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Abstract
Prior work has demonstrated that data augmen-

tation is useful for improving dialogue state

tracking. However, there are many types of

user utterances, while the prior method only

considered the simplest one for augmentation,

raising the concern about poor generalization

capability. In order to better cover diverse di-

alogue acts and control the generation qual-

ity, this paper proposes controllable user dia-

logue act augmentation (CUDA-DST) to aug-

ment user utterances with diverse behaviors.

With the augmented data, different state track-

ers gain improvement and show better robust-

ness, achieving the state-of-the-art performance

on MultiWOZ 2.1.1

1 Introduction

Dialogue state tracking (DST) serves as a back-

bone of task-oriented dialogue systems (Chen et al.,

2017), where it aims at keeping track of user in-

tents and associated information in a conversation.

The dialogue states encapsulate the required infor-

mation for the subsequent dialogue components.

Hence, an accurate DST module is crucial for a di-

alogue system to perform successful conversations.

Recently, we have seen tremendous improve-

ment on DST, mainly due to the curation of large

datasets (Budzianowski et al., 2018; Eric et al.,

2020; Rastogi et al., 2020) and many advanced

models. They can be broadly categorized into 3

types: span prediction, question answering, and

generation-based models. The question answer-

ing models define natural language questions for

each slot to query the model for the correspond-

ing values (Gao et al., 2020; Li et al., 2021). Wu

et al. (2019) proposed TRADE to perform zero-

shot transfer between multiple domains via slot-

value embeddings and a state generator. Sim-

pleTOD (Hosseini-Asl et al., 2020) combines all
∗Equal contribution.

1The source code is available at https://github.
com/MiuLab/CUDA-DST.

components in a task-oriented dialogue system

with a pre-trained language model. Recently,

TripPy (Heck et al., 2020) categorizes value predic-

tion into 7 types, and designs different prediction

strategies for them. This paper focuses on general-

ized augmentation covering all categories.

Another research line leverages data augmen-

tation techniques to improve performance (Song

et al., 2021; Yin et al., 2020; Summerville et al.,

2020; Kim et al., 2021). Most prior work used

simple augmentation techniques such as word in-

sertion and state value substitution. With recent

advances in pre-trained language models (Devlin

et al., 2019; Radford et al., 2019; Raffel et al.,

2020), generation-based augmentation has been

proposed (Kim et al., 2021; Li et al., 2020). These

methods have demonstrated impressive improve-

ment and zero-shot adaptability (Yoo et al., 2020;

Campagna et al., 2020), while our work focuses on

data augmentation with in-domain data.

The closest work is CoCo (Li et al., 2020), a

framework that generates user utterances given aug-

mented dialogue states. The examples are shown

in Figure 1, where the main differences between

CoCo and ours are that 1) CoCo only augments

user utterances in slot and value levels, but dialogue

acts and domains are fixed, making augmented data

limited. Our method can augment reasonable user

utterances with diverse dialogue acts and domain

switching scenarios. 2) Boolean slots and referred

slots are not handled by CoCo due to its higher com-

plexity, while our approach can handle all types of

values for better generalization.

This paper proposes CUDA-DST (Controllable

User Dialogue Act augmentation), a generalized

framework of generation-based augmentation for

improving DST. Our contribution is 2-fold:

• We present CUDA which generates diverse

user utterances via controllable user dialogue

acts augmentation.

• Our augmented data helps most DST mod-
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[System]: Hello, how can I help you? 
[User]: I need to find a restaurant in the center.
[System]: I recommend Pho Bistro, a popular restaurant in the center.

[User]: No, it needs to serve British food and I’d like a reservation for 18:00.

[VS]: No, it needs to serve Chinese food and I’d like a reservation for 17:00.

[CoCo]: No, it should serve Chinese food and I need to book a table for 2 people.

[CUDA]: Thank you, can you also find me a hotel with parking near the restaurant?

