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Abstract
Dialog systems must be capable of incorporat-
ing new skills via updates over time in order to
reflect new use cases or deployment scenarios.
Similarly, developers of such ML-driven sys-
tems need to be able to add new training data to
an already-existing dataset to support these new
skills. In intent classification systems, prob-
lems can arise if training data for a new skill’s
intent overlaps semantically with an already-
existing intent. We call such cases collisions.
This paper introduces the task of intent colli-
sion detection between multiple datasets for
the purposes of growing a system’s skillset. We
introduce several methods for detecting colli-
sions, and evaluate our methods on real datasets
that exhibit collisions. To highlight the need for
intent collision detection, we show that model
performance suffers if new data is added in
such a way that does not arbitrate colliding in-
tents. Finally, we use collision detection to con-
struct and benchmark a new dataset, Redwood,
which is composed of 451 intent categories
from 13 original intent classification datasets,
making it the largest publicly available intent
classification benchmark.

1 Introduction

As task-oriented dialog systems like Alexa and Siri
have become more and more pervasive, tools en-
abling developers to build custom dialog systems
have followed suit. Such tools—like Microsoft’s
Luis1, Twilio’s Autopilot2, Rasa3, and Google’s
DialogFlow4—enable engineers and dialog design-
ers to craft dialog systems composed of intents, or
core categories of competencies or skills in which
the system is knowledgeable and to which the sys-
tem can respond intelligently. New intents may be
added periodically to the dialog system as part of
its development and maintenance cycle, or dialog
system models may be combined together (e.g.,
Clarke et al. (2022)).
1 luis.ai 2 twilio.com/autopilot 3 rasa.com
4 google.com/dialogflow

These phenomena may occur especially in real-
world deployments, where datasets for dialog mod-
els may be developed, grown, and modified by
large (and even disparate) teams over the span of a
project’s lifetime. Furthermore, dialog system mod-
els and their corresponding training datasets are
sometimes offered as-a-service or “off-the-shelf”
to dialog system builders who might not be fully fa-
miliar with the breadth or scope of the pre-existing
dataset or model. If the builder adds a new intent
to the dataset that overlaps with an existing intent,
then the re-trained model’s performance can suffer.
As such, there is a need for tools and algorithms
to help detect when a new intent overlaps—that is,
collides—with an already-existing intent category.

In this paper, we introduce the challenge of intent
collision detection, and develop several algorithms
for determining whether a candidate intent category
collides with another intent category. To do so, we
curate and release a meta-dataset of 722 intents
from 13 existing datasets. This graph-like meta-
dataset consists of annotations indicating tuples of
colliding intent pairs (examples of colliding intents
can be seen in Table 1). We then introduce several
collision detection algorithms and evaluate them
on this meta-dataset.

We also use intent collision detection to build
Redwood, a new intent classification dataset of
451 intent categories. Redwood is built by com-
bining 13 smaller datasets. As a comparison, we
also build Redwood-naïve, which is constructed
by naïvely joining together all 13 datasets without
arbitrating colliding intents. We find that classifier
performance on Redwood-naïve to be substantially
worse than Redwood, showcasing the negative ef-
fect of not addressing intent collisions in data.

Upon official release, Redwood will by far
be the largest openly available intent classifica-
tion dataset in terms of breadth of intent cate-
gories. Our hope is that the new Redwood dataset
serves as a showcase for intent collision detec-

https://www.luis.ai/
https://www.twilio.com/autopilot
https://rasa.com/
https://cloud.google.com/dialogflow
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Dataset Samples

Snips how cold is it in princeton junction will it be chilly in fiji at ten pm is it foggy in shelter island
Clinc-150 give me the 7 day forecast what’s the temperature like in tampa will it rain today

MTOP what is the weather in new york today how much is it going to rain tomorrow give me the weather for march 13th

Slurp set alarm tomorrow at 6 am make an alarm for 4pm set a wake up call for 10 am
MTOP can you set a warning alarm for 7pm set an alarm for monday at 5pm make an alarm for the 5th

