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Abstract

Avoiding the generation of responses that con-
tradict the preceding context is a significant
challenge in dialogue response generation. One
feasible method is post-processing, such as fil-
tering out contradicting responses from a re-
sulting n-best response list. In this scenario,
the quality of the n-best list considerably af-
fects the occurrence of contradictions because
the final response is chosen from this n-best
list. This study quantitatively analyzes the
contextual contradiction-awareness of neural
response generation models using the consis-
tency of the n-best lists. Particularly, we used
polar questions as stimulus inputs for concise
and quantitative analyses. Our tests illustrate
the contradiction-awareness of recent neural re-
sponse generation models and methodologies,
followed by a discussion of their properties and
limitations.

1 Introduction

Recent advanced response generation mod-
els (Zhang et al., 2020; Adiwardana et al., 2020;
Roller et al., 2021) can generate relevant and mean-
ingful responses, which can resolve dull response
problems (Vinyals and Le, 2015; Sordoni et al.,
2015; Serban et al., 2016). This advancement re-
veals additional flaws in the quality of neural model
responses, such as contradiction. Contradiction is
a critical error in dialogue because a single con-
tradictory response can disrupt the flow of the dia-
logue (Higashinaka et al., 2015).

A generation model outputs a response by se-
lecting the candidate with the highest likelihood (1-
best) from an n-best candidate list. Prior work has
demonstrated that generating the n-best lists with
noncontradictory 1-bests is an open challenge (Nie
et al., 2020; Kim et al., 2020; Li et al., 2021). Thus,
one practical technique for avoiding contradiction
is to have an accurate contradiction detector that
eliminates all contradictory candidates from the n-
best list (Nie et al., 2020). In this scenario, the con-

History : Yeah I’m in North Carolina.

Message : Aren’t you in South Carolina? Inputs

'L%-'\ System A !%1 System B
Responsel: No, North. Responsel: Yes, South. X
Response2: No. I’m not. Response2: Yes. X
Response3: No. Why? Response3: Yes! X

Response4: No but I used to.
Response5: Yes, I'm. X

Response4: No.
Response5: Yes I'm. X

XX X X X
XX X X X

Certainty: 1/3=0.33, Variety: 0.2/1=0.20

Figure 1: Overview of our analysis framework. The
framework analyzes n-best lists by (i) synthesizing a
stimulus input that induces contradictions, (ii) automati-
cally determining whether responses in the n-best lists
are contradictory, and (iii) computing Certainty and
Variety.

sistency of all candidates in the n-best list, not just
the 1-best, substantially impacts whether the final
output is contradictory because the final response
is chosen from the n-best list. Nonetheless, earlier
quantitative investigations of contradiction relied
solely on 1-bests from models (Li et al., 2021).

In this study, we analyze the n-best lists gen-
erated by the models to explore methods for en-
hancing neural response generation to avoid con-
tradiction. Specifically, we first consider how ana-
lyzing an n-best list should be approached. Then,
we propose a method for statistically analyzing
the n-best lists (Figure 1). Since it is impractical
to study all conceivable contradictions in a dia-
logue, we first focus on contradictions in response
to polar questions.! We use our method to high-
light the contradiction-awareness of recent high-
performance neural response generation models
and methodologies. Our results show that beam
search has limitations in terms of avoiding con-
tradiction and that the newer techniques, such as
unlikelihood training (Welleck et al., 2020), can
help overcome these limitations.

'Codes and test set are available at

https://github.com/shiki-sato/
nbest-contradiction-analysis
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NLI data Dialogue context for our test

Entailment Premise: yeah i’'m in North Carolina ENTQ  History: Yeah I'm in North Carolina.
Hypothesis: I'm in North Carolina. Message: Are you in North Carolina?

Contradiction Premise: yeah i’'m in North Carolina CNTQ  History: Yeah I'm in North Carolina.
Hypothesis: I’'m in South Carolina. Message: Aren’t you in South Carolina?

