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Abstract

This paper presents the transformer model built
to participate in the SIGTYP 2022 Shared Task
on the Prediction of Cognate Reflexes. It con-
sists of an encoder-decoder architecture with
multi-head attention mechanism. Its output is
concatenated with the one hot encoding of the
language label of an input character sequence
to predict a target character sequence. The re-
sults show that the transformer outperforms the
baseline rule-based system only partially.

1 Introduction

The SIGTYP 2022 Shared Task on the Prediction of
Cognate Reflexes investigates1 the research ques-
tion of to what extend machine learning can be
employed to predict cognate reflexes, i.e., word
forms assumed to derive from a common attested
or reconstructed word form.

Such words prototypically present phonological
features that are in part common to different lan-
guages and in part specific to each given language:
consistent comparison between different words al-
lows detection of structural similarities and recur-
rent change patterns, which can be explained by
positing the existence of sets of cognate reflexes,
i.e., sets of words belonging to different languages
but deriving from a common form that has over
time undergone consistent—and therefore to a large
extent predictable—phonological/structural change
according to the rules of each given language.

The study of cognate reflexes, which is at the
heart of modern historical-comparative linguistics,
was first applied successfully to the Indo-European
languages, which have been argued, with ample
and compelling evidence, to derive from a com-
mon ancestor, the Proto-Indo-European (e.g. see
Lehmann, 1952). In this respect, the comparative
method has even allowed reconstruction of parallel

1The code is made available at https://github.
com/sigtyp/ST2022

grammars, with description of detailed phonologi-
cal and morphosyntactic correspondences between
languages (e.g., see Sihler, 1995 for Ancient Greek
and Latin).

The cognate-related computational research has
been characterized by various tasks and approaches.
Some are rule-based: for example, Dinu and
Ciobanu (2014) automatically identify cognates by
linking word etymologies; List (2019a) proposes
an algorithm to align cognate sound segments. Oth-
ers employ machine learning methods: for exam-
ple, Meloni et al. (2021) build an encoder-decoder-
with-attention model to predict the Latin root word
common to romance language cognates. Similarly,
Dekker and Zuidema (2020) investigate the use of
neural networks for prediction of cognates from
Slavic and Germanic subfamilies.

In the SIGTYP 2022 Shared Task, participants
are requested to predict a cognate reflex form from
other cognate reflex forms. The present article re-
ports on the model I have build for the challenge.
In Section 2, the dataset is described, while, in Sec-
tion 3, the method employed to tackle the task is
detailed. Section 4 contains the results, and Sec-
tion 5 their discussion. Section 6 provides some
concluding remarks.

2 Dataset

The initial dataset provided for training consisted
of cognate reflexes from 10 language families (see
List et al. 2022 for a description of the language
database). The data for each language family in
turn consists of 5 tsv training files containing cog-
nate reflexes for a variable number of languages:
the 5 files contain training data with different per-
centages of missing data, ranging from 10% to
50%.

This data structure has been designed to test
model reliability on progressively sparser data,
with the file containing 50% missing data being the
most challenging. The 5 training files are matched
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BelejeGonfoye Fadashi Maiyu Undulu
g o r a k o r a ? g o r a f a
n d u n d u n d u ?

? b o S a b O S a b o: S a

Table 1: Example of entries from a test file of
bremerberta.

by 5 test files presenting the exact same structure
as the training files plus question marks in those
table cells whose values are requested to be pre-
dicted. Solutions and baseline results for each of
the 5 test files are also provided. Table 1 shows a
few example rows from a test file of the language
family labeled as bremerberta (Bremer, 2016),
where question marks indicate the cognate reflexes
to predict.

It is important to note that the initial training data
are only provided in order for the participant to fa-
miliarize with data structure: indeed, the test data,
which only are required to be submitted for the chal-
lenge, contain different languages (also called ‘sur-
prise languages’), whose model parameters need
to be calculated singularly and independently. The
test data also consists of 10 language families. In
what follows, I present my work concerning the
surprise languages2 only.

3 Method

3.1 Modeling Strategy and Data Vectorization
The surprise data comes from 10 language families.
The data for each language family is organized
in separate folders containing 5 training files with
different percentage of missing data (from 10% to
50%). Remarkably, the training files with different
percentages have overlapping data, and therefore
have to be kept separate in the training phase.

