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Abstract

Robots operating in unexplored environments
with human teammates will need to learn un-
known concepts on the fly. To this end, we
demonstrate a novel system that combines a
computational model of question generation
with a cognitive robotic architecture. The
model supports dynamic production of back-
and-forth dialogue for concept learning given
observations of an environment, while the ar-
chitecture supports symbolic reasoning, action
representation, one-shot learning and other ca-
pabilities for situated interaction. The system is
able to learn about new concepts including ob-
jects, locations, and actions, using an underly-
ing approach that is generalizable and scalable.
We evaluate the system by comparing learning
efficiency to a human baseline in a collabora-
tive reference resolution task and show that the
system is effective and efficient in learning new
concepts, and that it can informatively generate
explanations about its behavior.

1 Introduction

An autonomous robot interacting with a human
teammate will often encounter concepts' that are
unfamiliar to it. This is especially problematic
when exploring new environments where training
data is naturally limited or expensive to collect and
label. For example, a robot for space exploration
may encounter objects or need to carry out pro-
cedures that do not exist on Earth, and for which
data is scarce. A natural approach to online learn-
ing in many environments is to take advantage of
the human-robot interface, enabling the robot to
engage in multi-turn dialogue where it asks the
human questions to learn about a novel concept.

Many of the foundations of this approach —e.g.,
robot architectures capable of engaging in natural
Wmed during a summer position at the Army
Research Laboratory.

!The term ‘concept’ in this paper refers to any entity in the
task domain, including objects, locations, and actions.
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Figure 1: Example dialogue between a human and our
system situated in an unexplored spacecraft environ-
ment, where the robot must learn new locations, objects,
and actions through interaction with the human. The
system’s behavior is indicated in red.

language dialogue, and mechanisms for conversa-
tional grounding and question generation — have
previously been explored, but were designed as
piecemeal contributions, leaving a gap in the over-
all problem of learning concepts through dialogue.

In this work, we demonstrate a generalizable
cognitive robotic system that is able to efficiently
learn about unknown concepts through interactive
natural language dialogue. This system leverages
a probabilistic decision network model” to dynam-

2Qur decision network model, as well as the HuRDL
dataset used to evaluate the system in Section 4, can be
found at the following URL: https://github.com/
USArmyResearchLab/ARL-HuRDL
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ically generate and ask optimal questions for con-
cept learning within any environment, while also
employing natural language capabilities and an ex-
plicit knowledge representation enabled by a cog-
nitive robotic architecture. An example dialogue
from our system is shown in Figure 1.

2 Background

Early work in robot concept learning through dia-
logue explored the use of pre-specified ontologies
or graphical models to allow an agent to ask ques-
tions about objects in an environment (Lemaignan
etal.,2012; Chai et al., 2018; Pereraet al., 2018), or
to learn actions through dialogue (She et al., 2014).
Other work explores the use of proactive symbol
grounding or pragmatic models for reference reso-
lution (Williams et al., 2019; Arkin et al., 2020). In
contrast to these studies, our work includes a notion
of uncertainty and can scale to new task domains
through dynamic adaptation of a decision network.

Recent work has built upon these approaches
by introducing information-theoretic measures for
selecting optimal questions. Skocaj et al. (2011)
propose a robot that can ask questions about object
properties that maximize information gain, and test
the system using colors and shapes as properties.
Deits et al. (2013) relatedly demonstrate a system
that can instantiate templatic questions to minimize
entropy of the robot’s probabilistic symbol ground-
ing function. Both approaches, however, rely on
the use of a small fixed set of properties or question
templates; we present a scalable approach that can
generate questions from arbitrary properties.

3 System Design

Our system combines a decision network model
for question selection (Gervits et al., 2021a) with
the DIARC (Distributed Integrated Affect Reflec-
tion Cognition) robotic architecture (Scheutz et al.,
2019) in order to enable interactive concept learn-
ing. The DIARC architecture, which follows a
distributed, component-based design, allows for se-
mantic parsing, introspection on knowledge, expla-
nation generation, and support for one-shot learn-
ing of actions. The particular configuration of DI-
ARC used by our system is shown in Figure 2. In
the remainder of this section, we describe the pri-
mary components of this architecture.
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Figure 2: Architecture of the system’s DIARC configu-
ration. The core components that drive concept learning
are the dialogue manager, which interacts with a deci-
sion network for question generation, and a reference
resolution component for resolving concepts in user in-
structions to observed objects in the environment.

3.1 Decision Network

The dialogue manager component of our DIARC
configuration is extended with a decision network
model (Gervits et al., 2021a) that combines a
Bayesian network with action and utility nodes.
The model represents the robot’s knowledge for a
target referent and selects a question to help reduce
ambiguity and acquire new concept knowledge.

Figure 3 shows a generic example of a decision
network constructed by the system. The green
boxes represent chance nodes which are random
variables corresponding to the agent’s knowledge
of the object properties, the number of target ref-
erents, and the instruction. The blue diamond is a
utility node which represents the utilities associated
with asking questions from the red decision node
conditioned on the chance nodes.

Since the robot’s goal in asking a question is
to reduce ambiguity (in the case of reference res-
olution, narrowing down the number of possible
referents for a concept), the model selects a “best”
question by calculating maximum expected utility
from the model, with utilities set by calculating the
Shannon entropy for each object property.

