SIGMORPHON 2022 Shared Task on Morpheme Segmentation Submission
Description: Sequence Labelling for Word-Level Morpheme Segmentation

Leander Girrbach
University of Tiibingen, Germany
leander.girrbach@student.uni—-tuebingen.de

Abstract

We propose a sequence labelling approach to
word-level morpheme segmentation. Segmen-
tation labels are edit operations derived from
a modified minimum edit distance alignment.
We show that sequence labelling performs well
for “shallow segmentation” and “canonical seg-
mentation”, achieving 96.06 f1 score (macro-
averaged over all languages in the shared task)
and ranking 3rd among all participating teams.
Therefore, we conclude that sequence labelling
is a promising approach to morpheme segmen-
tation.

1 Introduction

This paper describes our participation in the SIG-
MORPHON 2022 Shared Task on Morpheme Seg-
mentation (Batsuren et al., 2022a). Building on
previous work on word segmentation and transliter-
ation by Hellwig and Nehrdich (2018), we propose
a sequence labelling approach to morpheme seg-
mentation.

The shared task consists of 2 tracks: Word-level
morpheme segmentation and sentence-level mor-
pheme segmentation. Data for this shared task was
taken from (Batsuren et al., 2021) and (Batsuren
et al., 2022b). Although our approach is applicable
to both word-level and sentence-level morpheme
segmentation, we focus on word-level segmenta-
tion. We only evaluate the zero-shot performance
of our word-only segmentation models on sentence-
level morpheme segmentation.

Sequence labelling approaches can claim sev-
eral advantages over the main alternative, namely
(neural) encoder-decoder approaches: Sequence
labelling does not require beam search for infer-
ence, may allow for smaller models, and defines a
direct alignment between the input and predictions.
The latter property may make models more inter-
pretable and help with error analysis. However,
sequence labelling is less flexible than encoder-
decoder approaches and requires special handling

of cases where the input and target sequences are
of different length. However, due to the local struc-
ture of morphology, sequence labelling may be
sufficient to model morpheme segmentation de-
spite being less expressive than encoder-decoder
approaches.

2 Related Work

Morpheme segmentation is a well-established task
in computational linguistics (cf. Mager et al.
(2020)). Recently, two definitions of morpheme
segmentations have emerged: “Shallow segmenta-
tion” and “‘canonical segmentation” (Kann et al.,
2016). “Shallow” segmentation means segment-
ing the input word surface string into morphemic
substrings. This kind of segmentation is called
“shallow”, because no orthographic restoration of
morphemes to their “canonical” form is performed
(Cotterell et al., 2016). “Canonical segmentation”,
instead, attempts to restore a standardised form of
morphemes. As noted by Kann et al. (2016), this is
necessary for synthetic languages where multiple
morphemes may be merged. Another source of
morpheme merging may arise from phonological
or orthographic constraints of the language. The
present shared task features both shallow segmen-
tation data (e.g. Czech, Latin), and canonical seg-
mentation (e.g. Italian, English). Since canonical
segmentation is a strict generalisation of shallow
segmentation, methods that work for all languages
in this shared task have to be able to perform canon-
ical segmentation.

However, shallow segmentation allows for a
conceptually easier approach, namely sequence la-
belling (Ruokolainen et al., 2013; Sorokin, 2019).
Canonical segmentation has hitherto been defined
as a sequence-to-sequence task (Kann et al., 2016;
Mager et al., 2020). Of course, various improve-
ments for the sequence-to-sequence setup have
been proposed, for example reranking of output
hypotheses (Kann et al., 2016), multi task learn-

124

19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 124 - 130
July 14, 2022 ©2022 Association for Computational Linguistics

ing (Kann et al., 2018), pointer-generator net-
works (Sharma et al., 2018), and imitation learning
(Makarov and Clematide, 2018).

In fact, Sorokin (2019) explicitly doubts that
canonical segmentation can be approached as a se-
quence labelling task. However, other approaches
have already worked towards approaching canoni-
cal segmentation as a sequence labelling task: Cot-
terell et al. (2016) take a middle ground by allowing
only for a maximum number of insertions. Ribeiro
et al. (2018) train a model to first predict insertion
positions in the input sequence. Then, they use
a sequence labelling model on the augmented in-
put string to predict the labels. While similar to
our approach, we augment the labels instead of the
input string. Therefore, our method remains end-
to-end trainable. Finally, Hellwig and Nehrdich
(2018) propose a sequence labelling approach to
Sanskrit word segmentation, which includes restor-
ing original forms that have been merged due to a
phonological process called Sandhi.

