applied logistic Brownian Motion under a
Bayesian framework to model the trait evolution
for 768 languages from 34 language families. The
models for single language families and those
across all families indicate no universal word-order
trait correlations across language families when
compared using Bayes Factors.

This result matches with the observations made
by Dunn et al.(2011), but contradicts the results
over all families presented by Jäger (2018). Thus,

Figure 3: Model comparisons of lineage-specific vs
universal correlations. The y-axis shows the strength of
the Bayes Factors in favour of the models with lineage-
specific correlations for each trait pair on the x-axis.

Figure 4: Universal trait correlations from directly com-
paring dependence and independence assumptions. For
connected trait pairs, the dependence assumption is
stronger in terms of Bayes Factors.

representing all families in one model did not add
much information to single family models.

It is noteworthy, that the results from the infor-
mation criteria contradict those from the Bayes
Factors regarding the universal models. Although
this could be attributed to some unreliability of the
information criteria given the data and the nature
of the model, it is still worth further investigation.
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