Clinc-150 wake me up at noon tomorrow set my alarm for getting up i need you to set alarm for me

HWU how much is 1gbp in usd what’s the exchange rates how much is $50 in pounds
Clinc-150 tell me five dollars in yen and rubles how many pesos in one dollar us usd to yen is what right now

Banking-77 do you know the rate of exchange how is the exchange rate doing what are the current exchange rates

Clinc-150 please start calling me mandy I want you to call me this new name the name you should call me is janet
ACID how do i change my name need my name to be updated I need to fix my name in your system

Banking-77 where can I find how to change my name details need to be modified after I got married I need to change my name

Snips play magic sam from the thirties play music by blowfly from the seventies play jeff pilson on youtube
DSTC-8 I want to hear the song high I would like to listen to touch it on tv I’d like to listen to the way I talk
HWU please play yesterday from beattles I’d like to hear queen’s barcelona play daft punk

MetalWOz help me find restaurants in miami fl I need help finding a place to eat I need to find an italian restaurant in denver
DSTC-8 can you help find a place to eat I’m looking for a filipino place to eat I want to find a restaurant in albany
HWU find me a nice restaurant for dinner where can I get shawarma in this area what’s the best chicken place near me

Outlier what is my balance update me on my account balance let me know how much money I have
Clinc-150 what’s my current checking balance what is the total of my bank accounts how much total cash do I have in the bank
DSTC-8 I want to know my checking account balance I’d like to check my balance man how much money do I have in the bank

Table 1: Examples of data that will trigger collisions. Each row of the table displays three samples from a single
intent in a particular dataset. Among these three samples, each line collides with an intent category from the other
two datasets.

tion as well as a new, publicly-available, large-
scale challenge dataset for intent classification
models for dialog systems. Both the collision
meta-dataset and Redwood are publicly available
at github.com/gxlarson/redwood.

2 Related Work

The Collision Detection Task. We discuss three
areas of related work related to our proposed in-
tent collision detection task: generalized zero-shot
learning, open set classification, and out-of-domain
(or out-of-scope) sample identification.

In generalized zero-shot learning (e.g., Zhang
et al. (2022)), a model is trained with data from a
set of “seen” label classes (e.g., intents) and, during
inference, must identify test samples as belonging
to either a “seen” label class or an “unseen” class
for which the model has limited auxiliary knowl-
edge (e.g., descriptions of unseen classes, but no
concrete training examples).

Both open set classification and out-of-domain
sample identification refer to the modeling task of
classifying inference samples among label classes
seen during training or to identify if the sample be-
longs to an unknown or undefined label class (e.g.,
Larson et al. (2019b); Zhang et al. (2021)). Slot-
filling models that are trained on B/I/O tags natu-
rally predict the unknown class label as O tags, but
for intent classifiers the task is much more challeng-
ing since it requires curating viable training data for

an out-of-domain category (i.e., it is challenging
to know in advance what types of out-of-domain
inputs a system might encounter).

Our proposed task of intent collision detection
differs from the aforementioned tasks because “in-
ference” samples need not be considered one at
a time, but can instead be grouped together into
entire candidate intent categories. This enables
considering entirely different modeling tasks like
those discussed in Section 3.3. Nevertheless, both
our meta-dataset of intent collisions and Redwood
allow for the evaluation of both zero-shot and gener-
alized zero-shot learning models, and the Redwood
intent classification dataset includes a substantial
number of out-of-domain samples for evaluating
open set classification and out-of-domain sample
detection.

Intent Classification Corpora. There are sev-
eral smaller corpora for evaluating intent classifica-
tion models, some spanning broad domains (e.g.,
Liu et al. (2019), Larson et al. (2019b), Li et al.
(2021)) and others focusing fine-grained evaluation
of individual domains (e.g., the Banking-77 corpus
(Casanueva et al., 2020) with respect to the per-
sonal banking domain). While most datasets are
constructed via crowdsourcing, our new Redwood
dataset is constructed from both (1) already exist-
ing datasets and (2) newly crowdsourced intents.