Turn 1

Turn 2

VS-Turn 2

CoCo-Turn 2

CUDA-Turn 2

Recommendation { restaurant-name=pho bistro, restaurant-area=center }

Confirm=False, Inform{ restaurant-area=center, restaurant-food=Chinese, restaurant-time=17:00 }

Confirm=False, Inform{ restaurant-area=center, restaurant-food=Chinese, restaurant-people=2 }

Confirm=True, Inform{ restaurant-area=center, restaurant-name=pho bistro, hotel-area=center, hotel-parking=yes }

Confirm Domain Change Coreference

Confirm=False, Inform{ restaurant-area=center, restaurant-food=British, restaurant-time=18:00 }

Boolean

Figure 1: Augmented user utterances with the associated user dialogue acts and states from three methods.

els improve their performance. Specifically,

CUDA-augmented TripPy model achieves the

state-of-the-art result on MultiWOZ 2.1.

2 Controllable User Dialogue Act
Augmentation (CUDA)

The goal of our method is to augment more and

diverse user utterances that fit the dialogue context,

and then the augmented data can help DST models

learn better. More formally, given a system utter-

ance U sys
t in the turn t and dialogue history Ht−1

before this turn, our approach focuses on augment-

ing a user dialogue act and state, Ât, and generating

the corresponding user utterance Ûusr
t . Note that

each user utterance can be augmented.

To achieve this goal, we propose CUDA with

three components illustrated in Figure 2: 1) a user

dialogue act generation process for producing Ât,

2) a user utterance generator for producing Ûusr
t ,

and 3) a state match filtering process.

2.1 User Dialogue Act Generation

Considering that a user dialogue act represents the

core meaning of the user’s behavior (Goo and Chen,

2018; Yu and Yu, 2021), we focus on simulating

reasonable user dialogue acts given the system con-

text for data augmentation. After analyzing task-

oriented user utterances, user behaviors contain the

following user dialogue acts:

1. Confirm: The system provides recommen-

dation to the user, and the user confirms if

accepting the recommended item.

2. Reply: The system asks for a user-desired

value of the slots, and the user replies the cor-

responding value.

3. Inform: The user directly informs the desired

slot values to the system.

Heck et al. (2020) designed their dialogue state

tracker that tackle utterances with different dia-

logue acts in different ways and achieved good

performance, implying that different dialogue acts

contain diverse behaviors in the interactions. To

augment more diverse user utterances, we intro-

duce a random process for each user dialogue act.

Unlike the prior work CoCo that did not generate

utterance whose dialogue act different from the

original one, our design is capable of simulating di-

verse behaviors for better augmentation illustrated

in Figure 2.

Confirm When the system provides recommen-

dations, our augmented user behavior has a prob-

ability of Pconfirm to accept the recommended val-

ues. When the user confirms the recommenda-

tion, the suggested slot values are added to the aug-

mented user dialogue state Ât as shown in Figure 1.

In the example, the augmented user dialogue act

is to confirm the suggested restaurant, and then

includes it in the state (restaurant-name=pho
bistro, restaurant-area=center).

Reply When the system requests a constraint for

a specific slot, e.g. “which area do you prefer?”,

the user has a probability of Preply to give the value

of the requested slot. Preply may not be 1, because

users sometimes revise their previous requests with-

out providing the asked information.

Inform In anytime of the conversation, the user

can provide the desired slot values to convey his/her

preference. As shown in the original user utterance

of Figure 1, the user rejects the recommendation
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I recommend Pho Bistro, a 
popular restaurant in the center.