Therefore, our work extends the method pro-
posed by Hellwig and Nehrdich and thereby shows
that canonical morpheme segmentation can be ap-
proached effectively as a sequence labelling task.

3 Method

3.1 Data preprocessing

We propose an adaption of the Sanskrit word seg-
mentation method by Hellwig and Nehrdich (2018)
for word-level morpheme segmentation. The main
idea is to redefine morpheme segmentation as a
sequence labelling task. In particular, for each
character in the input word, we predict an edit op-
eration. Edit operations can be copying, deletion,
or substitution. Here, insertion is a special case of
substitution. An example is in Table 1.

In order to redefine morpheme segmentation as
a sequence labelling task, we need alignments of
input words and the segmented morphemes. We
propose to align words and morphemes by the
Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) with the following parameters:
Only equal characters can be matched, and we set
the gap cost to 0. Here, we treat all morphemes as
one sequence of characters. From all alignments
with maximum score according to the Needleman-
Waunsch algorithm (i.e. minimum edit distance), we
choose the alignment with the maximum sum of
squared lengths of contiguous aligned segments.
The idea is to copy longer morphemes directly

from the input word and insert shorter morphemes.
Furthermore, we want to avoid splitting predicted
morphemes. Instead, we want to copy as many
complete morphemes from the input word as possi-
ble. An example is in Table 2.

After having aligned words to their respective
morphemes, we obtain data for sequence labelling
in the following way: Word characters that are
aligned to corresponding characters in the mor-
pheme string are copied. Word characters that are
aligned to gaps in the morpheme string are deleted.
Morpheme separation characters and possible fol-
lowing characters to complete a morpheme are
aligned to gaps in the input word. We prepend these
to the label of the input word character following
the gap. Remaining morpheme string characters
(which do not appear behind a morpheme separa-
tion character) that are aligned to gaps in the input
word are appended to the label of the next input
word character before the gap. In Table 3, we show
the resulting labels for the English word “entab-
ulates”. Note that our eventual labelling makes
more use of copying than the simple edit operation
example given in Table 1.

3.2 Models

For sequence labelling, we use a plain 2-layer
BiLSTM model. For each position of the input
sequence, the model predicts exactly one edit oper-
ation. Ground-truth labels for supervised training
are derived as explained in Section 3.1.

Our submission is produced by single models
(i.e. no ensembling) trained in a supervised fashion.
Models have 2 layers with 256 hidden units each.
We apply dropout with probability 0.1 after the
first BILSTM layer. We use the AdamW optimizer
(Loshchilov and Hutter, 2019) with initial learning
rate 0.001 and weight decay 0.001. We divide the
learning rate by 2 after 3 epochs without improve-
ment of word error rate (WER) on the development
set. Note that WER is a stricter metric than f1 score
and edit distance, which are the shared task’s offi-
cial evaluation metric. Each model is trained for
50 epochs with batch size 32, but we only keep the
checkpoint with lowest WER on the development
set.

3.3 Zero-shot sentence-level segmentation

For sentence-level segmentation, we proceed in the
following way: Since all sentence-level languages
(Czech, English, Mongolian) are also part of the
word-level track, we can use our models from the

125

e n t a b u 1 a t e S
e n _@@t a b le . @@a t e _@@s
C C S C C D S S C C S

Table 1: Edit operation to transduce “entabulates” to its morphemic segment string “‘en,_ @ @table_ @ @ate_ @ @s”.
“_ @@ is the morpheme separation symbol in the given data, ““S” means substitution, “C” means copy, and “D”
means deletion.

m a m m a , @ @ ar e , @ @ e r a n n o
m a m m e r a n n o
m a m m e r a n n o

Table 2: Example for different alignments of the Italian word “mammare” to its morpheme segmentation string
“mamma_, @ @are_ @ @eranno”. The upper alignment is preferred, because it contains longer contiguous aligned

subsequences.

word-level track for sentence-level segmentation.
We retrieve all space-separated tokens from the
sentence-level test data and segment each token
individually, thus creating a dictionary mapping
tokens to their word-level segmentation. Then, we
replace each token in the sentence by the segmenta-
tion according to the word-only dictionary. Tokens
that only consist of punctuation are copied directly
from the input sentence without any segmentation.