Dataset Derivation and Combination. Datasets
are sometimes formed from other datasets, either

https://github.com/gxlarson/redwood
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what is the weather?
is it supposed to rain tomorrow?

how hot is it outside?

what’s the weather like?
do i need an umbrella today?
tell me the weather forecast

how’s the weather look?
what’s the temperature out?

tell me today’s weather

a

b c

Figure 1: Transitive collisions.

by deriving a new dataset from an existing one, or
by combining datasets together. The former cate-
gory include translations of dialog datasets (e.g.,
(Upadhyay et al., 2018; Xu et al., 2020)) as well as
re-formulations of existing datasets into new tasks
(e.g., converting a semantic role labeling (SRL)
dataset to open information extraction (OIE) data
as done in Solawetz and Larson (2021)).

Dataset combination has been used in other
fields beyond dialog systems and conversational AI.
For instance, Song et al. (2020) combined several
speech recognition datasets together to form their
SpeechStew dataset. As there are no target labels
analogous to intents in automatic speech recogni-
tion, the creators of SpeechStew did not have to
consider collisions among intent categories. In this
paper, our focus is primarily on dataset combina-
tion, but we also derive intent classification data
from several turn-based dialog corpora (MetalWOz
and DSTC-8, discussed in Section 3.4).

3 Detecting Collisions

In this section we discuss our proposed challenge,
intent collision detection. We begin with a motivat-
ing example showing why detecting collisions is
important, as well as a formal problem statement.
Then, we introduce and evaluate several collision
detection baselines on our meta-dataset.

3.1 Motivating Example

As a motivating example, suppose our intent classi-
fication system has been trained on the Clinc-150
dataset (Larson et al., 2019b), an intent classifica-
tion dataset consisting of 150 intents.5 The Clinc-
150 dataset includes an intent called weather,
which is meant to handle weather-related queries
such as “what’s the weather like today” and “tell
me the weather in New York.” Suppose further that
a new developer or a new team attempts to update
the intent classifier with new data that contains a
5 In this paper, dataset names are in italics and intent names
are in teletype font. Example queries are in italics and in
quotes if they appear in-line.

what is my balance?
i need to transfer $200 to checking

how much money do i have

tell me my balance
how much money is in savings

what’s my balance?

make a transfer please
Transfer 40 bucks to savings

i need to transfer money

x

y z

Figure 2: Non-transitive collisions.

new intent category, such as the get_weather in-
tent from the HWU dataset6 (Liu et al., 2019). In
such a scenario, there are now training data sam-
ples that overlap substantially, but that are labeled
with different intents (weather vs. get_weather
in this example). Thus, upon updating the model by
training on HWU’s get_weather data, the predic-
tive performance on any weather-related inference
queries might be split between these two intents.
This disparity can also cause unintended conse-
quences downstream in production models, such as
calls to database systems that are triggered based
on the user’s intent.

Indeed, when we train a BERT classifier on the
original Clinc-150 training set, the accuracy on
the weather test set is 100%. When we add a
HWU’s get_weather intent to Clinc-150 to cre-
ate a new 151st intent and re-train the BERT clas-
sifier, we observe an accuracy score of 60% on
the weather test set. This performance drop is
a symptom of having added an intent category
that collides with another intent category. Such
a model—which was trained on colliding intents—
could cause unexpected behavior on downstream
events, especially if the weather and get_weather
intents trigger different business logic workflows
or system responses. We note that, while in this
example, the colliding weather and get_weather
intent names are quite similar, other colliding pairs
like Snips’ search_screening_event and Metal-
WOz’s movie_listings do not have lexically sim-
ilar intent names, precluding straightforward string
matching of intent names.