Each file corresponds to a table, where columns
represent languages and rows examples of cognate
reflexes. The data is highly sparse, in that single
rows can show more than one empty cell. More-
over, the test files, as shown in Table 1, require
prediction of cognate reflexes not only for one but
all languages, with some rows having a given lan-
guage as their target variable and other rows other
languages.

To tackle these issues, I have build as many mod-
els as the number of languages contained in each
training file. The number of models created for

2This data coincides with that in the data-surprise
folder at https://github.com/sigtyp/ST2022.

predictor language target (Undulu)
m u l h i Maiyu m u l h i
m u l h i Fadashi m u l h i
b o N o S Fadashi b o N k o S

m b @ m a BelejeGonfoye m b u m a

Table 2: Examples of remodelling of training data of
bremerberta

each language family can therefore be calculated
thus:

languages · train_files = models

For example, 45 models are trained for the lan-
guage family labeled as hillburmish because
it consists of 9 languages, and 5 training files with
different percentages of missing data are available.

The original tabular data of each training file has
been reorganized as to create new tabular structures:
each language is considered as a target variable in
turn, with the other languages’ data being used as
predictors. To address the issue of sparsity, each
new data point is modeled as to only represent one
single (predictor) cognate reflex plus its language
label.

Table 2 shows how data are remodeled to predict,
for example, cognate reflexes of the Undulu lan-
guage. The rows contain cognate reflexes that may
be on one single row in the original data (this holds
true for the first two rows). Each cognate reflex
is considered—with regard to the target variable—
separately. The language column refers to the lan-
guages of the cognate reflexes used as predictors.
It is to be noted that this modeling strategy allows
ignoring the missing data in the original files: if a
cognate reflex for a given language is missing, it is
simply ignored.

Cognate reflexes have been vectorized as charac-
ter embeddings, while one hot encoding has been
employed for language labels. The term ‘character’
is here used to refer to all space-separated values
provided in the original data (most of which, but
not all, correspond to one Unicode character).

3.2 A Transformer Architecture

Transformers have increasingly become popular to
solve a variety of NLP tasks, especially through
fine-tuning of a pretrained model (e.g, see Wolf
et al., 2020).

Transformers are characterized by an encoder-
decoder architecture with attention mechanism
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Figure 1: The transformer architecture

(Vaswani et al., 2017). In the present task, the
encoder is meant to transform an input sequence
of characters into a new context-aware sequence
via a multi-head attention layer. The decoder can
then predict each character of a target sequence
relying on the entire context-aware input sequence
and all the target sequence steps preceding the (tar-
get) sequence step to predict: this is possible be-
cause the target sequence used as an input is made
context-aware via a multi-head attention layer with
masking, which prevents the use of sequence steps
from the future.3

In the implementation proposed (see Figure 1)4,
the input to the encoder is represented by char-
acter embeddings added to character position em-
beddings: these latter are meant to vectorize the
position of each character within the character se-
quence (indeed, no recurrent neural network will
be used to keep track of character order).

The heart of the encoder coincides with a multi-
head attention layer outputting a context-aware rep-
resentation of the input embeddings that accounts
for how strongly each character is associated with
the others within the character sequence. Remark-
ably, attention mechanism is character order inde-
pendent. Since query, key, and value of the

3At training time, the target character sequence and the
target character sequence used as input differ in that the former
is offset by one step.

4The architecture is the one implemented at
https://github.com/keras-team/keras-io/
blob/master/examples/nlp/neural_machine_
translation_with_transformer.py, adapted for
the present SIGTYP 2022 Shared Task to account for the
presence of language labels as predictors. The code is
available at https://github.com/sigtyp/ST2022/
tree/main/systems/PRECOR_transformer.

encoder’s multi-head attention layer are all input
character embeddings, the layer instantiates self-
attention.

The decoder component has a more complex
architecture, which consists of two main layers:

• A multi-head attention layer whose input is a
target sequence masked as to avoid that predic-
tion of a target sequence step takes advantage
from future steps

• A multi-head attention layer aimed to merge
the encoder output, used as key and value,
with the output of the masked multi-head at-
tention layer used as query.

The output of the decoder is passed to a dropout
layer, and the output of it is then concatenated with
the one-hot encoding computed for the language of
the input character sequence. Finally, a softmax
function is meant to output the probabilities for
each target character.

