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Abstract

This paper describes the JB132 submission to
the SIGMORPHON 2022 Shared Task 3 on
Morpheme Segmentation. In this paper we
describe probabilistic model trained with the
Expectation-Maximization algorithm, we pro-
vide the results and analyze sources of errors
and general limitations of our approach. The
model was implemented within our own modu-
lar probabilistic framework.

1 Introduction

This paper describes JB132 submission to Shared
Task on Morphological segmentation, which is the
task of segmentation of words to the smallest units
carrying meaning - morphemes (e.g. prefixes, root,
suffixes).

Our general approach was to create our own mod-
ular framework for probabilistic models trained via
Expectation-Maximization, so that we can quickly
test large number of various model architectures.

We designed various probabilistic models, de-
scribed them within the framework and tested them
across languages. In this paper we provide the de-
scription of the best model architecture. Since the
algorithm achieves poor results, we further analyze
its outputs and describe causes of errors it makes.

2 Task

The Shared Task focused on both morphological
segmentation of solitary words (Task 1) and words
in sentences (Task 2), but we have only partici-
pated in Task 1. The training data spanned across
9 languages (Czech, English, French, Hungarian,
Spanish, Italian, Latin, Russian, Mongolian) and
contained tens of thousands to hundreds of thou-
sands training samples.

The structure and complexity of input data var-
ied. The Czech words were segmented to morphs
(absorbovat ab-sorb-ova-t), while e.g. Spanish

and Russian data contained segmentation to mor-
phemes, including change of root and presence of
morphemes that were used in the derivation of the
word but now only map to null morphs (encuestéis
encuesta-ar-éis; автоматизируемые автомат-
изм-ировать-уем-ый-ые).

3 Related Work

Probabilistic models are commonly used in mor-
phological segmentation, although often focused
on morphs instead of morphemes and trained in
unsupervised or weakly supervised settings. There
are three (sometimes overlapping) groups of prob-
abilistic models used for segmentation: the first
group are Bayesian models, which rely on complex
generative stories, including even prior distribu-
tions of numbers of morphemes of words or prior
distribution of morpheme frequencies. An inter-
esting example of this approach is (Snyder and
Barzilay, 2008), which experimented with a joint
multilingual model for several related languages
and showed that it can improve the resulting seg-
mentation in unsupervised setting.

The second group are Maximum a posteriori
probability (= Minimum description length) mod-
els. These models try to find the best compression
of words (including the size of the compression
model’s parameters) and are usually optimized via
some kind of local optimization. Models of this
type are e.g. (Creutz and Lagus, 2002) and (Gold-
smith, 2006), which also use morpheme lexicons,
but unlike our model consider size of the dictionary
part of the loss function.

The last group are Expectation-Maximization
models such as (Creutz and Lagus, 2004),(Grön-
roos et al., 2020), which tend to make use of sim-
pler loss functions that further simplify when EM
is applied and thus allow for faster computation.
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4 Solution

Our approach was to create a modular frame-
work for probabilistic models optimized via the
Expectation-Maximization algorithm. We then de-
scribed various architectures within this framework
and tried to find the one that works the best across
the languages.

Our final architecture consists of two main parts:
word−→morpheme generator (Fig. 1) which models
the structure of words as sequence of morphemes
and the morpheme−→morphs model (Fig. 2) which
models the morpheme realization.

Each of those parts is trained separately and they
are then merged together.

4.1 Word−→Morphemes model

The goal of this model is to learn the high level
structure of the word. The final version of this
model (Fig. 1) uses Hidden Markov Model with
hidden three states - prefix, root, suffix (only the
transitions to the same or later state are allowed).
Each of the states has an independent output model
- Prefix outputs either one of the prefix morphemes
in its morpheme dictionary or a string generated by
a letter unigram character model (to generate the
unknown morphemes). Root and suffix work on
the same principle.

The morpheme dictionaries were obtained from
the training dataset using a simple heuristic for
identification of the root morpheme (roots tend to
be long and infrequent compared to the affixes.
Morphemes in front of a root are prefixes, mor-
phemes behind it are suffixes).

After initialization, the model was trained on the
second column of the dataset - we simply concate-
nated the morphemes and trained the model to split
them back. This allowed the model to learn the
morphemic structure of words.

The model is trained via EM - we first let the
model find the most probable way of generating
the word in a recursive manner: If we ask some
module to generate subword beginning with i-th
letter, then it uses itself and its submodules to find
the most likely ways of generating the following 1,
2, 3, ... letters. Then it returns us the descriptions
of such ways of generation.

With this recursive principle the top-most mod-
ule will give us the likelihood of the best generation
of the whole word and the recursive description
(tree) describing how the modules generated it (e.g.
the tree describes that HMM module first visited its

prefix state, which used the Dictionary module and
Boundary module to generate its substring, where
the Dictionary module used prefix re-, etc).

In the maximization phase, we use these col-
lected description trees and we let them go through
the probabilistic model from top: The top most
module will analyze the trees and find out how of-
ten it e.g. transitioned from prefix state to itself or
to root. It then takes the remainders of the trees and
sends them to the lower layers, which again take
their own information to update their own parame-
ters and send the rest below, etc.

4.2 Morpheme−→Morph model

We then created the morpheme−→morph model. We
model the morpheme realization simply by assign-
ing each morpheme a list of morphs (strings) it
could generate, altogether with probabilities of gen-
eration (Fig. 2 top).

