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Abstract

This paper presents experiments on mor-
phological inflection using data from the
SIGMORPHON-UniMorph 2022 Shared Task
0: Generalization and Typologically Diverse
Morphological Inflection. We present a trans-
former inflection system, which enriches the
standard transformer architecture with reverse
positional encoding and type embeddings. We
further apply data hallucination and lemma
copying to augment training data. We train
models using a two-stage procedure: (1) We
first train on the augmented training data using
standard backpropagation and teacher forcing.
(2) We then continue training with a variant
of the scheduled sampling algorithm dubbed
student forcing. Our system delivers competi-
tive performance under the small and large data
conditions on the shared task datasets.

1 Introduction

This paper presents experiments on morphologi-
cal inflection using data from the SIGMORPHON-
UniMorph Shared Task 0: Generalization and Ty-
pologically Diverse Morphological Inflection (Kod-
ner et al., 2022).1 Our system focuses on typologi-
cally diverse inflection generation, that is, the task
of inflecting a lemma in a given form, which is
specified by a morphosyntactic description (MSD).
As an example, consider inflecting the English
verb lemma walk in the past tense according to
the MSD VERB+PAST, thereby generating the in-
flected form walked. The shared task investigates
two data conditions: Under the small data con-
dition, up to 700 training examples are provided.
Under the large data condition, up to 7000 train-
ing examples are provided. Our system beats the
official neural shared task baseline by more than

∗*The first two authors contributed equally.
1Note, our system is not an official shared task submission

because we submitted our final results after the shared task
deadline.

8%-points under both the small and large data con-
ditions.

We apply transformer models (Vaswani et al.,
2017b) to the inflection task. The model is trained
to translate an input sequence consisting of lemma
characters and an MSD, like:

w, a, l, k, +VERB, +PAST

into the inflected output sequence:

w, a, l, k, e, d

General purpose transformers were originally de-
veloped for machine translation, but they also de-
liver strong performance on morphology tasks (Wu
et al., 2021). Nevertheless, we observe that the
vanilla transformer architecture is not ideally suited
for inflection: In contrast to machine translation,
many inflectional phenomena are strongly position-
ally dependent, which is something that the vanilla
transformer architecture does not adequately model.
For example, phonological alternations often hap-
pen at affix boundaries and these typically occur
either at the start or end of word forms. Whereas
the positional encoding in the transformer architec-
ture allows for uniquely conditioning on relative
positions with regard to the start of the string, the
same is not true for positions at the end of the
input string. We, therefore, augment our transform-
ers with reverse positional encoding, presented in
Section 3.1, which allow the model to condition
directly on the end of the input string.

In previous iterations of the SIGMORPHON in-
flection shared task (Pimentel et al., 2021; Vylo-
mova et al., 2020; McCarthy et al., 2019; Cotterell
et al., 2018, 2017, 2016), so called lemma overlap,
where identical lemmas occur both in the training
and test set, has caused inflated performance, re-
sulting in near perfect inflection accuracy for many
languages. Liu and Hulden (2022) and Goldman
et al. (2022) show that more challenging data splits
with low lemma overlap can cause significant re-
duction in inflection performance. The data in this
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year’s inflection task demonstrate varying lemma
overlap, ranging from < 1% for Slovak under the
small data condition to 100% for Hebrew under the
large data condition but centering on lower over-
lap (see Appendix A for details). Accordingly, we
decided to investigate different mechanisms which
we hypothesized would improve generalization to
unseen lemmas in the test set.

Data augmentation is a commonly used tech-
nique, which improves generalization in many NLP
tasks. Here the gold standard training data is aug-
mented with synthetic examples. Back-translation
introduced for machine translation is perhaps the
best known method (Sennrich et al., 2016), but has
not been very successful in morphology tasks (Liu
and Hulden, 2021). We instead use the data hal-
lucination approach by Anastasopoulos and Neu-
big (2019), which synthesizes new training exam-
ples from existing gold standard training exam-
ples by identifying a (possibly discontinuous) word
stem and replacing this with a random character
sequence. In addition to data hallucination, we
experiment with another data augmentation tech-
nique: lemma copying (Liu and Hulden, 2022),
where the model is trained to copy input lemmas
from the test set in order to adapt the model more
closely to the test data. In our experiments, this
method ultimately delivers better performance than
data hallucination.