Table 1: Acquiring dialogue context by transforming the Natural Language Inference (NLI) data.

2 Analysis perspectives

First, n-best lists must be generated to prevent con-
tradiction, assuming the filters can remove contra-
dictory responses. An ideal model produces output
that is noncontradictory and outperforms in many
other criteria, such as relevance or informativeness.
A model must generate at least one noncontradic-
tory candidate to deliver a noncontradictory out-
put. Furthermore, even noncontradictory candi-
dates could be eliminated based on other criteria
(e.g., relevance, informativeness). Therefore, it can
be hypothesized that having more noncontradictory
responses in an n-best list would enhance the fi-
nal output quality across various criteria. Taking
the above into account, we examine n-best lists
based on the certainty of the existence of noncon-
tradictory responses (Certainty), and the variety of
noncontradictory responses (Variety):

* Certainty: The proportion of the n-best lists
that have at least one noncontradictory re-
sponse.

* Variety: The proportion of noncontradictory
responses in each n-best list when only the
n-best lists with at least one noncontradictory
response are collected.

Given a set of inputs Q, we calculate them as fol-
lows:
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Certainty = , Variety =

Q' = {q|cent(f(q)) >0,q € Q}

where f(-) is an n-best list generation function
and cnt(-) is a function that returns the number
of noncontradictory responses from a given n-best
list. For example, the Certainty of a model that
generates n-best lists with a combination of non-
contradictory and contradictory responses is high,
but its Variety is low. However, a model that always
generates n-best lists with only noncontradictory or
contradictory responses has a high Variety but a low

Certainty. We anticipate that n-best lists must in-
clude noncontradictory responses (Certainty= 1.0),
with a high proportion (high Variety).

3 Analytical inputs and evaluation

To analyze a model from the aforementioned view-
points, we consider how to prepare the analytical
inputs and evaluate the generated responses in this
section.

3.1 Inputs for highlighting contradictions

Polar echo question. An echo question (Noh,
1998) confirms or clarifies the context information
by repeating the utterance of another speaker. It is
commonly used when the speaker did not hear or
understand what was said correctly, or when the
speaker wishes to express incredulity. Based on
Li et al. (2021)’s discovery, contradictions emerge
mostly when speakers refer to earlier information
communicated in dialogue; we use echo questions
as stimulus input in our analysis to elicit contradic-
tory responses. We use polar-typed echo questions
to make our analysis more succinct and quantita-
tive. Since polar questions allow for basically only
two responses, yes or no, we can clearly determine
whether the generated response is contradictory or
not. Furthermore, by analyzing the produced re-
sponses as a yes/no binary classification issue, it
allows for quantitative discussion of experimental
outcomes based on the probability level.

Input preparation. We use the dataset from the
natural language inference (NLI) task to effectively
obtain the analytical inputs described in the preced-
ing paragraph. This dataset specifies the logical
relationship (i.e., entailment, neutrality, or con-
tradiction) between a premise and its associated
hypothesis. We transform the NLI dataset into di-
alogue data using a set of basic rewriting rules.’
Our test involves two types of inputs, which can be
classified as follows:

* ENTQ: generating a confirmation response.

The details are described in Appendix A.
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* CNTQ: generating a refutation response.

Table 1 displays the input samples and how they
are transformed from the initial NLI data. Each
input is made up of the following two utterances:
the history and message. In our analysis, the model
generates responses to a given message, assuming
the model has generated the history in the preced-
ing turn.

