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Abstract

Developing semi-supervised task-oriented di-
alog (TOD) systems by leveraging unlabeled
dialog data has attracted increasing interests.
For semi-supervised learning of latent state
TOD models, variational learning is often used,
but suffers from the annoying high-variance of
the gradients propagated through discrete la-
tent variables and the drawback of indirectly
optimizing the target log-likelihood. Recently,
an alternative algorithm, called joint stochastic
approximation (JSA), has emerged for learning
discrete latent variable models with impressive
performances. In this paper, we propose to
apply JSA to semi-supervised learning of the
latent state TOD models, which is referred to as
JSA-TOD. To our knowledge, JSA-TOD rep-
resents the first work in developing JSA based
semi-supervised learning of discrete latent vari-
able conditional models for such long sequen-
tial generation problems like in TOD systems.
Extensive experiments show that JSA-TOD
significantly outperforms its variational learn-
ing counterpart. Remarkably, semi-supervised
JSA-TOD using 20% labels performs close to
the full-supervised baseline on MultiWOZ2.1.

1 Introduction

Task-oriented dialog (TOD) systems are designed
to help users to achieve their goals through mul-
tiple turns of natural language interaction. The
system needs to parse user utterances, track dialog
states, query a task-related database (DB), decide
actions and generate responses, and to do these it-
eratively across turns. The information flow in a
task-oriented dialog is illustrated in Figure 1.

Recent studies recast such information flow in
a TOD system as conditional generation of tokens
and base on pretrained language models (PLMs)
such as GPT2 (Radford et al., 2019) and T5 (Raffel
et al., 2020) as the model backbone. Fine-tuning a
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Figure 1: The information flow in a task-oriented dialog.
Square brackets denote special tokens in GPT2.

PLM over annotated dialog datasets such as Multi-
WOZ (Budzianowski et al., 2018) via supervised
learning has shown promising results (Hosseini-Asl
et al., 2020; Peng et al., 2020; Yang et al., 2021; Liu
et al., 2022), but requires manually labeled dialog
states and system acts (if used).

Notably, there are often easily-available unla-
beled dialog data such as in customer-service logs
and online forums. This has motivated the de-
velopment of semi-supervised leaning (SSL) for
TOD systems, which aims to leverage both la-
beled and unlabeled dialog data. A broad class of
SSL methods builds a latent variable model (LVM)
of observations and labels and blends unsuper-
vised and supervised learning. Unsupervised learn-
ing with a LVM usually maximizes the marginal
log-likelihood, which is often intractable to com-
pute. Variational learning (Kingma and Welling,
2014) introduces an auxiliary inference model
and, instead, maximizes the evidence lower bound
(ELBO) of the marginal log-likelihood. This ap-
proach of variational learning of LVMs has been
studied for semi-supervised TOD systems such as
in Jin et al. (2018); Zhang et al. (2020b); Liu et al.
(2021); Li et al. (2021). Particularly, discrete latent
variables are mostly used, since dialog states and
system acts are often modeled as taking discrete
values.

However, for variational learning of discrete la-
tent variable models, the Monte-Carlo gradient esti-
mator for the inference model parameter is known
to have high-variance. Most previous studies use
the Gumbel-Softmax trick (Jang et al., 2017) or the



457

Straight-Through trick (Bengio et al., 2013) empir-
ically, which in fact are biased estimators. Another
drawback of variational learning is that it indirectly
optimizes the lower bound of the target marginal
log-likelihood, which leaves an uncontrolled gap
between the target and the bound, depending on
the expressiveness of the inference model.

Recently, an alternative algorithm, called joint
stochastic approximation (JSA) (Xu and Ou, 2016;
Ou and Song, 2020), has emerged for learning dis-
crete latent variable models with impressive per-
formances. JSA directly optimizes the marginal
likelihood and completely avoids gradient prop-
agation through discrete latent variables. In this
paper, we propose to apply JSA to semi-supervised
learning of the latent state TOD models, which is
referred to as JSA-TOD. We develop recursive turn-
level Metropolis Independence Sampling (MIS) to
enable the successful application of JSA, which
needs posterior sampling of the latent states from
the whole dialog session. To our knowledge, JSA-
TOD represents the first work in developing JSA
based semi-supervised learning of discrete latent
variable conditional models for such long sequen-
tial generation problems like in TOD systems.