As a further attempt to improve generalization,
we experiment with modifications of the standard
teacher forced training procedure of inflection mod-
els. When applying teacher forcing during training,
the model is allowed to rely on gold standard his-
tory for time steps 1 up to t, when predicting output
at time step t + 1. This speeds up convergence
considerably but can also result in sub-optimal per-
formance due to so-called exposure bias (Wiseman
and Rush, 2016), which is caused by a mismatch
when conditioning on gold standard history during
training and predicted history during test time. We
take an alternative approach called student forc-
ing (Nicolai and Silfverberg, 2020), which is an
application of scheduled sampling (Bengio et al.,
2015) for morphology tasks. Here model-predicted
output history is substituted for the gold standard
history for a subset of training examples in order
to counteract exposure bias while simultaneously
maintaining efficient training (see Figure 1). Ac-
cording to Nicolai and Silfverberg (2020), student
forcing can improve inflection performance under

[Illustration from Nicolai and Silfverberg (2020)]

Figure 1: Teacher forcing (left) and student forcing
(right); some connections have been left out to reduce
clutter.

low-resource conditions. Our experiments show
that student forcing can deliver small improve-
ments for some languages but does not outperform
data hallucination. However, the techniques seem
to be complementary; their combination provides
improvements over plain data augmentation.

In summary, our main contributions are as fol-
low:

1. We enrich the transformer architecture with
reverse positional encoding in order to support
the inflection task.

2. We investigate data hallucination and lemma
copying as ways to prompt better generaliza-
tion to lemmas missing from the training set.

3. We apply student forcing to counter exposure
bias in inflection.

2 Related Work

Wu et al. (2021) present a systematic investigation
of applying the transformer model to morphology
tasks. They propose two changes to the general
transformer architecture introduced by Vaswani
et al. (2017b): (1) type embeddings, which are
used to distinguish between input characters and
morphosyntactic tags and (2) restricting positional
encoding to the input characters, while encoding
morphosyntactic tags in a position-agnostic manner.
Another modification to the transformer architec-
ture, which can improve performance on morphol-
ogy tasks, is to add a so-called monotonicity loss
(Rios et al., 2021). This can bias the transformer
toward near-monotonic alignment between the in-
put and output sequence, which is often the case in
inflection.
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We use data augmentation to improve generaliza-
tion to unseen lemmas. This has become a standard
technique in low-resource inflection in recent years.
A common approach is to generate synthetic exam-
ples by first identifying word stems in gold stan-
dard examples and then replacing the stems with
random character sequences (Anastasopoulos and
Neubig, 2019; Silfverberg et al., 2017). Liu and
Hulden (2022) introduce a more refined method to
hallucinate synthetic stems, which aims to honor
the phonology of the target language by generating
sequences of random syllables rather than random
characters. Kann and Schütze (2017) show that a
simpler data augmentation method, where random
strings or unlabeled word forms are copied from
the input to the output, can also be effective. Liu
and Hulden (2022) apply this approach to copying
lemmas in the development and test set and show
that this can lead to substantial gains in inflection
accuracy. We apply their technique in Section 3.4.
Other approaches to data augmentation in morpho-
logical inflection include: reframing the task as
reinflection and generating reinflection examples
from the existing inflection training data (Liu and
Hulden, 2020), as well as generating new training
examples using back-translation (Liu and Hulden,
2021), and self-training (Yu et al., 2020).

In addition to data augmentation, we also ex-
periment with student forcing to improve general-
ization. As mentioned above, this is an applica-
tion of scheduled sampling. Bengio et al. (2015)
explore scheduled sampling for various sequence
generation tasks (image captioning, constituency
parsing and speech recognition). This is a cur-
riculum learning approach (Bengio et al., 2009),
where the model is gradually exposed to more of its
own prediction errors during training, thereby coun-
teracting exposure bias. The student forcing ap-
proach presented by Nicolai and Silfverberg (2020)
is a slight simplification of this approach. Essen-
tially, student forcing uses a fixed amount of model-
predicted contexts throughout training instead of a
curriculum approach.

3 Methods

In this section, we describe our contributions to
the inflection task, before moving on to our experi-
ments in subsequent sections.