3.2 Contradiction detection for output

To compute the Certainty and Variety, we must
first determine whether each generated response in
the n-bests compared to the inputs is contradictory.
The simplest method for detecting the contradic-
tions is to check whether the response begins with
yes or no. However, in the event of an indirect
expression (e.g., Why not?), this method cannot
detect the contradictions. Therefore, we use an au-
tomated yes-no classifier to categorize the n-best
responses to ENTQ/CNTQ. We train the classifier
by fine-tuning ROBERTa (Liu et al., 2019) using the
Circa dataset (Louis et al., 2020), which comprises
pairs of polar questions and indirect responses, as
well as annotations for the answer’s interpretation,
to categorize utterances as affirmations or refuta-
tions.>

4 [Experiments

We demonstrate how our framework shows the
properties of n-best lists, which could be quite
influential in terms of avoiding contradiction. We
demonstrate this by comparing the n-bests gen-
erated by conventional beam search (BS) versus
recently proposed techniques.

4.1 Experimental settings

Inputs preparation. We used the Multi-Genre
NLI Corpus (Williams et al., 2018) to obtain ana-
lytical inputs, which is a large scale and is consis-
tent in good quality NLI data. We created 2,000
ENTQ/CNTQ inputs by extracting 2,000 samples
labeled with entailment or contradiction.*

Response generation models. We used the fol-
lowing two recently developed high-performance
models: DialoGPT (Zhang et al., 2020) and
Blender (Roller et al., 2021).%

3The details are described in Appendix B.

“We used the samples in the TELEPHONE domain; this
domain covers open-domain conversations.

5The details of the settings are described in Appendix C.

Certainty Variety
Model ENTQ OCNTQ ENTQ CNTQ
Blender 400M 0.806  0.747 0.780 0.775
Blender 1B 0.832 0.752 0.832  0.753
Blender 3B 0.856 0.768 0.824 0.737
DialoGPT 345M  0.938 0917 0.750  0.669
DialoGPT 762M  0.883  0.918 0.671 0.713

Table 2: Certainty and Variety of 10-best lists using
beam search with beam size B = 10.
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Figure 2: Certainty and Variety of n-best lists using
beam search with various beam sizes.

4.2 Analysis of n-best using beam search

Let B denote the beam size during generation. It
has been empirically found that using beam search
with B = 10 to generate a response yields ex-
cellent quality results and has a frequently used
value (Zhang et al., 2020; Roller et al., 2021). Ta-
ble 2 displays the Certainty and Variety of 10-best
lists generated using these methods. Figure 2 also
depicts the Certainty and Variety of n-best lists
generated using different beam sizes.

Certainty. Table 2 illustrates that in approxi-
mately 10% of CNTQ-type inputs, even the highest
scoring model generates 10-best lists full of con-
tradictory responses. Even with a perfect response
filter, the models are unable to provide noncontra-
dictory answers to these questions. It should be
emphasized that the error rate is not low, given that
the inputs are polar questions with highly restricted
viable responses. Expanding the beam size can
increase the number of n-best lists with at least
one noncontradictory response. Indeed, increas-
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ing the beam size enhances the Certainty ((a) and
(b) in Figure 2). By increasing B to 40, the Cer-
tainty of using DialoGPT 345M for both ENTQ-
and CNTQ-type inputs achieve 1.0.

Variety. With B = 10, all the models’ Variety
are more than 0.5 (chance rate) (Table 2). There-
fore, rather than being fully random, the models
generate n-best lists with a degree of directionality
toward avoiding contradictions. However, increas-
ing the size of beam reduces the Variety ((c) and
(d) in Figure 2), resulting in lower output qual-
ity. For example, the Variety of DialoGPT 345M
with B = 40 for CNTQ-type inputs (a model with
Certainty of 1.0 for both ENTQ- and CNTQ-type
inputs) decreases to 0.58.

Overall. In terms of avoiding contradiction, our
analytical framework demonstrated the features of
the n-best lists of the beam search. The Certainty
did not achieve 1.0 in the commonly used configu-
ration (B = 10). When the beam size is increased,
the Certainty increases to 1.0, whereas the Variety
reduces dramatically. These results show the trade-
off between Certainty and Variety as a function of
beam size; in this example, we found constraints
in obtaining high Certainty and Variety with beam
search. Furthermore, it is found that the Certainty
obtained using DialoGPT is greater than that ob-
tained using Blender, whereas the opposite is true
for Variety, suggesting that various models behave
differently in terms of Certainty and Variety. This
study emphasizes the significance of examining the
Certainty and Variety of each model.