This method obviously ignores all sentence-level
information that could help with disambiguating
multiple possible segmentations. However, we still
find it interesting to see how well a word-level-only
segmentation model performs on the sentence level
for the different languages.

4 Results

Word-level segmentation Official test set re-
sults' for word-level segmentation are in Table 4.
f1 score is greater than 0.9 for all languages. In
terms of macro-averaged f1 score, our submission
ranks 3rd out of 5 participating teams (excluding
baseline) who submit predictions for all languages.

In our results, we do not see any trends regarding
a relationship between number of generated labels
and performance. The language with weakest per-
formance, English, has the 2nd highest number
of generated labels, but the language with highest
number of generated labels, Russian, is the lan-
guage with second best performance. Czech, the
number with the lowest number of generated la-
bels, is the language with 3rd worst performance,
but Latin, the language with 2nd lowest number of

"Taken from https://github.com/sigmorphon/
2022SegmentationST/tree/main/results

generated labels, is the language with best perfor-
mance. This suggests that our data preprocessing
method does not obscure the segmentation diffi-
culty inherent in a language.

Remember that differences in the amounts of
labels is due to different annotation approaches in
the data: For Czech and Latin, only “shallow” mor-
pheme boundaries are annotated, i.e. where mor-
pheme boundaries are in the input string. For other
languages, restored morphemes are annotated that
are contracted when forming the word. For exam-
ple, the English word “entabulates” is segmented
as “en_ @ @table_ @ @ate_, @ @s” where “u” is in-
serted to form the word, but the “e” in “table” is
deleted.

Sentence-level segmentation Official test set re-
sults for sentence-level segmentation are in Table 5.
Sentence-level performance is worse than word-
level performance for all languages. While the
decrease in performance is still moderate for En-
glish and Czech, we see a very high decrease in
performance for Mongolian. This suggests that the
number of ambiguous tokens in English and Czech
is relatively not very high, while a lot of ambiguous
words exist in Mongolian.

5 Error Analysis

Frequent Errors As claimed in Section 1, our
proposed sequence labelling method allows for di-
rect comparison of the predicted labels to labels
created by our preprocessing. Here, we provide a
short analysis of the most frequent errors made by
our English word segmentation model. To this end,
we apply the preprocessing method described in
Section 3.1 to the test set released by the shared

126

https://github.com/sigmorphon/2022SegmentationST/tree/main/results
https://github.com/sigmorphon/2022SegmentationST/tree/main/results

€ n t a b u
CcC C

_@@+C C C D C+e

a t (& S
_@@+C C C _@@+C

Table 3: Labels generated by our data preprocessing method for English word “entabulates” with morpheme segment
string “en_ @ @table_ @ @ate_ @ @s”. Our labels allow for special symbols (C = copy, D = delete) and arbitrary
string insertions. Labels do not have to contain special symbols. “+” here means concatenation and is not to be read

as part of the label.

Lang. Dis. P R F1 #Lbls
ces 0.18 9395 92.81 93.38 2
eng 0.25 90.51 90.52 90.51 1740
fra 0.28 93.56 9396 93.76 1275
hun 0.11 9821 9897 98.59 442
spa 0.11 97.88 9798 9793 1311
ita 0.20 9550 9597 95.73 850
lat 0.01 9935 99.39 99.37 4
rus 0.15 98.16 98.26 98.21 1809
mon 0.10 9691 97.13 97.02 442
Avg. 0.15 96.00 96.11 96.06

Table 4: Official word-level results for our system (all
languages). Dis is edit distance, P is precision, R is
recall, and F1 is fl1 score. # Lbls is the number of
labels generated by our data preprocessing method (see
Section 3.1).

Lang. Dis. P R F1
ces 2.50 89.52 8842 88.97
eng 1.78 87.83 89.58 88.69
mon 9.85 69.59 67.55 68.55

Table 5: Official sentence-level results for our system
(all languages). Dis is edit distance, P is precision, R is
recall, and F1 is f1 score.

b i 0 m e
C C C _@@o+C C
C C+o0 _@@+C C C

Table 6: An example where different labels result
in the same (correct) segmentation: ‘“biome” —
“bio_ @ @ome”.

task organisers after the submission deadline. Then,
we calculate a confusion matrix of the labels pre-
dicted by our model and the labels created by the
preprocessing method.