3.1 Reverse Positional Encoding

The vanilla Transformer architecture, which serves
as the basis for our system, accounts for the order of
input and output tokens by pairing each token with
a sinusoidal positional encoding (Vaswani et al.,
2017a). This positional encoding captures relative
distance from the start of the string, meaning that it
is a forward positional encoding. In inflection tasks,
it is, however, vital to encode not only distance
from the start of the input string, but also distance
to the end of the string.

For example, in English, the plural form of nouns
ending in a strident like s is formed by appending
an affix -es to the end of the noun (e.g. class →
class+es) instead of the regular plural suffix -s. The
alternation s → es always occurs at the penultimate
position of the inflected form, which means that it
is important to allow the model to directly refer to
positions at the end of the strings. Because word
length differs, this information is difficult to infer
from a purely forward positional encoding.

We augment the vanilla transformer model in
the Fairseq toolkit (Ott et al., 2019) with re-
verse positional encoding: Let f1, ..., fn be the
k-dimensional forward sinusoidal positional encod-
ing vectors for a string of length n. We introduce
k-dimensional reverse positional encoding vectors
b1, ..., bn, where ri = fn−i+1. Our final positional
encoding vectors are given by the 2k-dimensional
concatenation [fi; bi]. Following Wu et al. (2021),
we only use positional encoding vectors for charac-
ters in the input lemma. For morphosyntactic tags,
we instead use a special NULL vector. See Fig-
ure 2 for a representation of the reverse positional
encoding.

3.2 Type Embeddings

Given an example like bus+NOUN+PL → buses,
the input sequences to our inflection model consist
of two token-types: lemma-characters like b, u and
s and morphosyntactic tags like +NOUN and +PL.
Following Wu et al. (2021), we use type embedding
vectors eLEM and eMSD to distinguish between
these token-types. The type vectors have the same
dimensionality as the input embeddings. We sum
them with token embedding vectors to compute
input token representations. The vectors eLEM

and eMSD are randomly initialized and are trained
jointly with the rest of the inflection model. See
Figure 2 for an illustration of type embeddings.
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Figure 2: Illustration of reverse positional encoding and type embeddings. The left figure shows the encoding of
source character positions from the backward pass, concatenated with the forward positional encoding. The right
figure displays a type embedding built from an integer-encoded type vector that distinguishes the three possible
types of an input token. The type embedding is then summed with the original token embedding and multiplied by a
scaling factor.

[Illustration from Anastasopoulos and Neubig (2019)]

Figure 3: Illustration of the data hallucination method.
Noise is introduced into the existing training examples
by replacing the longest common subsequence of input
and output forms with random character strings.

3.3 Data Hallucination

Under low-data conditions, encoder-decoder mod-
els are often strongly influenced by the target lan-
guage model. Common character sequences which
appear in the training data are more likely to be
produced, even at the expense of ignoring the in-
put example. In order to address this label bias,
we augment the training data with hallucinated
examples. We employ the approach proposed by
Anastasopoulos and Neubig (2019). This method
introduces noise into the existing training exam-
ples by replacing the longest common subsequence
of input and output forms with random character
strings, as shown in Figure 3.

Although the problem is more prevalent under
low-data conditions, we experiment with adding
synthetic examples to the original dataset under
both the small and large data condition. Prelimi-
nary development experiments motivate the num-
ber of hallucinated forms. Accordingly, we use
7,000 synthetic examples for the small data set and
1,400 examples for the large training set.

3.4 Lemma Copying

The data hallucination method introduced by Anas-
tasopoulos and Neubig (2019) can sometimes cre-
ate invalid examples due to phonological alterna-
tions as noted by Samir and Silfverberg (2022).
For example, given the English inflection exam-
ple like+VERB+PAST → liked, their approach will
first identify the longest common subsequence of
the lemma and word form, that is, like and will then
replace this with a random character sequence, for
example xyz. This results in a synthetic example
xyz+VERB+PAST → xyzd. Now, this example is
erroneous since -d occurs as the English past tense
marker for regular verbs only when the stem ends
in e, which the syntetic stem xyz does not.