4.3 Analysis of n-best by various techniques

How to achieve high Certainty and Variety?
One method to increase Certainty is to generate
n-best lists with a wider range of responses, such
that each n-best list is guaranteed to contain a spe-
cific number of noncontradictory responses. The
diverse beam search (DBS) (Vijayakumar et al.,
2016) and nucleus sampling (NS) (Holtzman et al.,
2020) methods are used to construct such n-best
lists. Furthermore, Li et al. (2020) recently pro-
posed models that use unlikelihood (UL) training
to assign low probabilities to contradict responses.
Using these models to generate n-best lists will
almost certainly enhance both Certainty and Va-
riety. We assess the n-best lists generated using
these three strategies to see how much these tech-
niques enhance Certainty and Variety (n-best lists

Certainty Variety
Technique ENTQ CNTQ ENTQ CNTQ
BS 0.856  0.768 0.824  0.737
DBS 0.999  0.981 0.758  0.478
NS 1.000  0.994 0.755  0.462
UL (a = 0) 1.000  0.996 0.406  0.759
UL(ax=1) 0.943  0.900 0.920  0.938
UL (a =10) 0910 0.937 0.969  0.968

Table 3: Certainty and Variety of 10-best lists using
various techniques with Blender 3B.

generated using DBS and NS, and n-best lists gen-
erated using beam search together with the UL
training). Appendix C contains a description of the
techniques used for this analysis.

Result. Table 3 displays the Certainty and Vari-
ety of the 10-best lists generated using BS, DBS,
NS, and UL.® The values of a show the degree of
UL loss during fine-tuning. Here UL with a = 0
used the response generation model fine-tuned with
maximum likelihood in the same training settings
as those used for UL with o« > 0. Thus, note that
comparing UL with o = 0 and o > 0 allows a fair
comparison between likelihood and unlikelihood
training. The results reveal the properties of the n-
best lists obtained for the three techniques, as well
as the extent to which the techniques increase Cer-
tainty and Variety. The Certainty obtained using
the DBS and NS method reach 1.0 for significantly
lower search sizes than that for the BS to attain
a Certainty of 1.0; the Variety for CNTQ-type in-
puts are less than 0.5 (chance rate). Thus, using
the DBS and NS methods efficiently improves Cer-
tainty compared with the results obtained using
the beam search; nevertheless, the methods do not
simultaneously attain high Certainty and Variety.
However, the Certainty obtained using UL with
a > 0 are greater than those obtained using the
BS, and this was accomplished while maintaining
higher Variety than those obtained using the BS and
UL with a = 0 (likelihood training). Our findings
show that generation models are advancing toward
high Certainty and Variety, which is particularly
true for the recently proposed UL loss method. De-
spite the highly restricted viable responses, i.e., yes
or no, the Certainty obtained using UL with o > 0
does not reach 1.0. Thus, we conclude that there is
still room for improvement in n-best list generation

For the BS, DBS, and UL, we obtained the 10-best lists
setting beam size to 10. For the NS, we got the 10-best lists
by performing nucleus sampling ten times.
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in terms of avoiding contradiction.

5 Conclusion

Based on the recent development of contradiction
detectors, removing contradictory candidates from
models’ n-best lists is a practical method for avoid-
ing contradiction. In this method, the consistency
of all candidates in the n-best lists substantially
affects whether the final outputs are contradictory.