Recommendation{
restaurant-name=pho bistro,
restaurant-area=center }

Confirm ( )

Reply ( )
Inform

Confirm=True

System 
Recommend

System 
Request

Inform{
hotel-area=east,
hotel-parking=yes }

Domain Change (   ) 

Anytime Coreference Augmentation (   )  
Inform{

hotel-area=near the restaurant,
hotel-parking=yes }

Turn-Level Dialogue Act & State
Confirm=True
Inform{

restaurant-name=pho bistro,
restaurant-area=center,
hotel-area=near the restaurant(center),
hotel-parking=yes }

1. Thank you, can you also find me a hotel with parking near the restaurant?

2. Thank you, can you also find me a hotel without parking near the restaurant?

3. Thank you, can you also find me a hotel with parking in the center of the town?

4. Thank you, can you also find me a hotel with free wifi near the restaurant?

User Utterance Generation State Match Filtering

User Dialogue Act Generation

1. Slot Appearance: Value Consistency: (span) (boolean) 

2. Slot Appearance: Value Consistency: (span) (boolean) 

3. Slot Appearance: Value Consistency: (span) (boolean) 

4. Slot Appearance: Value Consistency: (span)   -- (boolean) --

System Turn

System Act

Figure 2: The overview of the proposed CUDA augmentation process.

and then directly informs the additional constraints

(food and time). The number of additional in-

formed values is randomly chosen, and then the

slots and values are randomly sampled from the

pre-defined ontology and dictionary. Note that

the confirmed and replied information cannot be

changed during additional informing. Considering

that a user may change the domain within the dia-

logue, our algorithm allows the user to change the

domain with a probability of Pdomain, and then the

informed slots and values need to be sampled from

the new domain’s dictionary. The new domain is

selected randomly from all the other domains.

Coreference Augmentation In the generated

user dialogue act and state, all informed slot values

are from the pre-defined dictionary. However, it

is natural for a user to refer the previously men-

tioned information, e.g., “I am looking for a taxi
that can arrive by the time of my reservation”. To

further enhance the capability of handling coref-

erence, our algorithm has a probability of Pcoref

to switch the slot value from the generated user

dialogue state. Since not all slots can be referred,

we define a coreference list containing all referable

slots and the corresponding referring phrases, e.g.,

“the same area as” listed in Appendix A.

With the generated user dialogue acts and the

system action, we form the corresponding turn-

level dialogue act and state based on the confirmed

suggestions and referred slot values as shown in

the green block of Figure 2.

2.2 User Utterence Generation

To generate the user utterance associated with the

augmented user dialogue act and state, we adopt a

pre-trained T5 (Raffel et al., 2020) and fine-tune it

on the MultiWOZ dataset by a language modeling

objective formulated below:

Lgen = −
nt∑

k=1

log pθ(U
usr
t,k | Uusr

t,<k, U
sys
t , Ht−1, At),

where Uusr
t,k denotes the k-th token in the user ut-

terance, Ht−1 represents the all dialogue history

before turn t, and At is the user dialogue act and

state in the t-th turn. With the trained generator,

we can generate the augmented user utterance by

inputting the augmented user dialogue act and state

Ât as shown in the green block of Figure 2. In

decoding, we apply beam search so that we can

augment diverse utterances for improving DST.

2.3 State Match Filtering
To make sure the generated user utterance well

reflects its dialogue state, we propose two modules

to check the state matching: a slot appearance
classifier and a value consistency filter, where the

former checks if the given slots are included and

the latter focuses on ensuring the value consistency

between dialogue states and user utterances.

Slot Appearance Following Li et al., we employ

a BERT-based multi-label classification model to

predict whether a slot appears in the given t-th turn.

The augmented user utterances are eliminated if

they do not contain all slots in the user dialogue

state predicted by the model.

Value Consistency The slot values can be cat-

egorized into: 1) span-based, 2) boolean, and 3)

dontcare values. It is naive to check if the span-

based values are mentioned in the utterances, but

boolean and dontcare values cannot be easily iden-

tified. To handle the slots with boolean and dont-
care values, we propose two slot-gate classifiers
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Dataset CUDA MultiWOZ

Span 100.00 64.61
Confirm (True) 5.27 5.84
Confirm (False) 0.44 0.32
Dontcare 0.67 2.46
Coreference 8.15 3.70
Multi-domain 13.10 24.48

#Turns 54,855 69,673

Table 1: Slot distribution in user utterances (%).

motivated by Heck et al. (2020). Each boolean

slot, e.g. internet or parking, is assigned to one

of the classes in Cbool = {none, dontcare, yes, no},

while other slots are assigned to one of the classes

in Cspan = {none, dontcare, value}, where value
indicates the span-based value. Then for all slots

classified as span-based value, we check if all asso-

ciated values are mentioned in the generated utter-

ance. In addition, we use the coreference keywords,

e.g., same area, to handle the coreference cases.