In order to avoid introducing errors during aug-
mentation, we experiment with an alternative ap-
proach to data augmentation: so-called lemma
copying, first presented by Liu and Hulden (2022).
We augment the training set with artificial examples
where a lemma is copied verbatim, e.g. like+COPY
→ like. Here we use the special +COPY tag to in-
dicate copying. We collect lemmas for the copy
examples from the input forms in the test set. There-
fore, lemma copying can be seen as a domain adap-
tation technique, where we adapt the inflection
model to the specific test input forms.

At a first glance, lemma copying might seem like
an artificial technique, which will only be useful
in a shared task setting where we have a fixed test
set. However, even in real-world scenarios, we will
often run the model on a fixed dataset of inputs.2

It is, therefore, possible to either retrain the model
on a combination of the original training data and
test input forms, or fine-tune the model on lemma

2For example, we might want to inflect a set of baseforms
from a dictionary.
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copying.3 It is also important to note that lemma
copying does not use any additional labeled data
for training the system. Neither does is make use
of any additional unlabeled data, which would be
unavailable at inference-time.

3.5 Student Forcing

Sequence-to-sequence architectures are very depen-
dent on the context of generated items—it is their
greatest strength, but can also lead to disjunctions
between training and testing settings.

In very low data setups, exposure bias can overfit
to the training data, as it observes a very small set
of contexts. Although data hallucination has been
shown to counter overfitting in such scenarios, we
additionally adopt the student forcing approach
described by Nicolai and Silfverberg (2020).

For a small number of instances (a tunable hy-
perparameter, student-forced percentage [SF-%],
most effective between 10 and 30%), contextual
cues from the target are replaced with hypotheses
generated by the model. Hypotheses are typically
generated via the standard inference method (in
this case, a beam search with beam width 5). We
explore several alternative methods to further al-
low the model to take advantage of the prediction
space, including sampling from items that reach a
probability threshold, a count threshold, and using
multiple diverse beam groups. Development results
suggested that sampling from the top 2 candidates
yielded the best results, and is used for all experi-
ments describing student forcing for the remainder
of this paper.

Since hallucinated data makes up a significant
portion of the training data (90% under the small
data condition, and 17% under the large data con-
dition), we anticipate the possibility that the model
overfits to hallucinated data. In an attempt to
counter overfitting, we apply student-forcing in
a fine-tuning step after the initial data-augmented
models have been trained.

4 Experiments and Results

Here, we describe our experiments on small and
large training sets. Under both data conditions, we
train models using the following procedure: We
first augment the training data using data halluci-
nation or lemma copying. We then train the model
on the augmented data for a maximum of 20,000

3In the current submission, we only investigate the retrain-
ing approach.

steps without teacher forcing. We then identify the
best checkpoint model based on development set
accuracy and continue training this model with stu-
dent forcing for an additional 1000 steps. When
applying lemma copying, we have to train sepa-
rate models for the development and test set: one
model which augments the training set with lem-
mas from the development set and another one
which augments with test lemmas. We first tune
hyperparameters on the development set and then
use this hyperparameter configuration when train-
ing the final model for the test set. Crucially, this
allows us to avoid augmenting the training data
both with development and test lemmas in order to
not use extra data for tuning model parameters.

4.1 Original Data for Inflection Generation
Data across 33 languages are included in our ex-
periments. We follow the training, development,
and testing splits provided by the task organizers.
Twenty of the languages contain two training con-
ditions: small and large. Small training data range
from 70 to 700 instances, where an instance is com-
posed of a lemma, an MSD, and an inflected form.
Most languages have 700 training instances, but
Chukchi (ckt), Upper Sorbian (hsb), Kholosi (hsi),
and Ket (ket) represent an even lower-resource con-
dition. In the large training data condition, each
language has 7,000 training instances. Generally,
development splits contain approximately 1,000
instances, and test splits contain 2,000.

4.2 Model Architecture
We conduct our experiments with a modified ver-
sion of Fairseq’s (Ott et al., 2019) implementa-
tion of transformers (Vaswani et al., 2017b). The
transformer architecture is enriched with reverse
positional encoding and type embeddings, as we
illustrated in Sections 3.1 and 3.2. We train our
models with 4 layers in the encoder and decoder,
each containing 4 attention heads. The embedding
size is 256 and the hidden layer size is 1024. These
hyperparameter settings roughly correspond to the
values used by Wu et al. (2021) for character-level
tasks.

