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Abstract
This paper is a continuation of [Kuznetsova et al. (2021), which described non-manual markers of polar and wh-questions in
comparison with statements in an NLP dataset of Kazakh-Russian Sign Language (KRSL) using Computer Vision. One of the
limitations of the previous work was the distortion of the 3D face landmarks when the head was rotated. The proposed solution
was to train a simple linear regression model to predict the distortion and then subtract it from the original output. We improve
this technique with a multilayer perceptron. Another limitation that we intend to address in this paper is the discrete analysis
of the continuous movement of non-manuals. In |Kuznetsova et al. (2021) we averaged the value of the non-manual over its
scope for statistical analysis. To preserve information on the shape of the movement, in this study we use a statistical tool that

is often used in speech research, Functional Data Analysis, specifically Functional PCA.
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1. Introduction

In sign languages, besides hand signs, multiple non-
manual markers are employed, such as body and head
movements, movements of facial features and direction
of the eye gaze (Pfau and Quer, 2010). These features
can be linguistically significant, for instance, it is fre-
quent for different types of questions to be marked only
with non-manuals, leaving the manual signs and their
order the same as in statements (Cecchetto, 2012).

In Kuznetsova et al. (2021) we provided the first
description of some non-manual markers in Kazakh-
Russian Sign Language (KRSL) based on a dataset that
was collected for an NLP task. The material for that
study was taken from Kimmelman et al. (2020) and
comprised of video recordings of statements and ques-
tions produced by nine native signers of KRSL.
Research on sign language is usually not automated,
meaning that linguists need to manually annotate mate-
rial and make their observations subjectively. We tried
to test whether this can be overcome with state-of-the-
art Computer Vision tools in|Kuznetsova et al. (2021).
Using OpenFace (Baltrusaitis et al., 2018}, Baltrusaitis
et al., 2013 Zadeh et al., 2017) we were able to extract
face landmarks in 3-dimensional space and use them to
measure eyebrow movement and head rotation angle.
However, we faced the model bias, which distorted the
positions of the facial landmarks with the change of the
head rotation angle (see Section[2.2)). Our solution was
to train a simple linear regression model to predict this
bias and then subtract it from the initial results of the
OpenFace. We achieved relatively stable data and sta-
tistically analyzed it using a mixed-effects multivariate
linear regression model. However, our analysis was not
on continuous data of the movements but on discrete
points that represented the mean value of the feature

over the duration of the movement. The results suggest
that in our KRSL dataset polar questions are marked by
eyebrow raise on the whole sentence, and consecutive
forward head tilts on the subject and verb (see exam-
ple [[). On the other hand, wh-questions are marked
by backward head tilts on the wh-sign, and by eyebrow
raise on the wh-sign that can spread over the whole sen-
tence (see examples 2] [3).

Based on these prior results, the goals of this study
are the following. Firstly, we will try to improve on
our bias detection model. Secondly, we will use Func-
tional Data Analysis to analyze continuous movement
of the eyebrows and head. We hope that this work
will be helpful to linguists who also want to study
non-manual movements in other languages because we
believe that our approach can be extended to other
datasets. We share the code with a step-by-step instruc-
tion on https://github.com/kuzanna2016/
non-manuals—2021,

2. Data Extraction and Correction

For the current study, we used the same video clips and
annotations as in |Kuznetsova et al. (2021). The data
contains recordings of 10 simple sentences with a sub-
ject and an intransitive verb, each in three forms — state-
ment, polar question and wh-question (for example, the
signed versions of “The dog is eating.”, “Is the dog eat-
ing?” and “Where is the dog eating?”). At the begin-
ning of the wh-questions, there is also a wh-sign. The
sentences were produced by nine native KRSL signers,
5 deaf signers and 4 are hearing children of deaf adults
(CODASs) currently working as KRSL interpreters. In
total we have 270 videoclips.
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br_raise
head_forward

head_forward
EAT

DOG
‘Is the dog eating?’

br_raise

chin_up
DANCE

WHERE CHILD
‘Where the child is dancing?’

br_raise

chin_up
WHEN MOM
‘When was mom tired?’