As shown by Gervits et al. (2021a), this approach
is well-suited to dialogue learning in novel envi-
ronments because the decision network is dynami-
cally constructed for any novel environment given
only observed object properties. Moreover, the net-
work is constructed with the minimum set of nodes
needed to disambiguate all entities in the environ-
ment, and can be re-constructed on the fly if new
entities are discovered. This greatly enhances the
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Figure 3: An instance of the decision network produced
in our evaluation domain. The probabilistic chance
nodes are shown in green. The red node represents the
decisions available to the system, while the blue node
represents the utilities associated with each decision,
and outputs the decision with maximum expected utility.

flexibility of the approach, enabling it to generalize
and scale to a variety of unexplored environments.

3.1.1 Semantic Parser and Declarative
Knowledge

The NLU component uses a CCG grammar to map
input text to a logical semantic representation’, in-
cluding the speech act type of the input (e.g., in-
struction or statement). The system is also able
to use pragmatic inference rules to further reason
about the contextual meaning of the user’s utter-
ance. The system maintains a declarative knowl-
edge base of the system’s beliefs, such as observed
properties of objects, interpretations from the NLU
component, and any logical inferences thereof.

3.1.2 Goal-based Dialogue Manager and
Robot Actions

The dialogue manager component is responsible
for handling the semantics of a speaker’s input and
forming system goals based on the speech act type
of the user’s input. In the case of an instruction, the
intent of the speaker will be adopted as the robot’s
goal, which will either be handled by invoking
an action satisfying the goal (if all referents are
known), or using the decision network to generate
a clarification question. In the case of a statement,
the system will modify its declarative knowledge
with any facts expressed in (or inferred from) the
input. In both cases, the NLG component will be
used to create a response by the robot; typically a
simple acknowledgement.

3The logical representation used by DIARC is an extension
of first-order predicate logic (Scheutz et al., 2019).

it have?”

Robot actions are implemented as action scripts
that provide abstract logical formulations of actions
consisting of preconditions, effects, and constituent
steps (Scheutz et al., 2019). In our system, the robot
has action scripts for every basic action that it is
able to perform, such as moving to a location or
picking up an object. Furthermore, DIARC allows
for one-shot learning of novel actions through issu-
ing sequences of lower-level instructions (Scheutz
et al., 2017).

3.1.3 Reference Resolution

Our system is able to learn novel objects through a
reference resolution component that interacts with
the dialogue manager. When an unknown referent
is encountered, the system will compute the num-
ber of possible entities that it could refer to, based
on the properties that the system currently knows
about the concept. If there are multiple possible
referents, the dialogue manager will utilize the de-
cision network model to generate a clarification
question; any responses from the user are inter-
preted and used to update the system’s declarative
knowledge. Once a single referent is obtained, the
system will identify the object with the correspond-
ing concept and execute the instruction. Thus, the
system is able to acquire knowledge about concepts
through repeated application of this process.

4 Evaluation

To evaluate the integrated system, we implemented
it on a PR2 robot in a virtual spacecraft environ-
ment containing unknown objects and procedures
for the robot to learn. The robot performed a col-
laborative tool organization task in which it was
instructed via typed natural language commands
to place novel tools in their correct containers. In
our evaluation, the robot is given sequences of com-
mands from a subset of the Human-Robot Dialogue
Learning (HuRDL) corpus (Gervits et al., 2021b)
consisting of dialogues from 10 participants*. The
human-generated questions in these dialogues are
compared to the questions generated by the robot
for the same commands in terms of accuracy (the
proportion of commands that the robot is able to ex-
ecute after resolving unknown referents) and ques-
tion efficiency (the average number of questions
that the agent must ask to learn each new concept).

The spacecraft environment contains 18 tools,
with six main types and three instances of each type

*We use only “low-level” dialogues with Commander ini-
tiative from the HuURDL corpus to match the robot task.
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Table 1: Comparison of human performance to inte-
grated system on question efficiency and accuracy.

Human (N=10) Robot (N=1)
# Questions 31 55
Question Ef. 1.72 2.29
Accuracy 0.77 1.00

(given novel sci-fi names, such as “electro capac-
itor”) that also vary along six feature dimensions
such as color, size, etc. The environment also con-
tains 18 containers such as platforms, lockers, and
crates; some of these are locked and require learn-
ing specialized procedures to open. The robot starts
with a basic perceptual representation of the enti-
ties in the environment, including their observed
properties (e.g., an entity is red, small, etc.), but
without a name for any of them.

Our results are summarized in Table 1°. Overall,
the robot asked more questions than the humans
on average, but attains a higher accuracy, being
able to resolve every entity in the task with enough
questions. These results highlight a trade-off be-
tween accuracy and question efficiency relative to
human performance: as our system lacks common-
sense knowledge that humans are able to draw upon
when learning new concepts, it generally needs to
ask more questions per object, but its systematic
approach to disambiguation allows it to avoid mis-
takes that humans would occasionally make, such
as overlooking an entity in the environment.

5 Conclusion and Future Work

We presented a robotic system that combines a
decision network model for question generation
with a cognitive robotic architecture to allow the
system to efficiently learn about new concepts in
unexplored environments through dialogue. The
design of our system is scalable due to the dynamic
construction of the decision network, while the
robotic architecture allows for broader situated in-
teraction including symbolic reasoning and expla-
nation generation. Our evaluation demonstrated
that our system, while having slightly lower ques-
tion efficiency than human participants on the same
task, was adept at learning new concepts in our ex-
perimental setting. In the future, we aim to allow
the robot to automatically acquire property knowl-
edge through exploration prior to concept learning.

3Since the robot produces deterministic outcomes for the
same command, we perform only a single trial for the robot.
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