3.2 Problem Statement
In this subsection, we formally define our collision
detection problem. We first consider a scenario in
which we have two intent classification datasets,
A and B, where Ai ∈ A and Bj ∈ B refer to spe-
cific intent categories in each. We say that intent
categories Ai and Bj collide if there exist a suf-
6 Recall from Section 1 that such updates from new teams or
new developers may be from routine perfective maintenance
during a model’s lifetime.
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ficient number of queries in Ai that semantically
overlap with a sufficient number of queries in Bj .
This semantic overlap can occur when a developer
attempts to add new intent categories to a start-
ing training dataset—when an intent classification
model trained on the combined dataset A ∪ B will
cause queries belonging to Ai to be classified in
Bj (and vice versa).

As an example, suppose we have an intent classi-
fier built from a starting dataset such as Clinc-150,
which, among other things, contains a weather
intent category for weather-related inquiries (cf.
Section 3.1). Suppose further that we seek to grow
this starting dataset by adding datapoints from a
candidate dataset such as HWU (see Section 3.1,
which contains a get_weather intent category). If
we naïvely combine these two datasets together, a
resulting intent classifier will result in some queries
from the original weather category to be classified
to the newly-added get_weather category because
these two categories are semantically similar. Ta-
ble 1 illustrates several example colliding intents
and associated queries. Our approach addresses
these collisions by detecting their prevalence and
quantifying their impact automatically, aiding de-
velopers in improving the quality of their datasets
and scope of their dialogue systems.

Because the notion of semantic overlap can differ
from category to category and dataset to dataset,
we observe several classes of relationships among
colliding intent categories in practice. In particular,
intent collisions can be simple-pairwise, transitive,
or hierarchical. In the simple-pairwise case, two
intents collide with each other only, and not with
any other intent in either dataset. However, we also
observe transitivity within intent classes. Figure 1
illustrates example utterances within intent classes
a, b, and c, where all intent classes are transitively
related to one another in a cycle.

Lastly, we observe non-transitive hierarchies
among colliding intents. In this case, a broad intent
category from one dataset can collide with two or
more intent categories that do not relate to each
other. Figure 2 shows a hypothetical intent class
x consisting of general banking queries, including
balance inquiries and transfer requests, and classes
y and z consist solely of balance inquiry and trans-
fer requests, respectively. Here, because class x
is more broad than y and z, each of y and z col-
lide with x, but y and z do not collide with each
other. Our approach can help developers reveal

Dataset # Intents # Collisions

ACID 175 36
Clinc-150 150 158
MTOP 113 60
Banking-77 77 25
HWU 64 103
New 58 5
MetalWOz 51 80
DSTC-8 34 67
ATIS 26 7
Outlier 10 9
Snips 7 20
Jobs640 1 0
Talk2Car 1 0

Total 767 570

Table 2: Number of intents with collisions. A total of
570 intents have at least one collision.

such cases when managing datasets, and we con-
sider these collision relationships in the creation of
our Redwood dataset.

3.3 Approaches

We introduce two approaches for detecting colli-
sions: Classifier Confusion and Data Coverage.

Classifier Confusion. A column of a confusion
matrix charts the distribution of predictions of a
classifier for data in a particular category. We call
such a distribution the classification distribution.
We adapt this notion for our first collision detection
approach, which identifies a candidate intent A to
collide with B ∈ C if a classifier model trained on
dataset C produces a classification distribution d

such that max(d)
sum(d) > τ , where τ is a threshold set

by the developer. We call this ratio the classifier
collision score.

Data Coverage. We define the coverage of one
intent B over another intent A as

Coverage(A,B) =
1

|B|
∑
b∈B

max
a∈A

sim(a, b).

Here, sim(a, b) computes the similarity between
two phrases a and b (for instance, sim(a, b) could
be the cosine similarity between two phrase em-
beddings or the Jaccard similarity between n-gram
sets). The coverage metric can be used to detect if
two intents collide using a threshold rule. In other
words, A and B collide if Coverage(A,B) > κ,
where κ is a threshold chosen by the developer. We
call the coverage metric the coverage score.
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[
{

“source”: “clinc150”,
“intent”: “weather”
“name”: “clinc150__weather ”
“collisions”: [

“snips__get_weather ”,
“hwu__get_weather”,
“mtop__get_weather ”,
“metalwoz__weather_check ”,
“dstc8__GetWeather ”

]
},
{

“source”: “hwu”,
“intent”: “general_praise”,
“name”: “hwu__general_praise ”,
“collisions”: [

“acid__st_thank_you ”,
“clinc150__thank_you ”

]
},
. . .