TIRED

2.1.

We firstly needed to extract face landmarks from the
videoclips. We use the same method as in Kuznetsova
et al. (2021) — OpenFace (Baltrusaitis et al., 2018; Bal-
trusaitis et al., 2013 |Zadeh et al., 2017). OpenFace
outputs face landmarks location in 3d space in millime-
tres, the location of the head with respect to the camera
in millimetres, the head rotation in radians around three
axes, which can be interpreted as pitch (Rx), yaw (Ry),
and roll (Rz) and a confidence score from O to 1 for
the whole frame. Only 103 frames from 12 videos had
a low confidence score (< 0.8); we did not use those
frames and filled in the neighbouring frames’ values.
The next step in the analysis is to calculate the eye-
brow distances. In |[Kuznetsova et al. (2021) the dis-
tance between the eyebrow points and the eye line was
used. The main reason for that was that this distance is
the most intuitively interpretable as the eyebrow move-
ment is mostly vertical. We also tried other distances —
distance to the upper nose point (27)11_-] distance to a hor-
izontal plane, but they did not work as well, so we will
not discuss them. For distance calculations we used the
following eyebrow points: outer left eyebrow — 18, in-
ner left eyebrow — 20, inner right eyebrow — 23, outer
right eyebrow — 25.

Face Landmark Extraction

!'The numbers correspond to the numbers used in Open-
Pose’s output files.
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2.2. Correction Model

@ forward turn
@ neutral
backward turn

= o
Figure 1: The behaviour of keypoints with different
head turns on the test video.

As already stated in Kuznetsova et al. (2021), we
found out that the OpenFace model has a rotation bias
in 3d face landmarks detection. This means that the
location of the points distorts with the head rotation:
for instance, the eyebrows become more rounded in
the backward tilt and more flat in the forward tilt (we
examined this behaviour in the test video, where we
recorded the head movement from the low to high pitch
without the eyebrow movement, see Figure[I)). We tried
to eliminate this distortion using different geometrical
techniques, but in the end we decided to switch to ma-
chine learning tools. The model should learn the bias
distortion from the frames without eyebrow movement,
then this bias can be predicted for all the frames and
later subtracted from the initial distance. In/Kuznetsoval
et al. (2021)) we used a simple linear regression model
to predict this bias. The training data was from the
statements, specifically the manually selected videos
where no eyebrow movement is present (63 sentences
in total, 4414 frames). Our choice of the model was
based on the observation that the distortion seems to
be linear and consistent across signers — Pearson cor-
relation coefficient between vertical head angle and the
eyebrow distance to the eye line in sentences with no
eyebrow raise is -0.39 for the inner distance and -0.4
for the outer distance.

This time we tried to improve the bias prediction by us-
ing a more advanced model, specifically multilayer per-
ceptron. We believe it is sufficient for our task: it is not
a deep model, can handle a moderate number of sam-
ples without overfitting and it can also capture some
nonlinear dependencies. We performed hyperparame-
ter search using cross-validation on 4 folds (test size —
25%, 1104 frames, train size — 75%, 3310 frames). The
input features were the rotation angles of the head in
three dimensions (pose_Rx, pose_Ry, pose_Ry in Open-
Face), the cosine of the head rotation angles, the loca-
tion of the head (pose_Tx, pose_Ty, pose_Tz in Open-
Face), the one-hot encoded sentence and signer fea-
tures. As previously mentioned in [Kuznetsova et al.
(2021) the big increase in quality is mostly attributed to
the addition of the signer features, as the model learns
individual parameters of the face of the signer. This
set of features thus makes the model only applicable to
our dataset and we encourage the researchers to retrain
their models if they want to use our method.
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Figure 2: The mean curves of the sentence types before and after landmark registration. The red lines represent

the boundaries of the hand signs.

