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Abstract To complete a task, an embodied agent may be

We demonstrate EMMA, an embodied multi-
modal agent which has been developed for the
Alexa Prize SimBot Challenge'. The agent acts
within a 3D simulated environment for house-
hold tasks. EMMA is a unified and multimodal
generative model aimed at solving embodied
tasks. In contrast to previous work, our ap-
proach treats multiple multimodal tasks as a
single multimodal conditional text generation
problem. Furthermore, we showcase that a sin-
gle generative agent can solve tasks with visual
inputs of varying length, such as answering
questions about static images, or executing ac-
tions given a sequence of previous frames and
dialogue utterances. The demo system will
allow users to interact conversationally with
EMMA in embodied dialogues in different 3D
environments from the TEACh dataset.

1 Introduction

Robots that perform tasks in human spaces can ben-
efit from natural language interactions that provide
both high and low-level instructions, as well as
the ability to resolve ambiguities. The Alexa Prize
SimBot Challenge aims to propel research efforts
to develop embodied agents that learn to execute
household tasks from instructions, such as “Please
clean all the tableware”.

Transformers (Vaswani et al., 2017) coupled
with joint vision-and-language pretraining have be-
come the standard approach for tasks with single
image inputs, where available object-detectors are
used produce image features. We demonstrate how
this approach can also benefit embodied agents
for object manipulation tasks. While represent-
ing the scene in terms of object representations
(object-centric) can also benefit embodied agents
performing tasks involving object manipulation,
this approach is not as widely adopted due to the
increased computational overhead.

"https://amazon.science/alexa-prize/
simbot-challenge

required to perform multiple successive actions.
Each predicted action is conditioned on all previous
observations that yields a new observation. From
an object-centric point-of-view, each observation
corresponds to a set of detected objects which must
remain accessible by the agent to predict the next
action. Therefore, even for smaller action trajec-
tories, the resulting input length can become pro-
hibitively large as the number of frames increases.
In this work, we present Embodied MultiModal
Agent (EMMA), a language-enabled embodied
agent capable of executing actions conditioned
on historical dialogue interactions. To address
the long-horizon input, we adopt advances from
tasks involving processing long-documents (Belt-
agy et al., 2020). Existing embodied agents in sim-
ilar environments treat action prediction as a classi-
fication task (Suglia et al., 2021; Pashevich et al.,
2021). On the other hand, EMMA is a unified,
visually-conditioned, autoregressive text genera-
tion model that accepts visual (observations) and
textual (dialogue) tokens as input, and produces
natural language text and executable actions.

2 Background

TEACh The Task-driven Embodied Agents that
Chat (TEACh) dataset (Padmakumar et al., 2021)
consists of gameplay sessions where two partici-
pants must complete household tasks in the AI2-
THOR simulator (Kolve et al., 2017). Each session
consists of a Commander with oracle information,
and a Follower that interacts with the environment
and communicates with the Commander to com-
plete the task. This work focuses on Execution
from Dialogue History (EDH), which is the refer-
ence task for the Alexa Prize SimBot Challenge.
EDH instances are created by segmenting game
sessions. Each instance is defined by an initial state
SE action history Ay, set of interaction actions
during the session A%, and the goal environment
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Figure 1: High-level architecture of EMMA. The Perception component processes new visual and language input at
each timestep. Both streams are then processed by the Policy component to output raw text, which is mapped to
actions that are executable in the environment. The resulting action a; can be either a physical action or text (as
utterances generated from the dedicated NLG component).

state F'¥. The agent models the Follower who has
to generate the actions leading to the goal state.

Training and Evaluation During training, the
A? are used for supervision. At inference time,
the model is expected to generate a sequence of
interaction actions which would result in F'¥. The
model is evaluated by comparing the simulator state
resulted from inferred actions against F'Z.

3 System Architecture

As shown in Figure 1, EMMA consists of three
components: Perception, Policy, and Action Pre-
dictor. At each timestep, the agent generates the
next action after receiving information regarding
the current and previous states of the environment—
including any executed actions and interactions.
The agent receives a new observation and has to
predict a follow-up action. The process is repeated
until the agent outputs a stop action.

Perception This module is responsible for pro-
cessing the state of the environment—encoding
past actions, frames, and dialogue to create the
model input. The current state for the EDH task
consists of observations obtained after executing an
action, or a dialogue utterance from the Follower or
Commander. We extract local and global informa-
tion from the visual scenes using the VinVL object
detector (Zhang et al., 2021), after fine-tuning on
the ALFRED images (Shridhar et al., 2020). From
each scene, we obtain up to 36 regional features.
We obtain the global representation as the mean
pooled features from the backbone of the detector.