We quantitatively examined the properties of the
n-best lists in terms of avoiding contradiction, us-
ing polar-typed questions as analytical inputs. We
demonstrated that the proposed framework exhibits
the properties of n-best lists based on Certainty
and Variety. Certainty determines whether an n-
best list has at least one noncontradictory response,
whereas Variety evaluates how many noncontradic-
tory responses each n-best list has. The results,
particularly, demonstrated the present limitations
on achieving high Certainty and Variety when us-
ing the well-established beam search method. In
addition, our method emphasizes the improvements
in Certainty and Variety achieved by recently pro-
posed response generation strategies.

Our approach, which analyzes models’ n-best
lists based on Certainty and Variety, can be applied
to any response generation problem, not just polar-
typed response generation, which will be future
work.
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A Details of transforming NLI data

As described in Section 3.1, we obtain an analytical
input from the NLI dataset. Specifically, we convert
the hypothesis sentence of an NLI sample into a
yes-no question. We describe the procedure as
follows:

1. Detect the first verb of a sentence.

2. Move the verb to the beginning of the sen-
tence, or put one of {Do, Does, Did} at the
front of the sentence, changing the verb back
to its base (e.g., made — make).

3. Change first-person pronouns to second-
person pronouns and second-person pronouns
to first-person pronouns (e.g., my — your).

4. Change the punctuation mark at the end of the
sentence to a question mark.

We used spaCy (en_core_web_sm) (Honnibal
and Montani, 2017) to detect the verbs of hypoth-
esis sentences. We did not use NLI samples with
syntactically complex hypothesis sentences, such
as those containing coordinating conjunctions, to
avoid obtaining ungrammatical inputs. Further de-
tails are provided in our source codes.’

B Details of yes-no classifier

Training settings. On the Circa dataset,
we fine-tuned the pretrained RoBERTa
(roberta-large) implemented by Hug-
ging Face (Wolf et al., 2020). We divided the
dataset at random into train:valid = 8 : 2. The
other training parameters were identical to those

used by Louis et al. (2020).

Performance of classifier. To investigate the per-
formance of the classifier, we measured the classi-
fication accuracy. First, we manually labeled the
top-1 responses in the 10-best lists generated by
the analysis presented in Section 4.2 with one of
the two following labels: Contradictory or Noncon-
tradictory. The accuracy with which the automated
evaluation categorized the labeled responses was
then evaluated. We selected 500 responses® from
50 ENTQ/CNTQ inputs drawn at random from our
test for the evaluation. The classifier classified
433/500 responses (see Appendix C), and the accu-
racy was 0.921. Some examples of the classifica-
tion are shown in Table 4. The classifier correctly

"https://github.com/shiki-sato/
nbest-contradiction-analysis
8100 responses generated by each of 5 generation models.

History: and we didn’t ever call it uh Cokes and
such you know we call it soda.

Don’t you always call it Coke?

We call it coke.

Message:
Model Response:

Human Label:
Predicted Label:

Contradictory
Contradictory

(a) Example 1

History: The buying a house was the last thing
that i wanted to do.
Weren’t you desperate to buy a house?

No, I just wanted to buy a house.

Message:
Model Response:

Human Label:
Predicted Label:

Contradictory
Non-contradictory

(a) Example 2

Table 4: Examples of the response classification results
by the yes-no classifier. The model responses were
generated by Blender 400M using beam search with
beam size B = 10.

Model ENTQ CNTQ
Blender 400M 1331/2000 1270 /2000
Blender 1B 1413/2000 1316 /2000
Blender 3B 1566 /2000 1403 / 2000
DialoGPT 345M  1126/2000 924 /2000
DialoGPT 762M  1044/2000 956 / 2000

Table 5: Number of stimulus inputs analyzed to calcu-
late the Certainty and Variety described in Table 2.