For the experiment we used the sklearn library
for Python (Pedregosa et al., 2018). The base-
line model is the linear regression model from
Kuznetsova et al. (2021) with L2 regulariza-
tion (sklearn.linear_model.Ridge) and the exam-
ined model is Multi-layer Perceptron regression
(sklearn.neural_network.MLPRegressor). The in-
ner and outer eyebrow distances were predicted
simultaneously.

The best result was achieved by the MLPRegressor
with hidden layer size 40 — combined MSE score for
inner and outer distances was 0.38, which improved
on the baseline score of 1.45 for inner eyebrows and
1.36 for outer eyebrows. The best score of the model
without the sentence and speaker features was 3.2 (the
model had hidden layer sizes 45 and 40), which is also
an improvement from the baseline score of 4 but is still
significantly worse than the model with individual fea-
tures.

As before, we used the trained model to predict the
“default” eyebrow distance for all frames and then sub-
tracted it from the originally computed distance.

3. Functional Data Analysis

Eyebrow movement and head rotation angle are dy-
namic features, therefore we want to analyse them
as continuous data rather than discrete, as we did in
Kuznetsova et al. (2021). In |Gubian et al. (2009)
Functional Data Analysis (FDA) was introduced as
a tool to analyze dynamic transitions in speech sig-
nals. FDA provides the means to analyze continuous
functional data like classic statistical methods analyze
scalars (Ramsay and Silverman, 2002). Our main fo-
cus will be on functional principal component analy-
sis (fPCA) — a tool that converts functional data into a
scalar representation with minimum information loss.
Our analysis is described by the following algorithm.
Firstly, time measurements need to be transformed into
function form. This can be done by using basis func-
tions like B-splines and standard least-squares interpo-
lation with a regularization term. Functions are normal-
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ized so that all observations have the same duration — to
compare them across time. It is also possible to align
functions on the landmarks — so that events in all ob-
servations coincide in time. In our case, the landmarks
are the start and end frames of the hand signs. After the
data preparation, fPCA, which finds a representation of
the data with a smaller dimension size saving the vari-
ation. Principal components can afterwards be inter-
preted and analyzed with classical statistical methods,
like mixed-effect multivariate linear regression. fPCA
eliminates the problem of manually picking the scalar
features from the dataset — in Kuznetsova et al. (2021)
it was the mean across the manual signs and with fPCA
we will be able to take into consideration the whole
contour. In our analysis we use the scikit-fda library
for Python (Carrefio et al., 2022).

3.1.

The first step to FDA is to turn raw data points into
continuous functional data. This is done by the com-
bination of the set of functions. In our case, the most
applicable set of functions is B-splines (de Boor, 1978)
as the data is not periodic and can vary in shape greatly.
Our data is quite noisy, therefore we do not want the
function to approximate our data ideally, we want a
smooth representation. This can be done by adjusting
the numbers of the functions in the combination — the
number of “hills” by the regularization term and by the
order of the B-spline. When fitting the curves to the
data we can compute the fitting error and try to mini-
mize it when choosing the hyperparameters, however,
visual inspection is still a valuable step. Based on both
methods, we set the number of basis functions at 14
and the order of functions at 3, because it smoothes the
data enough, saving the important features.

Data Preprocessing

We want to align our functions on the start and end
of the hand signs because we need to determine which
constituent is marked by the non-manual and because
we have different numbers of signs: there is an ad-
ditional wh-word sign at the beginning of the wh-
questions. We extracted the boundaries of the signs



PC1

PC2

PC3 PC4

+

|
Y

Figure 3: The perturbation graphs for the top 4 principal components. The solid curve is the mean of the dataset.
Lines with the ‘+’ sign are the curves where the principal component was added to the mean and lines with the
‘-> sign are the curves where the principal component was subtracted from the mean. The weight of the principal
component is equal to the standard deviation of the dataset weights for that principal component.

from the manual annotation and we aligned them to the
mean of those boundaries across all sentences (17.27 —
the start of the noun, 33.71 — the end of the noun, 39.33
— the start of the verb, 59.46 — the end of the verb).
The importance of landmark registration is described
in the document entitled Time normalisation and land-
mark registration in the additional material from |Gu-
bian et al. (2015 ﬂ In the analysis of formant curves
the authors claim that although overall non-registered
results go in the same direction with the registered re-
sults, the effectiveness of the obtained principal com-
ponents (see Section[3.2Jon fPCA) decreased. The prin-
cipal components from non-registered data described
less variance and tried to incorporate the boundaries in-
formation which can be explicitly done with landmark
registration.