]

Figure 3: Example entries in the graph-like colli-
sion meta-dataset, showing collisions for Clinc-150’s
weather intent and HWU’s general_praise intent.

3.4 Datasets

We evaluate the effectiveness of our intent collision
approaches using several indicative datasets. These
datasets can be roughly grouped into three cate-
gories: (1) intent classification datasets like Clinc-
150 (Larson et al., 2019b), Banking-77 (Casanueva
et al., 2020), ACID (Acharya and Fung, 2020), Out-
lier (Larson et al., 2019a), and New (this work; a
corpus that was crowdsourced in a manner similar
to Larson et al. (2019b) and Larson et al. (2019a));
(2) joint slot-filling and intent classification or se-
mantic parsing datasets like ATIS (Hemphill et al.,
1990; Hirschman et al., 1992, 1993; Dahl et al.,
1994), Snips (Coucke et al., 2018), HWU (Liu
et al., 2019), and MTOP (Li et al., 2021); and (3)
turn-based dialog datasets like DSTC-8 (Kim et al.,
2019) and MetalWOz (Lee et al., 2019). We only
consider the initial queries in the turn-based DSTC-
8 and MetalWOz, and discard all subsequent dialog
turns.

Queries in these datasets span a wide range of
topic domains, including banking and personal
finance (Banking-77 and Outlier) and insurance
(ACID); other datasets cover a wide array of topic
domains, such as Clinc-150 and HWU, which cover
smart home, automotive, travel, banking, cooking,
and others. Since we are concerned with detect-
ing colliding intents, we do not consider any slot
annotations, and we use only the first turns from

the multi-turn dialog datasets. In addition, we also
use the Jobs640 (Califf and Mooney, 1997) and
Talk2Car (Deruyttere et al., 2019) datasets, which,
although not originally designed for intent classi-
fication tasks, are categorized in a way that admit
consideration as single-intent classification for our
purposes. Table 2 summarizes these datasets.

The Collision Meta-Dataset We constructed a
graph-like dataset that indicates the collision rela-
tionships between intents. To build this dataset, we
reviewed all intents from all of the datasets listed
in Table 2 to check for collisions between other
intents. We developed a ground truth set of tuples
indicating whether two intents collide among these
datasets. Figure 3 shows the structure of the in-
tent collision meta-dataset, and Table 2 displays
the number of collisions that occur relative to each
individual dataset. The meta-dataset includes the
three types of collisions defined in Section 3.2.

3.5 Experimental Evaluation

Implementation Details. We evaluate our intent
collision detection methods on our newly-created
collision meta-dataset. For evaluating the classifier
confusion approach, we train a multi-class intent
classifier on each individual dataset (except the
single-intent datasets) and then run inference on all
other intents from the other datasets. We compute
and report the classifier confusion score for each
run. In our experiments, we use a linear SVM clas-
sifier with bag-of-words feature representations.

For evaluating the data coverage approach, we
first sample7 a nearly equal number of colliding and
non-colliding intent pairs from the collision meta-
dataset. We then compute the coverage scores for
the selected pairs using several sentence represen-
tation and similarity metrics. We use the SBERT li-
brary’s SBERT-NLI and SBERT-miniLM sentence
embedders (Reimers and Gurevych, 2019) along
with cosine similarity. Additionally, we also use
n-gram-based similarity, defined as

sim(a, b) =
1

N

N∑
n=1

|n-gramsa ∩ n-gramsb|
|n-gramsa ∪ n-gramsb|

where a and b are queries from two intents, and
N = 3 in our experiments.