The new remodeling of data described in Section
3.1 also requires a strategy to deal with multiple
cognate reflexes ‘at once’ at inference time: since
test files contain more than one cognate reflex for
a given target cognate reflex (i.e., there are many
cognate reflexes as predictors on a single row), the
probabilities returned for each predictor cognate re-
flex are summed and then averaged (by the number
of predictor cognate reflexes) to produce one single
target tensor of probabilities (see Figure 2). At in-
ference time, the string for the target cognate reflex
used as an input first consists only of a dollar sign,
which conventionally represents the beginning of a
target character sequence: recursively, after a char-
acter is predicted, it is added to the target character
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sequence used as an input, so that it can also be
used for prediction of the following character, until
a hash sign, which conventionally signals the end
of a cognate reflex, is reached.

4 Results

Results are shown in Table 3. The scores given
for each language family are averages over all the
scores for each language within a given language
family. They have been calculated using the func-
tion compare_wordsmade available by the SIG-
TYP 2022 Shared Task organizers. Three main
metrics have been employed: the Levenshtein dis-
tance (Levenshtein, 1965), the B-Cubed F-scores
(List, 2019b), and the BLEU scores (Papineni et al.,
2002). In Table 3, each score of the transformer is
provided together with the corresponding one of
the baseline rule-based system (this latter being in
parentheses). Highlighted are the best scores for
each language family. More details on the metrics
of the SIGTYP 2022 Shared Task and the baseline
scores are given in List et al. (2022).

5 Discussion

The presence of 5 different training sets for each
language family and the need of building a model
for each language within a language family (see
Section 3) resulted in the training of as high a num-
ber of models as 495. Since training of different
algorithms and, especially, hyperparameter opti-
mization for each model would have required a
high computation load, I focused on a transformer
architecture with fixed hyperparameters for all lan-
guages.5

The Levenshtein distance shows that the trans-
former always performs better than the rule-
based system relative to the language fam-
ily kesslersignificance. The trans-
former’s performances for beidazihui and
bremerberta are better relative to the datasets
with proportions 0.1, 0.2, and 0.3 and the datasets
with proportions 0.1 and 0.5, respectively.

The major challenge posed by the SIGTYP 2022
Shared Task seems to be data scarsity and sparsity,
which affects data representativeness. The trans-
former’s model tended to overfit the training data.
A dropout layer and early stopping were employed,
but more regularization and hyperparameter tuning

5Details can be found at https://github.com/
sigtyp/ST2022/tree/main/systems/PRECOR_
transformer.

Proportion 0.1
Language family ED B-Cubed FS BLEU

bantubvd 1.37 (1.13) 0.67 (0.78) 0.52 (0.61)
beidazihui 1.04 (1.10) 0.67 (0.73) 0.59 (0.58)

birchallchapacuran 2.42 (1.63) 0.51 (0.65) 0.36 (0.53)
bodtkhobwa 0.56 (0.49) 0.73 (0.76) 0.69 (0.72)
bremerberta 1.39 (1.72) 0.71 (0.72) 0.63 (0.50)

deepadungpalaung 1.26 (1.07) 0.74 (0.76) 0.39 (0.44)
hillburmish 1.66 (1.21) 0.53 (0.65) 0.42 (0.56)

kesslersignificance 2.49 (2.77) 0.45 (0.49) 0.15 (0.16)
luangthongkumkaren 0.87 (0.38) 0.76 (0.91) 0.65 (0.84)

wangbai 0.81 (0.62) 0.73 (0.80) 0.65 (0.73)
Proportion 0.2

Language family ED B-Cubed FS BLEU
bantubvd 1.70 (1.38) 0.58 (0.69) 0.45 (0.53)
beidazihui 1.03 (1.14) 0.64 (0.68) 0.59 (0.57)

birchallchapacuran 2.90 (2.02) 0.44 (0.58) 0.29 (0.45)
bodtkhobwa 0.62 (0.45) 0.67 (0.75) 0.66 (0.75)
bremerberta 1.68 (1.68) 0.61 (0.67) 0.53 (0.51)

deepadungpalaung 1.51 (1.30) 0.58 (0.67) 0.33 (0.39)
hillburmish 1.76 (1.23) 0.49 (0.63) 0.39 (0.55)