The effect of the landmark registration can be seen in
Figure 2] where the mean of each sentence type is plot-
ted before and after registration. The peaks of the wh-
questions have been moved to the left, which reflects
the position of the wh-sign at the beginning of the sen-
tence, while polar questions and statements have been
slightly moved to the right as the mean positions of the
hand signs are influenced by the wh-questions and are
skewed to the right. Moreover, the peaks in all sen-
tence types became more pronounced as they became
more aligned. Moreover, it is clear from the figure that
inner and outer eyebrow movement do not differ much,
so we will not discuss outer eyebrow movement sepa-
rately.

3.2. Functional PCA

With registered and smoothed data we can perform
fPCA. One of the applications of PCA is dimension-

Zhttps://github.com/uasolo/FDA-DH/
blob/master/paper/TimeRegistration.pdf
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ality reduction. PCA provides principal components
(usually vectors) and their weights for each data point
so that the sum of the dataset mean and the weighted
sum of the principal components will reconstruct the
data point. For data point x; the formula

mean + s} * PCy + 52 x PCy.. + s7  PC,,,

where s7' — is the score of the nth principal compo-
nent for that data point and PC,, is the nth principal
component, will produce the best approximation of x;.
Principal components are ranked from the most infor-
mative to least, so the first principal component will
capture the biggest variance in the dataset. This feature
is the reason why PCA is used in dimensionality reduc-
tion: using only some of the first principle components
the data can be expressed with some percent of the
saved variance. Functional PCA has the same output
but principal components are in function form (Jolliffe
and Jackson, 1993). Functional principal components
are modifying functions that work like the regular prin-
cipal components. To reconstruct a function from the
dataset we need to add functional principal components
multiplied by their weights to the mean curve. We per-
formed fPCA independently on our three features. The
first four principal components explain 93-96% of the
variance (Table ).

PC1 | PC2 | PC3 | PC4 | Total
head rotation | 69% | 14% | 6% 4% 93%
inner brows 83% | 7% 4% 2% 96%

Table 1: The explained variance ratios of the principal
components.

Functional principal components are modifiers of the
mean curve; therefore the best way to look at them and
interpret them are perturbation graphs (Figure [3). The
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perturbations are defined as variations over the mean:
we add (lines with ‘+’ sign) and subtract (lines with
the ‘-* sign) each principal component from the mean
curve (the solid line) with the weight equal to the stan-
dard deviation of the dataset weights for that principal
component. We can interpret these lines as the border-
line cases of the principal component modification.

In Figure [3] we can see that PC1 mainly alters the am-
plitude of the movement and to some extent the bulge
of the curve both in eyebrow and head rotation cases.
Next we will explore the eyebrow movement compo-
nents. PC2 seems to distinguish between curves that
have the eyebrow raise before the noun and the curves
which have the eyebrow raise on the verb. PC3 acts as
a separator between curves with one main raise on the
noun and gradual decline to the end of the sentence and
curves with slight raise before the noun and a plunge
on the noun. The last component is more complicated
with more than one peak, it will be harder to interpret it
correctly. Still, PC4 either has a raise on the noun and a
slightly lower raise at the end of the verb or two raises:
one before the noun and one before the verb. As for the
head movement, PC2 distinguishes between an almost
flat movement with a small bump between noun and
verb and a raise before the noun with a deep plunge on
noun and verb. PC3 has either a raise before the noun
and a plunge until the end of the sentence or a raise on
the noun and a decline towards the verb with a small
hump between the noun and the verb. Finally, PC4 has
very subtle differences and the least amplitude of the
changes: it separates the high rise before the noun from
the small rise on the noun and a big hump between the
noun and the verb and a more smooth hump there.