Extensive experiments show that JSA-TOD sig-
nificantly outperforms its variational learning coun-
terpart in semi-supervised learning. Remarkably,
semi-supervised JSA-TOD using 20% labels per-
forms close to the supervised-only baseline us-
ing 100% labels on MultiWOZ2.1. The code and
data are released at https://github.com/cycrab/JSA-
TOD.

2 Related Work

2.1 Semi-Supervised TOD Systems

There are increasing interests in developing SSL
methods for TOD systems, which aims to leverage
both labeled and unlabeled data. Roughly speaking,
there are two broad classes of SSL methods - the
pretraining-and-finetuning approach and the latent
variable modeling approach. With the development
of pretrained language models such as GPT2 (Rad-
ford et al., 2019) and T5 (Raffel et al., 2020), the
pretraining-and-finetuning approach based on back-
bones of PLMs has shown excellent performance
for TOD systems (Hosseini-Asl et al., 2020; Yang
et al., 2021; Lee, 2021).

Discrete latent variable models have been used
for semi-supervised TOD systems (Jin et al., 2018;

Zhang et al., 2020b)1, initially based on LSTM
architectures. Recently, discrete latent variable
models based on PLMs have been studied in Liu
et al. (2021), combining the strengths of PLMs and
LVMs for semi-supervised TOD systems. However,
previous studies all resort to variational methods
for learning latent variable models, which suffers
from the high-variance of the gradients propagated
through discrete latent variables and the drawback
of indirectly optimizing the target log-likelihood.

2.2 Joint Stochastic Approximation for
Learning Latent Variable Models

Traditionally, variational methods minimize the
“exclusive Kullback-Leibler (KL) divergence”
KL[p||q] ≜

∫
q log

(
q
p

)
, where p and q are short-

hands for the true posterior (of the latent variable
given the observation) and its approximation (also
called the inference model) respectively, in learn-
ing a latent variable model. Recently, the JSA al-
gorithm has been developed (Xu and Ou, 2016; Ou
and Song, 2020), which proposes to minimize the
“inclusive KL” KL[p||q] ≜

∫
p log

(
p
q

)
, which has

good statistical properties that makes it more appro-
priate for certain inference and learning problems,
particularly for those using discrete latent variables.
Similar idea has been studied in a concurrent and
independent work (Naesseth et al., 2020). More
investigations and extensions along this direction
have been examined (Kim et al., 2020, 2022).

In Song and Ou (2020), JSA is applied to semi-
supervised sequence-to-sequence learning, which
consistently outperforms variational learning on
two semantic parsing benchmark datasets. How-
ever, both generative model and inference model in
(Song and Ou, 2020) are LSTM-based and much
simpler than the ones in this work; its model com-
plexity is similar to a single turn in a TOD system.
Another difference is that this paper represents the
first application of JSA in its conditional sequen-
tial version, since the latent state TOD model is a
conditional sequential generative model.

1There are other previous studies of using discrete latent
variable models in TOD systems, for example, Wen et al.
(2017); Zhao et al. (2019); Bao et al. (2020). But most of
them are mainly designed to improve response generation and
diversity, instead of towards semi-supervised learning. See
Zhang et al. (2020b); Liu et al. (2021) for more review of
related work in latent variable models for dialogs.
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3 Preliminary: Joint Stochastic
Approximation (JSA)

Stochastic approximation (SA) refers to an impor-
tant family of iterative stochastic optimization al-
gorithms for stochastically solving a root finding
problem, which has the form of expectations being
equal to zeros (Robbins and Monro, 1951). Within
the SA framework, the joint stochastic approxi-
mation (JSA) algorithm is recently developed (Xu
and Ou, 2016; Ou and Song, 2020) for learning a
broad class of latent variable models, particularly
for learning models with discrete latent variables.
Interestingly, JSA amounts to coupling an SA ver-
sion of Expectation-Maximization (SAEM) (De-
lyon et al., 1999; Kuhn and Lavielle, 2004) with an
adaptive Markov Chain Monte Carlo (MCMC) pro-
cedure. Based on JSA, the annoying difficulty of
propagating gradients through discrete latent vari-
ables and the drawback of indirectly optimizing the
target log-likelihood can be gracefully addressed.