We apply BERT (Devlin et al., 2019) to encode the

t-th turn in a dialogue as:

RCLS
t = BERT([CLS]⊕U sys

t ⊕ [SEP]⊕
Uusr
t ⊕ [SEP]),

where RCLS
t denotes the output of the [CLS] token,

which can be considered as the summation of the

turn t. We then obtain the probability of the value

types as

pbools,t = softmax(W bool
s ·RCLS

t + bbools ) ∈ R
4,

for each boolean slots, and

pspans,t = softmax(W span
s ·RCLS

t + bspans ) ∈ R
3,

for each span-based slots. Our multi-task BERT-

based slot-gate classifier is trained with the cross

entropy loss.

The neural-based filters are trained on the orig-

inal MultiWOZ data, and the prediction perfor-

mance in terms of slots (for both appearance and

value consistency) is 92.9% in F1 evaluated on the

development set. In our CUDA framework, we

apply the trained filters to ensure the quality of the

augmented user utterances as shown in Figure 2.

3 Experiments

To evaluate if our augmented data is beneficial for

improving DST models, we perform three popu-

lar trackers, TRADE (Wu et al., 2019), Simple-

TOD (Hosseini-Asl et al., 2020), and TripPy (Heck

et al., 2020), on MultiWOZ 2.1 (Eric et al., 2020).

MultiWOZ TripPy TRADE SimpleTOD

Original 57.72 44.08 49.19
VS 59.48 43.76 50.50
CoCo 60.46 43.53 50.25

CUDA 61.28† 44.86† 50.14

CUDA (-coref ) 62.93† 42.98 49.64

Table 2: Joint goal accuracy on MultiWOZ 2.1 (%). †
indicates the significant improvement over all baselines

with p < 0.05.

3.1 Experimental Setting

Our CUDA generator is trained on the training set

of MultiWOZ 2.3 (Han et al., 2020) due to its ad-

ditional coreference labels. Note that all dialogues

are the same as MultiWOZ 2.1. We then generate

the augmented dataset for the training set of Multi-

WOZ 2.1 for fair comparison with the prior work.

The predifined slot-value dictionary is taken from

CoCo’s out-of-domain dictionary and the defined

coreference list is shown in Appendix A.

In user dialogue act generation, the parame-

ters are set as (Pconfirm, Preply, Pdomain, Pcoref) =
(0.7, 0.9, 0.8, 0.6), which can be flexibly adjusted

to simulate different user behaviors. We report the

distribution of slot types in our augmented data and

the original MultiWOZ data in Table 1, where it

can be found that our augmented slots cover diverse

slot types and the distribution is reasonably similar

to the original MultiWOZ. Different from the prior

work, CoCo, which only tackled the span-based

slots, our augmented data may better reflect the

natural conversational interactions. Additionally,

we perform CUDA with Pcoref = 0 to check the

impact of coreference augmentation.

We train three DST models on the augmented

data and evaluate the results using joint goal ac-

curacy. The compared augmentation baselines in-

clude value substitution (VS) and CoCo (Li et al.,

2020) with the same setting.