3.3. Statistical Analysis

In the previous section we obtained valuable discrete
features for all sentences — scores of the principal com-
ponents, which we can analyse with the standard sta-
tistical tools. We will repeat the analysis made in
Kuznetsova et al. (2021) with some alterations. The
analysis is made in R. The model that we are using is a
mixed-effects multivariate linear regression (Baayen et
al., 2008; Bates et al., 2015). The fixed predictor vari-
ables for the model are sentence type (categorical, three
levels: statement, polar question, wh-question), group
(categorical, deaf vs. hearing), and all the interactions
between the two predictors. The random variables are
participant (with a random slope for sentence type or
part of sentence), and sentence (with a random slope
for the group). We also use the Ime4 package (Chung et
al., 2015)) with the help of the blme package (Chung et
al., 2013) to achieve convergence with a small number
of levels for the random effects. The significance of the
group feature was calculated with the ANOVA function
from the car package (Fox and Weisberg, 2019). We
have three levels in our sentence type feature, therefore
we would need to test three hypotheses and account for
the multiple comparison problem. In|Kuznetsova et al.
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(2021) we overcame this problem with the orthogonal
contrast: we compared statements with wh-questions
and the mean of the statements and wh-questions with
the polar questions. The features were the distances
and the concept of the mean of the distances is intuitive,
however, when the features are principal components,
the mean of the principal components is more compli-
cated. That is why we decided to make a more compli-
cated analysis with a pairwise comparison. We use the
multcomp package (Hothorn et al., 2008) to do this. We
used Tukey Contrasts and the p-values were adjusted
with the single-step method (Bretz et al., 2016). We
made separate models for the inner eyebrow distance,
for the outer eyebrow distance and for the vertical head
rotation angle, and for each principal component, pro-
ducing a total of 15 models. The result of the models is
discussed in Section

4. Results

4.1. Eyebrow Movement

PC:

2 pPCa

—— mean —— polarq —— whq — st

Figure 4: Mean curves of the eyebrow movement for
each sentence type reconstructed with the significant
principal components separately.

From visual inspection of the mean curves (Figure |2)
we come to the same conclusion as in [Kuznetsova et
al. (2021)): polar questions are marked by the eyebrow
raise on the noun and verb with some nods in-between,
while wh-questions are marked by the eyebrow raise on
the wh-sign at the beginning of the sentence and gentle
eyebrows lowering to the end of the sentence. State-
ments have some eyebrow movement but the amplitude
is much lower and it may be the effect of the inconsis-
tency of marking across signers. We will report only on
the significant features; the full results of the statistical
analysis can be found with the code.

The first principal component has a significant impact
in distinguishing between polar questions and state-
ments: in inner and outer eyebrows the p-value is
< 0.001; and wh-questions and statements: in inner
eyebrows the p-value is 0.0498. The mean PC1 score
for the polar questions is 9.74 for the inner eyebrows
and 6.94 for the outer eyebrows, while for the state-
ments it is -11.65 for inner and -9.27 for outer and for
the wh-questions it is 2.54 and 2.78 respectively. Ac-
cording to the shape of the perturbation graph (Figure
M), polar questions have a big amplitude raise and state-
ments have a low eyebrow raise with a flatter curve,
while wh-questions are close to the mean.



The second principal component is also significant, but
for the distinction between the polar and wh-questions.
For both the inner and outer eyebrows the p-value is
< 0.001. The mean PC2 score for the polar questions is
-6.06 and -4.79, and for the wh-questions it is 4.83 and
3.78 for inner and outer eyebrows respectively. Polar
questions thus have a more gentle raise to the verb and
wh-questions have a sharp raise before the noun, on the
wh-sign (Figure [).