kesslersignificance 2.56 (2.93) 0.38 (0.40) 0.14 (0.14)
luangthongkumkaren 1.01 (0.47) 0.68 (0.87) 0.59 (0.80)

wangbai 1.00 (0.76) 0.64 (0.75) 0.60 (0.68)
Proportion 0.3

Language family ED B-Cubed FS BLEU
bantubvd 2.18 (1.55) 0.47 (0.66) 0.34 (0.51)
beidazihui 1.09 (1.12) 0.60 (0.67) 0.56 (0.57)

birchallchapacuran 3.19 (2.36) 0.39 (0.54) 0.26 (0.41)
bodtkhobwa 0.67 (0.48) 0.64 (0.73) 0.63 (0.72)
bremerberta 1.97 (1.84) 0.55 (0.63) 0.46 (0.49)

deepadungpalaung 1.63 (1.35) 0.50 (0.60) 0.30 (0.38)
hillburmish 2.00 (1.40) 0.44 (0.58) 0.33 (0.49)

kesslersignificance 2.78 (3.10) 0.33 (0.35) 0.13 (0.11)
luangthongkumkaren 1.13 (0.45) 0.66 (0.87) 0.56 (0.81)

wangbai 1.10 (0.81) 0.60 (0.72) 0.56 (0.66)
Proportion 0.4

Language family ED B-Cubed FS BLEU
bantubvd 2.16 (1.64) 0.45 (0.63) 0.34 (0.49)
beidazihui 1.12 (1.11) 0.59 (0.67) 0.55 (0.57)

birchallchapacuran 3.51 (2.82) 0.37 (0.50) 0.24 (0.36)
bodtkhobwa 0.71 (0.59) 0.62 (0.69) 0.60 (0.66)
bremerberta 2.32 (2.32) 0.48 (0.57) 0.40 (0.39)

deepadungpalaung 1.84 (1.51) 0.43 (0.54) 0.24 (0.32)
hillburmish 2.17 (1.58) 0.41 (0.54) 0.30 (0.45)

kesslersignificance 2.89 (3.91) 0.28 (0.30) 0.13 (0.05)
luangthongkumkaren 1.23 (0.53) 0.61 (0.85) 0.53 (0.78)

wangbai 1.29 (0.90) 0.55 (0.70) 0.49 (0.62)
Proportion 0.5

Language family ED B-Cubed FS BLEU
bantubvd 2.36 (2.00) 0.41 (0.57) 0.29 (0.39)
beidazihui 1.18 (1.15) 0.56 (0.66) 0.53 (0.56)

birchallchapacuran 3.72 (3.17) 0.34 (0.47) 0.21 (0.31)
bodtkhobwa 0.81 (0.62) 0.58 (0.66) 0.55 (0.65)
bremerberta 2.50 (2.53) 0.44 (0.53) 0.36 (0.34)

deepadungpalaung 2.04 (1.62) 0.36 (0.49) 0.19 (0.30)
hillburmish 2.42 (2.13) 0.37 (0.46) 0.25 (0.33)

kesslersignificance 3.00 (4.06) 0.27 (0.28) 0.11 (0.05)
luangthongkumkaren 1.47 (0.66) 0.55 (0.81) 0.46 (0.73)

wangbai 1.54 (1.02) 0.49 (0.66) 0.42 (0.58)

Table 3: Results for the transformer and the baseline
rule-based system (in parentheses).

would probably lead to better results. Due to the
high variance, I consider the results of the trans-
former and the baseline model very similar.
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Figure 2: Example of calculation of final probabilities at inference time (fictitious numbers). The inputs are
represented by cognate reflexes of one single row in the file test-0.10.tsv of bremerberta.

6 Conclusions

The paper presented the transformer model built for
the SIGTYP 2022 Shared Task. Despite the trans-
former’s complex architecture, which can model
input characters in context and even rely on past tar-
get sequence steps, its performance was not overall
superior to that of the baseline rule-based system.
This may be due to data scarsity and sparsity. For
this reason and in light of the considerable compu-
tational overhead that may be required at inference
time, in that target sequence decoding may involve
thousands of dictionary lookups—which can only
be executed on CPU—one might prefer to test sim-
pler model architectures.

Supplementary Material

The code described in this paper has been
archived at https://github.com/sigtyp/
ST2022/releases/tag/v1.4 and https:
//doi.org/10.5281/zenodo.6586772.
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