Consider a latent variable generative model
pθ(z, x) for observation x and latent variable z,
with parameter θ. Like in variational methods,
JSA also jointly trains the target model pθ(z, x) to-
gether with an auxiliary amortized inference model
qϕ(z|x). The difference is that JSA directly max-
imizes w.r.t. θ the marginal log-likelihood and
simultaneously minimizes w.r.t. ϕ the inclusive
KL divergence KL(pθ(z|x)||qϕ(z|x)) between the
posterior and the inference model, pooled over the
training dataset:

min
θ

1

n

n∑
i=1

log pθ(x
(i))

min
ϕ

1

n

n∑
i=1

KL[pθ(z
(i)|x(i))||qϕ(z(i)|x(i))]

(1)
where the training dataset consists of n indepen-
dent and identically distributed (IID) data-points{
x(1), · · · , x(n)

}
.

The optimization problem Eq. (1) can be solved
by setting the gradients to zeros and applying the
SA algorithm to find the root for the resulting si-
multaneous equations, which has the exact form of
expectations equal to zeros:{

1
n

∑n
i=1Epθ(z(i)|x(i))

[
∇θ log pθ(x

(i), z(i))
]
= 0

1
n

∑n
i=1Epθ(z(i)|x(i))

[
∇ϕ log qϕ(z

(i) | x(i))
]
= 0

(2)

The resulting JSA algorithm, as summarized in

Algorithm 1 The JSA algorithm
repeat

Monte Carlo sampling:
Draw κ over 1, · · · , n, pick the data-point x(κ)

along with the cached z̄(κ), and use MIS to
draw z(κ);
Parameter updating:
Update θ by ascending: ∇θ log pθ(z

(κ), x(κ));
Update ϕ by ascending: ∇ϕ log qϕ(z

(κ)|x(κ));
until convergence

Algorithm 1, iterates Monte Carlo sampling and
parameter updating. In each iteration, we draw
a training observation x(κ) and then sample z(κ)

through Metropolis Independence Sampling (MIS),
with pθ(z

(κ)|x(κ)) as the target distribution and
qϕ(z|x(κ)) as the proposal:

1) Propose z ∼ qϕ(z|x(κ));
2) Accept z(κ) = z with probability

min

{
1,

w(z)

w(z̄(κ))

}
where w(z) = pθ(z|x(κ))

qϕ(z|x(κ))
∝ pθ(z,x

(κ))

qϕ(z|x(κ))
is the usual

importance ratio between the target and the pro-
posal distribution and z̄(κ) denotes the cached la-
tent state for observation x(κ).

The JSA algorithm can be intuitively understood
as a stochastic extension of the well-known EM
algorithm (Dempster et al., 1977). Since the latent
variable z(κ) is unknown for data-point x(κ), the
Monte Carlo sampling step in JSA fills the miss-
ing value for z(κ) through sampling pθ(z

(κ)|x(κ)),
which is analogous to the E-step in EM. Then in the
parameter updating step, z(κ) is treated as if being
known, and used to optimize over θ and ϕ by per-
forming gradient ascent using ∇θ log pθ(z

(κ), x(κ))
and ∇ϕ log qϕ(z

(κ)|x(κ)) respectively. This is anal-
ogous to the M-step in EM, but with the proposal
qϕ being adapted as well. In summary, we could
refer to the underlying mechanism of JSA as Pro-
pose, Accept/Reject, and Optimize (or, for short,
the PARO mechanism), which establishes JSA as
a simple, solid and effective approach to learning
discrete latent variable models.