Model ENTQ CNTQ

BS 1566 /2000 1403 /2000
DBS 991 /2000 882 /2000
NS 818 /2000 684 /2000
UL (a = 0) 1914 /2000 1871/2000
UL(a=1) 1806 /2000 1887 /2000
UL (a = 10) 1654 /2000 1811/2000

Table 6: Number of stimulus inputs analyzed to calcu-
late the Certainty and Variety described in Table 3.

detected the contradiction in the model response
using an indirect expression, in Example 1. How-
ever, in Example 2, the classifier failed to detect the
contradiction of the model response, having both
a noncontradictory direct expression (“No”’) and a
contradictory indirect expression (the part of the
response after “No””). We found that the classifier
tended to misclassify model responses containing
the contradictions with themselves, such as Exam-
ple 2.

C Details of experiments

Number of analyzed stimulus inputs. To sim-
plify the analysis, we omitted from Section 4 and
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Appendix B the analytical inputs with one or more
ambiguous responses in the n-best lists. We de-
fined ambiguous responses as those that were not
identified by the classifier as either affirmations
or refutations.” Table 5 and Table 6 display the
number of analytical inputs from the total of 2,000
ENTQ/CNTQ used for the two analyses in Sec-
tion 4.

Generation model settings. In Section 4 experi-
ments, we used DialoGPT (Zhang et al., 2020) and
Blender (Roller et al., 2021) as response genera-
tion models. We used the codes of ParlAI (Miller
et al., 2017) with its default settings, except for
beam_length_penalty= 0 to generate responses.

Unlikelihood training settings. We used unlike-
lihood training with Blender 3B for the study of
Section 4.3. To use the unlikelihood training pro-
posed by Li et al. (2020), we require training data
that includes the following three elements: input
(here, history, and message), gold response, and
negative response. These training samples were
created by altering the NLI data with entailing and
contradicting hypotheses.'® Table 7 displays the
original NLI data and the transformed training sam-
ples. One NLI data set yields four types of ques-
tions (PositiveQ1, PositiveQ2, NegativeQ1, and
NegativeQ2). We synthesized 8,000 samples from
2,000 NLI data and randomly divided them into
train : valid = 9 : 1. We tuned the learning
rate {7.0 x 107%,7.0 x 107°,7.0 x 1076,7.0 x
1077,7.0 x 1078} and the number of warmup up-
dates {50, 100} for each o = {0, 1,10} for train-
ing. The rest of the training parameters are identical
to those used by Roller et al. (2021). It is worth
noting that we only trained the models marked as
UL in Section 4.3 on these transformed data.

°Circa dataset has seven different labels such as “Yes” and
“Probably/sometimes yes.” We regard the responses classified
into “In the middle” or “I am not sure” as ambiguous ones.

"Note that we did not use the identical NLI samples to
synthesize ENTQ/CNTQ.

Premise: yeah i’'m in North Carolina
Hypothesis — Entailment: I’'m in North Carolina.
Hypothesis — Contradict: I’'m in South Carolina.

(a) Original NLI data

PositiveQ1

History:
Message:
Gold:
Negative:

Yeah I’'m in North Carolina.
Are you in North Carolina?
Yes, I’'m in North Carolina.
No, I'm in South Carolina.

PositiveQ2

History:
Message:
Gold:
Negative:

Yeah I’m in North Carolina.
Are you in South Carolina?
No, I'm in North Carolina.

Yes, I’'m in South Carolina.

NegativeQ1
History:
Message:
Gold:
Negative:

Yeah I’m in North Carolina.
Aren’t you in North Carolina?
Yes, I'm in North Carolina.
No, I'm in South Carolina.

NegativeQ2
History:
Message:
Gold:
Negative:

Yeah I’'m in North Carolina.
Aren’t you in South Carolina?
No, I'm in North Carolina.
Yes, I’'m in South Carolina.

(b) Training samples for UL

Table 7: Example of transforming (a) original NLI data
to (b) training sample for UL. We synthesized four ques-
tions, i.e., PositiveQ1, PositiveQ2, NegativeQ1, and
NegativeQ2, from each NLI sample.
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