3.2 Effectiveness of CUDA-Augmented Data

Table 2 shows that CUDA significantly improves

TripPy and TRADE results by 3.6% and 0.8% re-

spectively on MultiWOZ, and even outperforms the

prior work CoCo. In addition, our CUDA augmen-

tation process has 78% success rate, while CoCo

only has 57%, demonstrating the efficiency of our

augmentation method and the great data utility. In-

terestingly, CUDA without coreference achieves

slightly better performance for TripPy while the

performance of TRADE and SimpleTOD degrade,
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CoCo+(rare) TripPy TRADE SimpleTOD

Original 28.38 16.65 19.20
VS 39.42 16.42 26.26
CUDA 48.83 17.79 29.32
CUDA (-coref ) 48.67 16.80 28.66

CoCo 56.50 18.01 30.60

Table 3: Joint goal accuracy on CoCo+ (rare) (%).

achieving the new state-of-the-art performance on

MultiWOZ 2.1. The probable reason is that TripPy

already handles coreference very well via its refer

classification module, so augmenting coreference

cases may not help it a lot. In contrast, other gener-

ative models (TRADE and SimpleTOD) can ben-

efit more from our augmented coreference cases.

Another reason may be the small distribution of

coreference slots in MultiWOZ shown as Table 1,

implying that augmented data with too many coref-

erence slots does not align well with the original

distribution and hurts the performance.

3.3 Robustness to Rare Cases
We also evaluate our models on CoCo+ (rare)2, a

test set generated by CoCo’s algorithm (Li et al.,

2020), to examine model robustness under rare sce-

narios. Table 3 presents the results on CoCo+ (rare),

which focuses rare cases for validating the model’s

robustness. It is clear that the model trained on

our augmented data shows better generalization

compared with the one trained on the original Mul-

tiWOZ data, demonstrating the effectiveness on

improving robustness of DST models. The per-

formance of CoCo is listed as reference, because

comparing with its self-generated data is unfair.

3.4 Slot Performance Analysis
To further investigate the efficacy for each slot type,

Figure 3 presents its performance gain on TripPy.

Comparing with CoCo, CUDA improves more on

informed, refer, and dontcare slots. It implies that

CUDA augments diverse user dialogue acts for

helping informed and refer, and the proposed slot-

gate can better ensure value consistency for improv-

ing dontcare slots, even though they are rare cases

in MultiWOZ. Our model can also keep the same

performance for frequent span slots, demonstrat-

ing great generalization capability across diverse

slot types from our controllable augmentation. The

qualitative study can be found in Appendix B.

2CoCo+ (rare) applies CoCo and value substitution (VS)
with a rare slot-combination dictionary.

-1%

0%

1%

2%

3%

4%

5%

6%

7%

span informed  true refer dontcare  false

CoCo CUDA CUDA (-coref)

Improvement

(65.6%) (24.1%)       (3.7%)       (3.3%) (2.1%)       (1.3%)

Figure 3: Performance gain across slots on TripPy.

4 Conclusion

We introduce a generalized data augmentation

method for DST by utterance generation with con-

trollable user dialogue act augmentation. Experi-

ments show that our approach improves results of

multiple state trackers and achieves state-of-the-

art performance on MultiWOZ 2.1. Further study

demonstrates that trackers’ robustness and gener-

alization capabilities can be improved by diverse

generation covering different user behaviors.
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A Reproducibility

Our CUDA generator is trained on the training set

of MultiWOZ 2.3 (Han et al., 2020) due to its ad-

ditional coreference labels. Note that all dialogues

are the same as MultiWOZ 2.1. We then generate

the augmented dataset using CUDA for the train-

ing set of MultiWOZ 2.1 for fair comparison with

the prior work. The predifined slot-value dictio-

nary is taken from CoCo’s out-of-domain dictio-

nary shown in Table 4 and the defined coreference

list is shown in Table 5.

B Qualitative Study

The augmented data samples are shown in Figure 4.