First, however, we want to note that in few cases
even incorrect predictions may lead to correct seg-
mentations. This is due to ambiguity in the align-
ments. For example, consider the test item “biome”
with ground truth segmentation “bio @ @ome”. In
Table 6 we show that our model’s prediction dif-
fers from the generated alignment, but the resulting
segmentations are identical. In the English test set,
this is the case for 118 words, so we do not think
this is a problem for our subsequent error analysis.
In total, there are 8615 words (=~ 15% of all test
words) with incorrect segmentation.

The most common errors are predicting mor-
pheme boundaries where actually no morpheme
boundaries are, i.e. predicting “_ @ @ + C” instead
of “C”, which happens 3820 times, and missing to
predict morpheme boundaries, i.e. predicting “C”
instead of “_ @@ + C”, which happens 3786 times.
An example is “lemming”: Our models predicts
“lem_ @ @ing” instead of “lemming”. A morpheme
boundary was overlooked in “sanity”’: Our model
predicts “sanity” instead of “sane_ @ @ity”.

The next most frequent errors are missing
to insert an “e”, i.e. predicting “C” instead of
“C+e”, which happens 499 times, and inserting
a superfluous “e”, i.e. predicting “C + e” in-
stead of “C”, which happens 414 times. For
example, our model predicts “wok_, @ @ism” in-
stead of “woke_,@ @ism” for “wokism” and “omi-
nouse_,@ @ity” instead of “ominous_, @ @ity” for

“ominosity”.

127

The last error type in the top 5 most frequent
errors is not deleting an input character, i.e. predict-
ing “C” instead of “D”, which happens 448 times.
For example, our model predicts “charr_ @ @y”
instead of “char_ @ @y” for “charry”.

Please note that there can be multiple errors in
the predictions for a single input word. However,
in most cases (5873), there is only one incorrectly
predicted label. In 2008 cases, there are 2 incor-
rectly predicted labels. The extreme case is “al-
sakharovite”, for which 9 of the predicted labels are
incorrect: Our model simply predicts to copy each
character, but the ground truth is given as “Alek-
sey,_, @ @ite”. This shows that our model struggles
with proper names, which is not surprising.

In conclusion, this analysis shows that the largest
gains in performance can be expected from improv-
ing the shallow part of segmentation, while there
are fewer individual morpheme reconstruction er-
rors. Therefore, a possible future extension of our
proposed model is switching to a multi task setting,
where one task is to predict morpheme boundaries
and the other task is to reconstruct partial or miss-
ing morphemes. In the setting evaluated here, these
tasks are approached jointly.

Label Embeddings Additionally, we inspect the
learned (English) label embeddings and try to see
whether any patterns emerge. To this end, we re-
trieve the 50 most frequent labels (accounting for
98% of all labels in the dataset excluding the simple
copy label) and their label embeddings (columns
in the final linear prediction layer). We cluster the
label embeddings by affinity propagation. The ad-
vantage of affinity propagation is that we do not
have to specify the number of clusters. We use the
scikit-learn implementation of affinity propagation
(Pedregosa et al., 2011) with default parameters.
The discovered clusters are in Table 7.

In total, the clustering generates 7 clusters, of
which 4 clusters contain multiple labels and 3 clus-
ters contain only 1 label. No cluster is completely
pure, but we can observe the following trends:
Cluster 0 mostly represents morpheme boundary
labels followed by a copy operation, i.e. “insert
morpheme boundary before this character”. Clus-
ter 2 mostly represents substitutions and Clusters 1
and 3 mostly represent insertions. We cannot say
anything definite about the 1 element clusters.

From these observations we conclude that the
model learns to distinguish different edit operations
(insertion, substitution) and also learns to distin-

guish inserting morpheme boundaries from other
edit operations. This provides further evidence that
changing our approach to a multi task setting may
be worth exploring.