The fourth principal component also has a significant
impact, but the least one. It distinguishes between the
wh-questions and statements. For the inner eyebrows
the p-value is 0.0501 and for the outer it is 0.0273. The
mean PC4 score for the wh-questions is 1.23 for the in-
ner eyebrows and -1.37 for the outer, and for the state-
ments it is -1.53 and 1.28. In the Figure []it is a very
subtle difference, statements deviate slightly from the
mean curve in three positions, on the sign boundaries,
while wh-questions have a more pronounced deviation
in the beginning, on the wh-sign, and a raise before the
verb.

Thus, we confirm the previous observations that polar
questions are marked by eyebrow raise on the noun and
verb, while wh-questions are marked by eyebrow raise
at the beginning of the sentence on the wh-sign.

4.2. Head Movement

PC1 PC4

0 50
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Figure 5: Mean curves of the vertical head rotation for
each sentence type reconstructed with the significant
principal components separately.

From visual inspection of the data, wh-questions seem
to be marked with the backward tilt on the wh-sign, po-
lar questions have a forward tilt on the noun and verb,
and statements have small movements that resembles
quick nods on the noun and the verb.

The statistical analysis shows that the first principle
component significantly impacts the separation be-
tween wh-questions and polar questions (p-value <
0.00291) and statements and polar questions (p-value
0.0016). The mean score of the first component for wh-
questions is 0.3, for polar questions — -0.82, for state-
ments 0.47, which means that polar questions have a
deep forward tilt on the sentence peaking at the noun
and verb, while wh-questions and statements have a
more flattened movement (Figure[5} the first column).
The next significant principal component is the fourth
principal component. Statement and wh-questions dif-
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fer significantly (p-value is 0.00229) and so do wh-
questions and polar questions (p-value is 0.02667). The
mean scores of the fourth principal component are -0.1
for polar questions, 0.12 for wh-questions and -0.02
for statements. According to the perturbation graph
(Figure E} the second column), this means that wh-
questions have a pronounced backward tilt at the begin-
ning of the sentence on the wh-sign, and a nod between
the noun and the verb, while statements and polar ques-
tions do not have a backward tilt in the beginning. We
come to the same conclusion that the polar questions
are marked with a continuous forward tilt on the noun
and verb and the wh-questions are marked with a back-
ward tilt on the wh-sign.

4.3. Deaf/hearing Differences

PC1

inner

EE]

== mean = deaf = hearing

Figure 6: Mean curves of the eyebrow movement for
the sentences with deaf and hearing signers recon-
structed with the significant principal components sep-
arately.

In Kuznetsova et al. (2021) we did not find any sta-
tistically significant differences between the deaf and
hearing signers. This time we can report that there are
differences in some principal components.

The eyebrow movement has shown some significant
differences in the first principal component for both the
inner eyebrows and the outer eyebrows (p-values are
0.02764 and 0.03632 respectively). The first compo-
nent mean scores for the inner eyebrows are -7.49 for
the deaf signers and 10.31 for the hearing signers, for
the outer eyebrows — -8.85 and 12.18. Figure [6] shows
that in the first component the hearing signers tend to
have higher eyebrow raise than the deaf signers.

5. Discussion
5.1.

The main source of the Functional Data Analysis tech-
niques for this study was the website hosted by Michele
Gubian. In his works, Gubian explores how FDA can
be applied to speech research; however, he points out
that FDA can be applied to other types of uni- or multi-
dimensional continuous signals. We took inspiration
from this and were able to translate his approach to sign
language prosody. We believe that FDA has signifi-
cantly improved our analysis. Firstly, we were able to
analyse sentences with different durations and differ-
ent number of signs with landmark registration. Sec-
ondly, with fPCA we were able to take into account the

FDA and Sign Languages



whole sentence contour, rather than some handpicked
features. The principal components that we obtained
were interpretable and it was easy to explore the visu-
alisations. We hope that our work will increase interest
in applying computer vision tools and FDA to sign lan-
guage data. Section 5.2 has some practical advice to
those who would like to try this approach.