It can be found that the augmented user utterances

can fluently switch the domain and include asso-

ciated slot values that are aligned well with the

dialogue states.
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Slot Name Possible Values
hotel-internet† [‘yes’, ‘no’, ‘dontcare’]
hotel-type [‘hotel’, ‘guesthouse’]

hotel-parking† [‘yes’, ‘no’, ‘dontcare’]
hotel-price [‘moderate’, ‘cheap’, ‘expensive’]
hotel-day [‘march 11th’, ‘march 12th’, ‘march 13th’, ‘march 14th’, ‘march 15th’, ‘march 16th’, ‘march 17th’,

‘march 18th’, ‘march 19th’, ‘march 20th’]
hotel-people [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
hotel-stay [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
hotel-area [‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]
hotel-stars [‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘dontcare’]
hotel-name [‘moody moon’, ‘four seasons hotel’, ‘knights inn’, ‘travelodge’, ‘jack summer inn’, ‘paradise point

resort’]
restaurant-area [‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]
restaurant-food [‘asian fusion’, ‘burger’, ‘pasta’, ‘ramen’, ‘taiwanese’, ‘dontcare’]
restaurant-price [‘moderate’, ‘cheap’, ‘expensive’, ‘dontcare’]
restaurant-name [‘buddha bowls’, ‘pizza my heart’, ‘pho bistro’, ‘sushiya express’, ‘rockfire grill’, ‘itsuki restaurant’]
restaurant-day [‘monday’, ‘tuesday’, ‘wednesday’, ‘thursday’, ‘friday’, ‘saturday’, ‘sunday’]
restaurant-people [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
restaurant-time [‘19:01’, ‘18:06’, ‘17:11’, ‘19:16’, ‘18:21’, ‘17:26’, ‘19:31’, ‘18:36’, ‘17:41’, ‘19:46’, ‘18:51’, ‘17:56’,

‘7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, ‘7:17 pm’, ‘6:17 pm’, ‘5:27 pm’, ‘7:32 pm’, ‘6:37 pm’, ‘5:42 pm’,
‘7:47 pm’, ‘6:52 pm’, ‘5:57 pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25
am’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]

restaurant-food [‘asian fusion’, ‘burger’, ‘pasta’, ‘ramen’, ‘taiwanese’, ‘dontcare’]
taxi-arrive [‘17:26’, ‘19:31’, ‘18:36’, ‘17:41’, ‘19:46’, ‘18:51’, ‘17:56’, ‘7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, ‘7:17 pm’,

‘6:17 pm’, ‘5:27 pm’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]
taxi-leave [‘19:01’, ‘18:06’, ‘17:11’, ‘19:16’, ‘18:21’, ‘7:32 pm’, ‘6:37 pm’, ‘5:42 pm’, ‘7:47 pm’, ‘6:52 pm’, ‘5:57

pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25 am’]
taxi-depart [‘moody moon’, ‘four seasons hotel’, ‘knights inn’, ‘travelodge’, ‘jack summer inn’, ‘paradise point

resort’]
taxi-dest [‘buddha bowls’, ‘pizza my heart’, ‘pho bistro’, ‘sushiya express’, ‘rockfire grill’, ‘itsuki restaurant’]
train-arrive [‘17:26’, ‘19:31’, ‘18:36’, ‘17:41’, ‘19:46’, ‘18:51’, ‘17:56’, ‘7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, ‘7:17 pm’,

‘6:17 pm’, ‘5:27 pm’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]
train-leave [‘19:01’, ‘18:06’, ‘17:11’, ‘19:16’, ‘18:21’, ‘7:32 pm’, ‘6:37 pm’, ‘5:42 pm’, ‘7:47 pm’, ‘6:52 pm’, ‘5:57

pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25 am’]
train-depart [‘gilroy’, ‘san martin’, ‘morgan hill’, ‘blossom hill’, ‘college park’, ‘santa clara’, ‘lawrence’, ‘sunnyvale’]
train-dest [‘mountain view’, ‘san antonio’, ‘palo alto’, ‘menlo park’, ‘hayward park’, ‘san mateo’, ‘broadway’,

‘san bruno’]
train-day [‘march 11th’, ‘march 12th’, ‘march 13th’, ‘march 14th’, ‘march 15th’, ‘march 16th’, ‘march 17th’,

‘march 18th’, ‘march 19th’, ‘march 20th’]
train-people [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
attraction-area [‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]
attraction-name [‘grand canyon’, ‘golden gate bridge’, ‘niagara falls’, ‘kennedy space center’, ‘pike place market’, ‘las

vegas strip’]
attraction-type [‘historical landmark’, ‘aquaria’, ‘beach’, ‘castle’, ‘art gallery’, ‘dontcare’]