Generalisation to Unseen Substitutions Finally,
we want to address the problem that the finite num-
ber of labels generated by our data preprocess-
ing method (see Section 3.1) may not allow the
model to generalise to substitutions not seen in
the training data.”> To collect evidence concern-
ing this problem, again for the English test set,
we find all words that cannot be generated by our
model because generating them would require la-
bels that were not generated from the training data.
In total, we find 35 such words (of 57755 test
words in total). Furthermore, upon manual inspec-
tion, we find many of these cases either caused
by proper names with irregular or non-English
segmentation, for example “Staffie” is segmented
as “Stafford_, @ @shire_, @ @ie” or “Lebos” is seg-
mented as “Lebanon_ @ @ese_ @ @o_ @ @s”, or
annotation errors, for example “unlid” is segmented
(in the gold data) as “un#Etymology_2_ @ @lid”
or “perfosfamide” is segmented as ‘“hydroper-
oxy_,@ @fosfamide”. However, we also discover a
genuine problem of our model, namely that it does
not have any labels to generate hyphens (“-”). This
proves that the problem can be substantial, if there
had been more hyphenated words in the test data.

On the other hand, hyphens do not appear as
character in any train set segmentation, so it is
generally hard to anticipate peculiarities of the test
set. The case of proper names could perhaps be
handled by external resources, but this does not
scale well.

Summing up, we acknowledge that this is an
issue not solved entirely by our approach. However,
it does not cause many problems for this shared
task. This being said, this shared task provides a lot
of data for the featured languages, so the missing
label problem may become more serious for low
resource languages or settings.

One step towards approaching this issue could
be not only generating labels from one alignment of
the word to its morpheme segmentation string (see
Section 3.1), but from multiple alignments. This
could potentially also regularise the model or allow
for different training strategies than the standard
supervised training. Another possibility could be
to equip the model with the ability to generate new

2We thank the reviewers for pointing out this problem.

128

Cluster ID Labels

0 “C7, ¢ @@ + (7, @@e+C”, ¢ @@a+C",“_ @@i+C,“ @@o+
C”,“C+1,“_ @@l +C”,“D+n”,“_ @@ +C +¢”, “C+_@@s”, “C +
te”, “C +ic”, “_@@is + C*, “_@@i + C +¢”, “C + m”, “_@@en + C”,
“ @@a+C+e”,“C+1",“_ @@t+C”

1 “D + y”, “D + |_‘((P @y”, “C + um”’ “D + e”’ “C + S”, “D + eu@ @y”, “D +

0”’ “D + a”’ “D + d”

2 LLC + e”, LLC + y”’ LLC + a”, acc + O”, LLC + us’a’ “C + On”, “D + SiS”, “C +

ion”, “C + ous”, “D + p”

3 “D”,“D+1”,“C+ _@@y”,“D+is”,“D+x",“C+n”, “D +s”
4 “C +ne”
5 “D + ce”
6 “D + de”

Table 7: Clusters of labels discovered by affinity propagation clustering of the label embeddings of the 50 most

frequent English labels.

labels, for example by predicting a fixed number of
label subsymbols from each input character. Sym-
bols could be blanks, unigrams, or ngrams. This
would relax the constraint that labels have to be
entirely known beforehand, while maintaining a
sequence labelling setup.

6 Conclusion

We presented a sequence labelling approach for
word-level morpheme segmentation. Models
trained with this approach yield strong performance
on all languages (word-level) despite of not using
ensembling and using a simple BiLSTM encoder.
Error analysis for English reveals that the model
is often only wrong in 1 single place, struggles
with proper names, and most frequently errors are
caused by incorrect prediction of morpheme bound-
aries.

Acknowledgements

We thank Cagri1 Coltekin for providing access to
computation resources and giving feedback on a
draft version of this paper. We thank the task or-
ganisers for organising this shared task. Finally, we
thank the reviewers for their helpful comments and
suggestions.

References

Khuyagbaatar Batsuren, Géabor Bella, and Fausto
Giunchiglia. 2021. MorphyNet: a large multilingual

database of derivational and inflectional morphology.
In Proceedings of the 18th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,
and Morphology, pages 39—48, Online. Association
for Computational Linguistics.