We use the Adam optimizer with an initial learn-
ing rate of 0.001, and batch size 400. Prediction
is performed with the best checkpoint model, ac-
cording to the development accuracy, using a beam
of width 5. All models are trained for a maximum
of 20,000 updates. Fine-tuning then proceeds for a
maximum of 1000 additional updates. Again, we
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choose the best model as determined by develop-
ment accuracy.

4.3 Main Results

Experiment Small Large
ST BASELINE 47.63 62.39
OUR BASELINE 47.93 69.57
HALL 53.83 69.19
COPY 56.64 70.66
COPY+SF 57.23 71.26
COPY+HALL 55.27 70.43

Table 1: Results on the test data under both small and
large data conditions. ST BASELINE refers to the offi-
cial neural shared task baseline and "Our Baseline" to
our baseline transformer with reverse positional encod-
ing and type embeddings. SF refers to student forcing,
HALL to data hallucination and COPY to lemma copy-
ing.

We use micro averaged full-form accuracy to
evaluate our predictions on development and test
splits, including results both under the small and
large data condition.4 Average results across all
languages are shown in Table 1.5 See Kodner
et al. (2022) for detailed results. The best results
(Copy+SF) represent our official shared task sub-
mission.

Across both data conditions, our models outper-
form the official shared task neural baseline. Our
modified Fairseq models with reverse positional
encoding and type embeddings but without data
augmentation (OUR BASELINE) perform slightly
better than the official shared task baseline under
the small training data condition, while on the large
training set our modifications to the transformer ar-
chitecture contribute a substantial improvement of
around 7%-points.

Results from data hallucination HALL are mixed.
Under the low data condition, it delivers a clear
improvement of 5.90%-points over OUR BASE-
LINE on the test set, but under the large data con-
dition, it results in a small drop of 0.38%-points
in inflection accuracy. In contrast, lemma copying
delivers consistent improvements over OUR BASE-
LINE under all data conditions. Under the small
data condition, the COPY system delivers a sub-
stantial 8.71%-point improvement and a smaller
improvement of 1.09%-points under the large data
condition, outperforming HALL under both con-
ditions. A combination of the data augmentation

4This corresponds to the official evaluation metric of the
SIGMORPHON 2022 inflection shared task.

5See Appendix B for results on the development set.

techniques COPY+HALL does not deliver improve-
ments over plain lemma copying but outperforms
HALL. In general, data augmentation is always
more helpful under the low data condition.

Student forcing (COPY+SF) further boosts the
performance of the COPY system for several lan-
guages, resulting in a 0.5%-points gain under both
data conditions. Some languages show only mod-
est improvement, such as Hebrew increasing from
34.6% to 35.2%, or even small decreases - Braj
decreases from 56.1% to 56.0%. However, other
improvements are much more noteworthy - Arabic
increases from 43% to 47.9%, and Pomak from
44.2% to 46.0%. The trends are similar under the
large data condition, although fewer languages are
affected.

We take a closer look at the types of errors that
are corrected by the COPY+SF model when com-
pared to COPY. Concentrating on Evenki, we no-
tice that the corrections made by student forcing are
generally small - typically, the addition or removal
of a single letter. For example, the 3rd person
singular possessive form of atirkanma should be
atirkanman. While the model prior to fine-tuning
simply copies the lemma, COPY+SF corrects the
error. Likewise, the 3rd person dative possessive
form of nadiśi is predicted as nadiśidun, which is
then corrected by student forcing to nadiśidu:n.

5 Discussion

The most prominent trend in our experiments is
that lemma copying delivers sizable improvements
in accuracy, particularly under the small data con-
dition. It is also noteworthy that models trained on
small training data using data augmentation(either
hallucinated data or copied data) outperform mod-
els trained on large training data without data aug-
mentation. Based on these results, it is clear that
data augmentation is a crucial technique in low-
resource inflection, delivering substantial improve-
ments which parallel improvements from a signifi-
cant additional annotation effort. This might allow
researchers to kick-start development of morphol-
ogy resources for low-resource languages using
very little annotated data. Performance also seems
to improve even under higher data conditions when
lemma overlap in the training data and test data is
small.