For both the data coverage and classifier con-
fusion experiments, we only consider intents that
7 Sampling avoids combinatorial explosion of possible intent
pairs.
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0 5 10 15 20
Coverage Score

collisions
non-collisions

(a) SBERT-NLI Coverage Score

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Coverage Score

collisions
non-collisions

(b) Mini-LM Coverage Score

0.2 0.4 0.6 0.8 1.0
Confusion Score

collisions
non-collisions

(c) SVM classifier confusion.

Figure 4: Data coverage and classifier confusion score
distributions for various intent collision detection ap-
proaches.

have at least 10 queries. For the collision detec-
tion experiments, we used all 285 collision pairs
and sampled 300 non-colliding pairs since there
are substantially more non-colliding pairs. The
classifier confusion approach does not compare in-
tents in a pairwise manner, and instead compares a
dataset (i.e., a classifier trained on a dataset) against
a single intent at a time. We run a classifier on all
multi-intent datasets, which yielded a total of 400
collision pairs and 6,802 non-collision pairs for the
classifier confusion experiments.

Metrics. While in actual application settings, a
user may wish to use thresholds for τ and κ (de-
fined earlier in Section 3.3) to determine whether
intents collide, we evaluate both classifier confu-
sion and coverage methods in a threshold-free man-
ner using the AUC score. (In practice, values for
τ and κ could be set by the practitioner via cross-
validation or by using the meta-dataset provided in
this work to set optimal thresholds for their appli-
cation.) The AUC score allows us to judge each

Coverage Confusion
Approach AUC AUC

SBERT-NLI 0.898 —
token 0.931 —
SBERT-miniLM 0.963 —
SVM-based — 0.756

Table 3: AUC metrics for each intent collision detection
approach.

method’s ability to distinguish collisions versus
non-collisions; an AUC score of 1.0 means perfect
separability between collisions and non-collisions,
while an AUC score of 0.5 means a method is
unable to distinguish between colliding and non-
colliding intents.

3.6 Results

Data Coverage. Figure 4 charts coverage scores
and confusion scores for various approaches. In
Figure 4 (a) and (b), the coverage approaches tend
to return higher coverage scores for non-collisions
and lower coverage scores for collisions, which
aligns with our expectations given our definition
of the coverage metric and assuming the simi-
larity metric used in the coverage computation
is effective. The AUC scores allow us to quan-
titatively judge the performance of the various
coverage-based approaches: in Table 3, the SBERT-
miniLM embedding method yields the highest
AUC score, and interestingly the n-gram-based
coverage method performs second best, with the
SBERT-NLI embedding method in third.

Classifier Confusion. Figure 4 (c) charts clas-
sifier confusion scores for the SVM-based classi-
fier confusion approach. Our results demonstrate
that actual intent collisions typically yield high
classifier confusion scores, while non-collisions
yield lower confusion scores. Visually, however,
Figure 4 (c) seems to indicate that that the classi-
fier confusion approach is less effective than the
coverage-based approaches. This is made more
apparent by the AUC score in Table 3. We note that
the data coverage and classifier confusion AUC
scores are not directly comparable as they use dif-
ferent evaluation settings. Nonetheless, the differ-
ence in performance scores does lead us to con-
clude that the data coverage approach is more ef-
fective.

In sum, these experimental results demonstrate
that the two intent collision detection approaches
introduced here are effective in detecting collisions
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Original Original
Dataset Intent Sample

HWU alarm_remove remove the alarm set for 10pm
Clinc-150 reminder_update set a reminder for me to take my meds
MTOP get_weather should i wear a raincoat tuesday
Jobs-640 — what systems analyst jobs are there in austin
Talk2Car — switch to right lane and park on right behind parked black car
Jobs640 Jobs640 what systems analyst jobs are there in austin
Snips add_to_playlist add paulinho da viola to my radio rock song list
Outlier hours tell me the hours of operation for my bank
New balance do I have holiday time saved
DSTC-8 LookupMusic I like metal songs can you find me some
ATIS ground_service i’ll need to rent a car in washington dc
MetalWOz name_suggester I need to find a name for my new cat
Clinc-150 find_phone can you help me find my cell
ACID info_amt_due what is the current amount due on my account
Banking-77 terminate_account how do I deactivate my account
Clinc-150 measurement_conversion what amount of millimeters are in 50 kilometers
ACID info_name_change i need to fix my name
MTOP play_music find me the latest linkin park album
HWU audio_volume_up just increase the volume a little
Outlier balance how much oney do i have available