5.2. Applying to Naturalistic Data

This study was made with the materials that were col-
lected for NLP tasks in a constrained way and with
a small number of signers. Moreover, almost half of
the signers were hearing children of deaf adults, which
means that the sample was not homogeneous, which is
reflected in the differences between deaf and hearing
signers. This makes our dataset far from naturalistic
and we cannot guarantee that this approach will work
on naturalistic data.

However, we believe that it is still possible and we en-
courage researchers to test it. We suggest finding mate-
rials in corpus where sign boundaries and non-manuals
are already annotated. Various non-manual markers
can be obtained with OpenFace, including head rota-
tion in three axes, head movement, eye aperture, eye
gaze, mouthing and eyebrow movements. We advise
to obtain the frames with no non-manual markers from
the same materials and same signers to use in the cor-
rection model, if the non-manuals in question can be
modified by the head rotation. When using the cor-
rection model the id of the material and the id of the
signer should be used as categorical features (like we
used the sentence id and the signer id). The following
analysis can be done with FDA or another framework,
depending on the aims of the study. Lastly, we rec-
ommend inspecting frames with low confidence scores
from OpenFace as they can damage the results of the
correction model and the subsequent analysis. Frames
with low confidence scores should not be included in
the correction model training set, but they can be used
in other steps if their values are filled in by the neigh-
boring values or the mean of the neighboring values.

5.3. Data Manipulation

We understand that our approach of correcting the
OpenFace results can introduce unwanted noise to the
data and it would be more reliable to modify the pre-
dictor. The approach of putting a correction model on
top of the predictor is indirect and subjective, as the
features that we use only reflect our empirical observa-
tions, while the predictor has important internal states
that can directly solve the problem. Although Open-
Face is a state of the art tool the problem of general
3D reconstruction from a single camera is challenging,
especially when the camera is not constrained, and the
reconstructed 3D shape is not always going to be ac-
curate and will be affected by rotation up to a point.
We did not try other models that can perform 3D re-
construction of the face landmarks and did not modify
the original model. We also did not retrain it on our
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data because we do not have the resources to annotate
it for this task. If there are other solutions, we would
encourage to try them out in subsequent research.

5.4. Availability of the Code

We produced a script which captures all elements of the
data preparation, including the bias detection model,
Functional Data Analysis and statistical analysis for
further research on non-manual markers in sign lan-
guages. The script is freely available on GitHub with a
step-by-step instruction: https://github.com/
kuzanna2016/non-manuals-2021.

6. Conclusions

In this study, we (1) re-tested and improved techniques
for eyebrow distance extraction using computer vi-
sion tools and (2) introduced FDA as a tool to anal-
yse dynamic shapes of non-manuals. We supported
the conclusions about the non-manual marking of the
questions in the KRSL dataset from |Kuznetsova et al.
(2021)) with the new analysis. In the KRSL dataset the
wh-questions are marked with a backward head tilt and
an eyebrow raise on the wh-word while polar questions
are marked with a forward head tilt and an eyebrow
raise on the noun and verb. We also found a difference
between the deaf and hearing signers: the hearing sign-
ers tend to have more expressive non-manuals, mean-
ing that the manuals have a bigger amplitude and the
features are more pronounced.

Furthermore, this study demonstrates that computer vi-
sion techniques can be applied for sign language lin-
guistic research, specifically research on non-manuals.
Although these tools are very useful, they also have
limitations. For example, the OpenFace model dis-
torts face landmarks when the head is rotated. We have
found one solution to this problem. We train an ad-
ditional model on top of the predicted results to pre-
dict the errors and then we subtract the errors from the
OpenFace output.

Moreover, we used a new statistical tool for linguis-
tic analysis: Functional Data Analysis. It was already
proven to be a great tool for spoken language phonet-
ics and this study provides evidence that it can also be
used for sign language prosody. FDA provides a way
to work with continuous data, to shift curves and to ex-
tract features from these curves using functional princi-
pal component analysis. The translation of continuous
data into scalar points helps analyse this data with stan-
dard statistical procedures.

We hope that our research will be useful in solving the
problem of quantitative analysis of sign language lin-
guistic features.
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