To train the model we first need to create a can-
didate set of potential morphs for each morpheme -
we take all substrings of original words. We then
remove the substrings that do not co-occur with the
morpheme sufficiently frequently to be reasonable
candidates. Then we run the training procedure
which finds the actual correct morphs: We train
the probabilities of morpheme generating a given
morph (Fig. 2 bottom). For each training sample
we take sequence of morphemes, replace the root
morpheme with a universal root generator and find
the best mapping of morphemes to morphs so that
the sequence of morphemes generates the origi-
nal word. When we do this on a large amount of
samples simultaneously, we can observe the prob-
abilities that a given morpheme generates a given
morph and we can use this information to update
the morpheme generators - this can be interpreted
as just another form of EM optimization and we ran
it for multiple epochs. Once the training finished,
we removed the morphs with low likelihood.

4.3 Final model

After joining the word−→morphemes and
morpheme−→morph models we simply let the
model find the most likely way of generating the
word and give us the tree describing the generation
(as discussed in the 4.1 chapter).

This generation tree is then analyzed and we
look for the positions of the Boundary modules
and for the Morpheme modules, which tells us the
resulting segmentation.
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Figure 1: The architecture of word−→morpheme model. Prefix-, Root-, and Suffix- generators are the same except
for the dictionary. The uni-gram models generate string as combination of randomly selected letters (each letter has
its probability). In the last phase of training, we will transform this model from generating morphemes to generating
morphs: at first, morpheme dictionary just outputs the morpheme string for morpheme i (e.g. -s) with likelihood
P[i]. After the transformation, it will output morpheme−→morph model of morpheme i instead. This model will be
then used to match the morphs (e.g. -s, -es, -en) in the input word. Boundary is a special sub-module that matches
boundaries in the training phase and marks predicted boundaries in the inference phase

Figure 2: The architecture of morpheme−→morph model (top) and the process of its training (bottom). The model
describes generation of a morph as random choice among fixed candidates on the basis of trained probabilities. The
training procedure works in such a way that it picks a word segmented to morphemes (red), uses it as a guideline for
choice of morpheme models and looks for the best way how to use these morpheme models to generate the not
segmented version of the word (green)
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5 Results

The systems were evaluated via morpheme preci-
sion and recall. Precision is defined as the number
of correctly predicted morphemes divided by total
number of predicted morphemes. Recall is defined
as the number of correctly predicted morphemes di-
vided by total number of morphemes in the golden
segmentation.

The following table summarizes our F-scores
on the languages, as they were measured by the
organizers of the Shared Task in (Batsuren et al.,
2022).

Lang. F1 Lang. F1
Ces 64.65 Lat 91.39
Eng 65.43 Mon 57.82
Fra 46.20 Rus 50.55
Hun 72.64 Spa 43.39
Ita 33.44

We can see that the model achieves relatively
good results only on Latin (which was segmented
to morphs) and not on other languages.

5.1 Error Analysis

This model was unable to achieve results compa-
rable with the other approaches. We think that the
main causes are following:

1. 1) Inability to capture the root changes, i.e. to
transform the original root into its morpheme.
(ENG: emulations = emulate-ion-s; SPA: tri-
cotemos = tricotar-emos; ITA: piastrellavamo
= piastrellare-avamo)

2. Missing context - the algorithm does not take
surrounding letters into account when insert-
ing a morph and it does not make use of joint
probabilities of morphemes. Among other
problems it also results in using a wrong mor-
pheme for the generation of a morph (FRA:
recréerions = re-créer-erions vs. présidions
= présider-ions)

3. Morphemes with empty morph - probabilis-
tic model of this type cannot generate mor-
pheme from nothing (FRA: agrémentant =
agrér-ment-er-ant). We would have to rely on
joint probabilities of morphemes to derive it.

4. Under-segmentation - when we look at the re-
sults of the model on the Czech data (which

are only segmented to morphs, not mor-
phemes), then we notice that we discovered
only 70% of boundaries between morphemes,
but we have 95% precision on the boundary
discovery. This was likely a consequence
of removal of single letter morphemes from
the model. Czech has tendency to use them
frequently, as e.g. in chyt-a-l-a, or bý-v-a-
l-ý, but they may cause problems with over-
segmentation, as in minim-al-iz-ova-t, so it
would be better to use a model that either
groups the short morphs or incorporates joint
probabilities of morphemes.

5. Root boundary detection - the model seems
to have trouble detecting beginning and
end of the root. When training the
word−→morphemes model we have observed
that adding root dictionary (with roots ex-
tracted from the set of training morphemes)
highly improves the segmentation accu-
racy. The problem is, that this dictio-
nary cannot be directly transferred to the
word−→morphemes−→morphs model, because
root morphs in words are different from root
morphemes in the dictionary, so some inter-
mediate layer would be required.

6 Conclusion & Future Work

Our submission to the shared task on morpho-
logical segmentation was a modular probabilistic
model trained via EM. The model has achieved
poor results and the error analysis shows that a big
amount of modifications will be needed in order
to improve the results. Especially, the addition of
more contextual information will be necessary. It
also remains unclear how to handle differences be-
tween root morphs and root morphemes with this
type of model.
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ský, Amarsanaa Ganbold, Šárka Dohnalová, Magda
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