4 Method

4.1 Definition of Discrete Latent Variables in
TOD systems

In a TOD system, let ut denote the user utterance,
bt the dialog state, dbt the DB result, at the system
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Figure 2: The probabilistic graphical model of Markov
latent state generative model (a) and inference model
(b) for TOD systems. ut and rt are user utterance
and system response respectively. The latent variables
ht = {bt, at} are the concatenation of dialog state and
system act, which specifically are represented by token
sequences in our experiments.

act and rt the delexicalized response, respectively,
at turn t. In this work, all these variables are con-
verted to token sequences, like in DAMD (Zhang
et al., 2020a). As shown in Figure 1, the work-
flow for a TOD system is, for each dialog turn t, to
generate bt, at and rt, given ut and dialog history
u1, r1, · · · , ut−1, rt−1. The database result dbt is
deterministically obtained by querying database
using the predicted bt, and thus could be omitted
in the following probabilistic modeling of a TOD
system for simplicity.

Let ht = {bt, at} denote the concatenation
of dialog state and system act. Specifically,
dialog state bt and system act at are repre-
sented by sequences of labels, for example,
[train] day monday [hotel] pricerange cheap
and [train] [inform] choice departure [request]
destination, respectively. Notably, ht’s are ob-
served in labeled dialogs, but they become latent
variables in unlabeled dialogs in training and need
to be generated in testing. With this definition of
ht’s, latent variable models can be developed for
TOD systems, which will be described shortly in
the next subsection.

Remarkably, the above definition of latent vari-
ables as sequences of labels in this paper is similar
to Zhang et al. (2020b); Liu et al. (2021). An im-
portant feature of such latent variables is that they
are sensible and interpretable, which correspond
to meaningful annotations according to the task
knowledge. It is only in unlabeled dialogs that they
become unobservable. This is different in nature
from some other previous studies of using latent
variables in TOD models (Wen et al., 2017; Zhao
et al., 2019; Bao et al., 2020), where the latent vari-
ables are just assumed to be K-way categorical
variables and learned in a purely data driven way.

4.2 A Probabilistic Latent State TOD Model
With the above introduction of latent variables and
motivated by recent studies (Zhang et al., 2020b;
Liu et al., 2022), the workflow of a TOD system
could be described by a conditional sequential gen-
erative model with latent variables ht’s as follows
for T turns, with parameter θ:

pθ(h1:T , r1:T |u1:T )

=
T∏
t=1

pθ(ht, rt|u1, h1, r1, · · · , ut−1, ht−1, rt−1, ut)

(3)

=

T∏
t=1

pθ(ht, rt|ht−1, rt−1, ut)(by Markov assumption)

(4)

Here Eq. (3) and Eq. (4) could be collectively
referred to as latent state TOD models, being non-
Markov and Markov respectively. Eq. (3) repre-
sents non-Markov latent state models, which, with
different further instantiations, are used in recent
PLM-based TOD systems such as in Hosseini-Asl
et al. (2020); Yang et al. (2021); Liu et al. (2021).
In contrast, Eq. (4) makes the Markov assump-
tion that the conditional generation of current ht
and rt (when given ut) depends on the dialog his-
tory only through ht−1 and rt−1 at the immediately
preceding turn. Markov models have been em-
ployed in LSTM-based TOD systems such as in
Lei et al. (2018); Zhang et al. (2020a); Zhang et al.
(2020b). A recent study in Liu et al. (2022) revis-
its Markovian generative architectures (MGAs) for
PLM backbones (GPT2 and T5) and shows their
efficiency advantages in memory, computation and
learning over non-Markov models.