Khuyagbaatar Batsuren, Gdbor Bella, Aryaman Arora,
Viktor Martinovi¢, Kyle Gorman, Zdenék Zabokrt-
sky, Amarsanaa Ganbold, Sérka Dohnalové, Magda
Sevéikova, Katefina Pelegrinova, Fausto Giunchiglia,
Ryan Cotterell, and Ekaterina Vylomova. 2022a. The
sigmorphon 2022 shared task on morpheme segmen-
tation. In 19th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology.

Khuyagbaatar Batsuren, Omer Goldman, Salam Khal-
ifa, Nizar Habash, Witold Kieras, Gabor Bella,
Brian Leonard, Garrett Nicolai, Kyle Gorman,
Yustinus Ghanggo Ate, et al. 2022b. Uni-
morph 4.0: Universal morphology. arXiv preprint
arXiv:2205.03608.

Ryan Cotterell, Tim Vieira, and Hinrich Schiitze. 2016.
A joint model of orthography and morphological seg-
mentation. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 664—669, San Diego, California.
Association for Computational Linguistics.

Oliver Hellwig and Sebastian Nehrdich. 2018. San-
skrit word segmentation using character-level recur-
rent and convolutional neural networks. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2754-2763,
Brussels, Belgium. Association for Computational
Linguistics.

129

https://doi.org/10.18653/v1/2021.sigmorphon-1.5
https://doi.org/10.18653/v1/2021.sigmorphon-1.5
https://doi.org/10.18653/v1/N16-1080
https://doi.org/10.18653/v1/N16-1080
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295

Katharina Kann, Ryan Cotterell, and Hinrich Schiitze.
2016. Neural morphological analysis: Encoding-
decoding canonical segments. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 961-967, Austin, Texas.
Association for Computational Linguistics.

Katharina Kann, Jesus Manuel Mager Hois,
Ivan Vladimir Meza-Ruiz, and Hinrich Schiitze.
2018. Fortification of neural morphological segmen-
tation models for polysynthetic minimal-resource
languages. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
47-57, New Orleans, Louisiana. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Manuel Mager, Ozlem Cetinoglu, and Katharina Kann.
2020. Tackling the low-resource challenge for canon-
ical segmentation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5237-5250, Online. As-
sociation for Computational Linguistics.

Peter Makarov and Simon Clematide. 2018. Neu-
ral transition-based string transduction for limited-
resource setting in morphology. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 83-93, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443—453.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Joana Ribeiro, Shashi Narayan, Shay B. Cohen, and
Xavier Carreras. 2018. Local string transduction as
sequence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1360-1371, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morphological
segmentation in a low-resource learning setting using
conditional random fields. In Proceedings of the
Seventeenth Conference on Computational Natural
Language Learning, pages 29-37, Sofia, Bulgaria.
Association for Computational Linguistics.

Abhishek Sharma, Ganesh Katrapati, and Dipti Misra
Sharma. 2018. IIT(BHU)-IIITH at CoNLL-
SIGMORPHON 2018 shared task on universal mor-
phological reinflection. In Proceedings of the
CoNLL-SIGMORPHON 2018 Shared Task: Uni-
versal Morphological Reinflection, pages 105111,
Brussels. Association for Computational Linguistics.

Alexey Sorokin. 2019. Convolutional neural networks
for low-resource morpheme segmentation: baseline
or state-of-the-art? In Proceedings of the 16th
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 154-159, Flo-
rence, Italy. Association for Computational Linguis-
tics.

130

https://doi.org/10.18653/v1/D16-1097
https://doi.org/10.18653/v1/D16-1097
https://doi.org/10.18653/v1/N18-1005
https://doi.org/10.18653/v1/N18-1005
https://doi.org/10.18653/v1/N18-1005
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.emnlp-main.423
https://doi.org/10.18653/v1/2020.emnlp-main.423
https://aclanthology.org/C18-1008
https://aclanthology.org/C18-1008
https://aclanthology.org/C18-1008
https://aclanthology.org/C18-1115
https://aclanthology.org/C18-1115
https://aclanthology.org/W13-3504
https://aclanthology.org/W13-3504
https://aclanthology.org/W13-3504
https://doi.org/10.18653/v1/K18-3013
https://doi.org/10.18653/v1/K18-3013
https://doi.org/10.18653/v1/K18-3013
https://doi.org/10.18653/v1/W19-4218
https://doi.org/10.18653/v1/W19-4218
https://doi.org/10.18653/v1/W19-4218