Table 4: The pre-defined slot-value dictionary, where † indicates a binary slot.
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Slot Name Referred Slot Name Referred Key Value
hotel-price restaurant-price [‘same’, ‘same price’, ‘same price range’]

hotel-day train-day [‘same’, ‘same day’]
restaurant-day [‘same’, ‘same day’]

hotel-people train-people [‘same’, ‘same group’, ‘same party’]
restaurant-people [‘same’, ‘same group’, ‘same party’]

hotel-area restaurant-area [‘same’, ‘same area’, ‘same part’, ‘near the restaurant’]
attraction-area [‘same’, ‘same area’, ‘same part’, ‘near the attraction’]

restaurant-area hotel-area [‘same’, ‘same area’, ‘same part’, ‘near the hotel’]
attraction-area [‘same’, ‘same area’, ‘same part’, ‘near the attraction’]

restaurant-price hotel-price [‘same’, ‘same price’, ‘same price range’]

restaurant-day train-day [‘same’, ‘same day’]
hotel-day [‘same’, ‘same day’]

restaurant-people train-people [‘same’, ‘same group’, ‘same party’]
hotel-people [‘same’, ‘same group’, ‘same party’]

taxi-depart
hotel-name [‘the hotel’]
restaurant-name [‘the restaurant’]
attraction-name [‘the attraction’]

taxi-dest
hotel-name [‘the hotel’]
restaurant-name [‘the restaurant’]
attraction-name [‘the attraction’]

taxi-arrive restaurant-time [‘the time of my reservation’, ‘the time of my booking’]

train-day restaurant-day [‘same’, ‘same day’]
hotel-day [‘same’, ‘same day’]

train-people restaurant-people [‘same’, ‘same group’, ‘same party’]
hotel-people [‘same’, ‘same group’, ‘same party’]

attraction-area hotel-area [‘same’, ‘same area’, ‘same part’, ‘near the hotel’]
restaurant-area [‘same’, ‘same area’, ‘same part’, ‘near the restaurant’]

Table 5: The coreference list. The slots that is not referable will not be displayed in the above table.

Dialogues CUDA Turn label

Example 1
Confirm
Coref
Domain

[sys]:Byard Art is near where you will be eating. The 
entrance fee is free.
[cuda]:Thank you. Can you help me find a train that 
leaves after 19:16 on the same day as the restaurant?

attraction-name: Byard Art
train-leaveat: 19:16
train-day: monday

Example 2
Confirm
Domain

[sys]:I suggest the broughton house gallery. Is there 
anything else I could help you with ? 
[cuda]:Yes, I'm looking for an expensive restaurant. 
I 'd like to make a reservation for Saturday.

attraction-name: the broughton house gallery 
restaurant-book day: saturday
restaurant-pricerange: expensive

Example 3
Reply
Binary

[sys]:There are five hotels that meet your 
requirements. Is there a certain part of town you are 
looking in ? 
[cuda]:Yes, I 'd like to stay in the east, and I need 
it to have free wifi. I 'll need it for 24 people.

hotel-area: east
hotel-internet: yes
hotel-book people: 24

Example 4 
Dontcare

[sys]: No. I am sorry. there isn’t. something else 
perhaps?
[cuda]:How about an art gallery? I don't care what 
area it is in.

attraction-type: art gallery
attraction-area: dontcare

Example 5
Confirm
Coref
Domain

[sys]: Okay , we have the cambridge university 
botanic gardens in the centre of town . Will that 
work for you ? 
[cuda]:Yes, I need a taxi to get me to itsuki
restaurant by the time of my reservation.

attraction-area: centre
attraction-name: cambridge university botanic gardens
taxi-destination: itsuki restaurant
taxi-arriveby: 15:45

Figure 4: The CUDA-generated examples. The red tags indicate the strategies implemented by CUDA.