Student forcing delivers small improvements at
best and is often harmful when combined with data
augmentation. We do not have a good explanation

231



for this phenomenon at the current time. Based on
our experimental results, we can conclude that data
augmentation is a far more influential method for
countering data sparsity.

It is interesting to see that our base inflector,
trained without student forcing or data augmenta-
tion, outperforms the shared task baseline. Given
that the baseline system is a character-level trans-
former (Wu et al., 2021), this might be attributable
to our architectural innovation, namely reverse po-
sitional encoding. However, another difference
between our system and the shared task baseline is
that the baseline is a multilingual system, whereas
our system is monolingual. Further investigation is
required to tease apart these effects.

6 Conclusion

In this work, we advance the generation perfor-
mance of inflectional forms with a joint effort in-
cluding reverse positional encoding, data halluci-
nation, copying lemmas, and student forcing. We
improve the prediction accuracy by 9.6% and 8.6%
above the official neural shared task baseline on the
small and large test set respectively.

According to our results, the joint effect of re-
verse positional encoding, lemma copying, and stu-
dent forcing results in the best performance. We
investigate two data augmentation strategies: The
effect of data augmentation is more evident when
less annotated data is available for training.

Due to time constraints, many observed phenom-
ena are still ripe for interpretation, including the
role that sampling has in a space populated by artifi-
cial examples. Our findings suggest that not only is
data hallucination beneficial for low-resource mor-
phological inflection, but that it is a necessary step
in the inflectional pipeline. That said, there is still
room to improve. Even in the more challenging
(and more realistic) setting present in this task, sev-
eral languages are close to solved for inflection, but
many still have significant room for improvement.
We anticipate more focused investigations into the
reasons why these languages remain so difficult
for transformer models, even as the state of the art
approaches new heights.
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A Lemma Overlap

Lemma overlap for small training data (in Table 3)
and large training data (in Table 2) with the develop-
ment and test sets. Lemma overlap is computed by
dividing the number of examples, where the lemma
occurs in the training set, with the total number of
examples.

B Supplementary results

Table 4 shows the micro averaged inflection accu-
racy of each model on the development data.
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ang ara asm evn got heb hun hye kat kaz khk kor krl lud non pol poma slk tur vep
dev 64.7 62.8 99.3 65.7 76.0 100.0 30.9 68.8 90.8 97.7 98.9 92.0 59.0 53.5 95.4 7.3 11.6 5.6 91.7 44.7
test 77.1 54.0 98.9 61.3 81.2 100.0 31.1 69.7 82.4 98.2 99.0 92.2 81.2 54.3 95.2 6.6 17.1 5.1 87.2 42.1

Table 2: Lemma overlap for the large training sets with the development and test data. Lemma overlap is computed
as f/N , where f is the number of development/test examples, where the lemma is found in the training set and N
is the total number of development/test examples.

ang ara asm bra ckt evn gml goh got guj heb hsb hsi hun hye itl kat kaz ket
dev 14.2 13.3 45.4 25.8 27.3 36.7 100.0 78.7 13.7 83.7 45.5 20.0 73.3 3.1 14.7 27.8 52.3 97.7 57.6
test 19.0 8.9 45.9 30.7 34.8 29.8 100.0 80.6 16.0 81.8 43.6 16.2 63.3 4.0 15.2 25.5 28.4 98.2 44.5

khk kor krl lud mag nds non pol poma sjo slk slp tur vep
dev 26.1 23.1 10.1 12.5 36.7 90.7 38.9 0.5 1.5 32.3 0.6 65.0 50.5 7.2
test 24.7 23.7 16.1 9.7 35.3 92.1 40.4 0.9 1.6 25.3 0.4 72.2 45.4 5.0

Table 3: Lemma overlap for the small training sets with the development and test data.

Experiment Small Large
ST BASELINE 42.59 60.04
OUR BASELINE 43.52 67.37
HALL 49.28 67.49
COPY 52.41 68.57
COPY+SF 53.36 68.99
COPY+HALL 52.32 68.09

Table 4: Results on the development data under small
and large data conditions. ST BASELINE refers to the of-
ficial neural shared task baseline and "Our Baseline" to
our baseline transformer with reverse positional encod-
ing and type embeddings. SF refers to student forcing,
HALL to data hallucination and COPY to lemma copy-
ing.
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