Vertanen (2017) — why on earth is there cereal in the fridge
Vertanen (2017) — who are you going to vote for in november
Vertanen (2017) — do you know where i put my glasses
Clinc-150 out-of-scope what size wipers does this car take
Clinc-150 out-of-scope how long is winter
Clinc-150 out-of-scope are any earning reports due

Table 4: Sample intents and queries from our Redwood dataset, along with the corresponding original dataset and
intent (where applicable). Samples are grouped into in-scope (top) and out-of-scope (bottom).

among real datasets, with the data coverage ap-
proach being the stronger of the two.

4 Building the Redwood Dataset

With tools addressing the problem of intent colli-
sion detection in hand, we now turn our attention
to combining the individual datasets from Table 2
together to form a single large-scale intent classi-
fication dataset, Redwood. This section discusses
the construction of Redwood and a companion out-
of-scope evaluation set, and then evaluates several
benchmark intent classifiers on the dataset. These
datasets and associated evaluations demonstrate
the consequences of leaving colliding intents un-
addressed, providing a valuable resource for the
community to improving intent classification mod-
els.

4.1 Data
In-Scope Data. After creating the collision meta-
dataset, a natural extension was to combine each
dataset together to form Redwood. We used the
collision meta-dataset to help inform us of which
intents could combined, and which intents could
stand alone in Redwood. In some cases, we re-
moved intents that caused hierarchical collisions,

Dataset N. Samples

Vertanen (2017) 2067
Clinc-150 1200

Total 3267

Table 5: Sources of out-of-scope data and number of
samples used in Redwood’s out-of-scope test set.

as sometimes joining together intents from a hi-
erarchical collision produced an intent that was
too broad. We included only those intents that
have at least 50 queries, and the resulting Redwood
consists of 451 total intents and 62,216 queries.
Following the terminology used in Larson et al.
(2019b), we call these 451 intents in-scope.

By way of comparison, we also produced a
"naïve" version of Redwood, called Redwood-naïve,
where all the intents from the datasets listed in Ta-
ble 3.4 were joined together without using colli-
sion detection or any other method of arbitrating or
correcting colliding intents. Like the original Red-
wood, we included only intents that have at least
50 queries, and capped each intent at a maximum
of 150 queries so as to avoid drastic class imbal-
ances. Redwood-naïve consists of 619 intents and
85,746 total queries.
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All versions of Redwood were split into train and
test splits per intent: 85% training, 15% testing.

Out-of-Scope Data. In contrast to in-scope, out-
of-scope queries are those that do not belong to
any of the in-scope intents. Considering out-of-
scope queries in an evaluation of intent classifica-
tion models is important because such queries oc-
cur in production settings, where end users cannot
be expected to know the full range of intents when
interacting with a conversational AI system. We in-
clude a collection of 3,267 out-of-scope queries in
addition to the Redwood corpus. Redwood’s out-of-
scope data originates from the following sources:
Clinc-150 dataset, which itself includes a set of out-
of-scope queries; and Vertanen (2017), a crowd-
sourced dialog dataset from which we use the first
dialog turns. We reviewed all candidate out-of-
scope queries, removing those that were actually
in-scope. Examples of queries from the Redwood
dataset are shown in Table 4.