In the second case, the dialogue utterance is con-
catenated with the dialogue history. We include
special tokens to distinguish between Follower and
Commander utterances.

Policy The core component of EMMA is a uni-
fied autoregressive text generation model. Given
the current state, the previous observations and
interactions, the model generates raw textual out-
put. Assuming the input sequence consists of V/
frames—with each encoded into /Ny scene and
object tokens—and L language tokens, the total
sequence length V' x Ny 4 L will be dominated by
the number of visual tokens. To reduce the impact
of having a large V', we adapt the sparse attention
pattern following Beltagy et al. (2020). Each token
attends to its neighbouring tokens within a local
window, and a subset of tokens are regarded as
global to aggregate information from longer con-
texts. Global tokens act as a bottleneck of relevant
information over the entire sequence. These tokens
can attend to, and are attended by, all other tokens
in the input sequence under causal masking.

To infuse our agent with knowledge about ob-
jects and their properties, we pretrain the model
several image-text and video-text tasks. We use
COCO (Lin et al., 2014), VisualGenome (Kr-
ishna et al., 2016), and GQA (Hudson and Man-
ning, 2019) to learn an alignment between lan-
guage and vision. Furthermore, we incorpo-
rate ALFRED (Shridhar et al., 2020), and EPIC-
KITCHENS (Damen et al., 2018), two video-based
datasets involving action execution and recognition
to enable temporal reasoning.
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Figure 2: Example of generated output for various pretraining tasks, showing how EMMA can be prompted for the

task using Natural Language prefixes.
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Figure 3: Example of generated output for pretraining tasks showing the use of visual tokens in order to reference
specific objects. Visual tokens follow the format <vis_token_i> to refer to the i-th predicted bounding box.

Action Predictor The final component of
EMMA is responsible for converting generated raw
text into actions which are executable in the envi-
ronment. We parse the raw text and map it to either
a navigation (e.g., Forward) or interaction action
(e.g., Pickup Mug). For interaction actions, we also
select the associated object using its coordinates
available from the Perception module.

4 System Demonstration

We demonstrate the ability of our model to solve
several downstream tasks ranging from captioning
to embodied action execution after casting all tasks
into the same sequence-to-sequence framework.
After training EMMA, we can use natural language
task prompts to trigger specific behaviours, follow-
ing literature on prompting for text-only models
(Raffel et al., 2020; Brown et al., 2020).

4.1 Pretraining Tasks

Figures 2-3 show examples of outputs generated
for various pretraining tasks. Figure 2a illustrates
outputs of a model with the same weights for three
image-based tasks: Visual Question-Answering
(VQA), Image Captioning, and Masked Language
Modelling (MLM). Figure 3 demonstrates the pre-
training tasks that require referencing specific ob-
jects in the image: Visual Grounding, Dense Cap-
tioning and Relationship Detection. Without any
special task-specific tokens, EMMA can infer the
target task to generate summary descriptions for
images, and can also respond to queries regarding
attributes of specified objects. Figure 2b shows
an example of a video pretraining task using a tra-
jectory from the ALFRED (Shridhar et al., 2020)
dataset. Given the task prefix “Provide an instruc-
tion” and a sequence of frames, EMMA learns to
generate an high-level description of the action tra-
jectory.
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Figure 4: Example of action execution in the AI2Thor 3D environment. EMMA conditions the action generation on

both the dialogue and the visual history.

4.2 Action Execution

Figure 4 provides an example of action execution
from dialogue history using an episode from the
TEACh dataset. The goal of the episode is to mi-
crowave a potato. The initial input to the model
consists of the dialogue between the Commander
and the Follower as well as the frames correspond-
ing to the previously executed actions. Up to that
point, the Commander has expressed the end goal
and helped the agent locate a potato. Based on this
input, EMMA executes a sequence of actions that
successfully complete the task. At each step the ini-
tial input is augmented with the agent’s egocentric
observation after executing the most recent action.
The process is repeated until the timestep 49, where
EMMA predicts a stop action. For this particular
example, the human follower completed the task
in 10 steps including redundant actions such as
looking up and down. EMMA'’s action trajectory
is more efficient than the human demonstration by
performing only the necessary actions.

5 Conclusion

In this work we presented EMMA, an embodied
agent that learns to execute actions from dialogue,
developed for the Alexa Prize SimBot Challenge.
EMMA is based on a unified text generation model
that is pretrained on multiple image and video-
based tasks using natural language prompts. We
will provide a conversational web-based demon-
stration of interaction with EMMA in 3D environ-
ments.
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