4.2 Benchmark Evaluation
Models. We benchmark intent classification per-
formance using the MobileBERT model (Sun et al.,
2020) using the HuggingFace library (Wolf et al.,
2020). The MobileBERT implementation uses a
softmax function to compute logits to a probabil-
ity vector p, from which we can obtain confidence
scores for each intent. These confidence scores
can be used to predict whether a query is in- or
out-of-scope, according to a decision threshold t
given by

decision rule =

{
in-scope, if max(p) ≥ t

out-of-scope, if max(p) < t.

Such decision rules were used in Hendrycks and
Gimpel (2017) and Larson et al. (2019b).

Metrics and Experiments. We measure intent
classifier accuracy on in-scope data without consid-
ering out-of-scope inputs. We also measure each
model’s ability to distinguish in-scope and out-of-
scope queries by computing the AUC between in-
and out-of-scope confidence scores. In this way,
we use AUC to measure how separable in- and out-
of-scope queries based on their confidence scores
without having to select an confidence threshold t.
An AUC score of 0.5 (the minimum AUC score)
implies the model cannot distinguish in- versus
out-of-scope inputs. An AUC of 1.0 indicates the
model can perfectly separate inputs.

Training In-Scope Clinc Vertanen
Dataset Accuracy OOS AUC OOS AUC

Redwood 0.913 0.921 0.928
Redwood-naïve 0.861 0.909 0.925

Table 6: Model performance of the MobileBERT classi-
fier on Redwood and Redwood-naïve.

Collisions 0 1 2 3 4 5 6 14

Mean Acc. 0.91 0.80 0.81 0.79 0.81 0.80 0.89 0.57
Size 322 74 42 51 15 11 13 8

Table 7: Accuracy scores on Redwood-naïve intents per
number of collisions.

4.3 Results

Model performance on Redwood-naïve and Red-
wood is shown in Table 6. First, we notice that
the intent classifiers perform reasonably well on
the in-scope classification task, with MobileBERT
classifying queries with 91% accuracy. The mod-
els also perform well on the out-of-scope task, and
discriminate between in- and out-of-scope queries
with AUC scores of 0.921 and 0.928 on the Clinc-
150 and Vertanen (2017) out-of-scope data.

The bottom half of Table 6 presents model per-
formance when trained and tested on Redwood-
naïve. In this case, model performance is substan-
tially worse than models trained on the carefully-
crafted Redwood dataset, confirming our hypothe-
sis from Section 3.1 that model performance suffers
if trained on data with colliding intents.

We drill deeper into the impact of intent colli-
sions on models trained on Redwood-naïve in Ta-
ble 7 which charts per-intent accuracy based on the
number of other intents that collide with that intent.
This table groups intents based on the number of
collisions, and we see that on average, intents with
no collisions exhibit higher accuracy than intents
with collisions. In general, colliding intents lead to
degraded accuracy: intents with one or more colli-
sions have accuracy of around 10 or more points
lower than the no-collision group, with the excep-
tion of the 6-collision group. The average accuracy
of the 6-collision group on Redwood-naïve is in-
deed surprising, and we posit that the MobileBERT
model—a high-capacity transformer model—can
learn the nuances of each individual intent, even if
they do semantically collide.

5 Conclusion and Future Work

This paper introduces the task of intent collision
detection when constructing or updating an intent
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classification model’s dataset to incorporate addi-
tional intents. Using 13 individual datasets, we
constructed a meta-dataset to track intent collisions
between the datasets, and then introduced and eval-
uated two intent collision detection techniques and
found that both perform effectively at the collision
detection task. To help measure and address this
problem, we constructed Redwood, a large-scale
intent classification dataset consisting of 451 in-
tents and over 60,000 queries. We used Redwood
to benchmark several intent classification models
on the task of in-scope query prediction and out-
of-scope detection, The new Redwood dataset is
the largest publicly available intent classification
benchmark, in terms of number of intents, and will
be made publicly available. Future work will in-
clude annotating slots to extend Redwood to joint
intent classification and slot-filling, and it is likely
that new tools will have to be developed for doing
so. Additionally, using the collision detection meth-
ods introduced in this paper, Redwood can be peri-
odically updated with new intents whenever other
new intent classification datasets are published.
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