4.3 Model Instantiation and Supervised
Learning

In our experiments, we mainly consider MGA
based latent state TOD systems (Liu et al., 2022),
which are illustrated in Figure 2 as directed proba-
bilistic graphical models. The conditional distribu-
tion pθ(ht, rt|ht−1, rt−1, ut) is instantiated as

pθ(bt, at, rt|bt−1, rt−1, ut) (5)

which is realized based on a GPT2 backbone in our
experiments. The concatenation bt−1 ⊕ rt−1 ⊕ ut
is used as the conditioning input, and the output
bt⊕ at⊕ rt is generated token-by-token in an auto-
regressive manner, where ⊕ denotes the concatena-
tion of token sequences.
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In order to perform unsupervised learning over
unlabeled dialogs (to be detailed below), we in-
troduce an inference model qϕ(h1:T |u1:T , r1:T )
as follows to approximate the true posterior
pθ(h1:T |u1:T , r1:T ):

qϕ(h1:T |u1:T , r1:T ) =
T∏
t=1

qϕ(ht|ht−1, rt−1, ut, rt)

(6)
The conditional qϕ(ht|ht−1, rt−1, ut, rt) is instan-
tiated as

qϕ(bt, at|bt−1, rt−1, ut, rt) (7)

which is realized based on a GPT2 backbone as
well in our experiments.

When labeled dialog data are available, the super-
vised training of the latent state generative model
pθ in and inference model qϕ can be decomposed
into turn-level teacher-forcing, since the latent
states ht’s are known (labeled) for all turns and
the model likelihoods decomposes over turns, as
shown in Eq. (4) and Eq. (6).

4.4 JSA Learning over Unlabeled Dialogs
Suppose that we have n unlabeled dialogs{
(u

(i)
1:Ti

, r
(i)
1:Ti

)|i = 1, · · · , n
}

, i.e., user utterances
and system responses are available for each dia-
log, but without any annotations of the latent states.
The training instances are indexed by the super-
scripts, and Ti denote the number of turns in the
i-th training instance. The unsupervised learning
of the latent state TOD model over such unlabeled
data can be realized by applying the JSA algorithm,
and more specifically its conditional version, to
maximize the conditional marginal log-likelihood
log pθ(r1:T |u1:T ).

The objective functions in JSA learning can be
developed as follows, similar to Eq. (1):

min
θ

1

n

n∑
i=1

log pθ(r
(i)
1:Ti

|u(i)1:Ti
)

min
ϕ

1

n

n∑
i=1

KL[pθ(h
(i)
1:Ti

|u(i)1:Ti
, r

(i)
1:Ti

)

||qϕ(h
(i)
1:Ti

|u(i)1:Ti
, r

(i)
1:Ti

)]

where we substitute observation x by r1:T and la-
tent variable z by h1:T , all conditioned on u1:T .

Basically, JSA learning iterates Monte Carlo
sampling and parameter updating, as outlined in
Algorithm 1. In each iteration, we randomly pick a

training instance (u1:T , r1:T ) along with the cached
latent state h̄1:T , and we need to draw a posterior
sample h1:T ∼ pθ(h1:T |u1:T , r1:T ). Remarkably,
it can be shown in Appendix A that for the posterior
pθ(h1:t|u1:t, r1:t) induced from the joint distribu-
tion in Eq. (4), the following recursion holds:

pθ(h1:t|u1:t, r1:t)
∝pθ(h1:t−1|u1:t−1, r1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

(8)

Based on such recursion, we can develop a re-
cursive turn-level MIS sampler, as shown in Al-
gorithm 2, which recursively runs MIS sampler
turn-by-turn and finally obtains a valid posterior
sample for the whole dialog session, i.e., h1:T ∼
pθ(h1:T |u1:T , r1:T ).

Suppose that we have obtained a sample
for the previous t-1 turns, i.e., h1:t−1 ∼
pθ(h1:t−1|u1:t−1, r1:t−1). Then, we perform MIS
sampling as follows, with pθ(h1:t|u1:t, r1:t) as the
target distribution and

pθ(h1:t−1|u1:t−1, r1:t−1)qϕ(ht|ht−1, rt−1, ut, rt)
(9)

as the proposal distribution:
1) Propose h′t ∼ qϕ(ht|ht−1, rt−1, ut, rt). Thus,

(h1:t−1, h
′
t) is a valid sample proposed from the

proposal distribution as shown in Eq. (9);
2) Simulate ξ ∼ Uniform[0, 1] and let

ht =

h′t, if ξ ≤ min

{
1,

w(h1:t−1, h
′
t)

w(h1:t−1, h̄t)

}
h̄t, otherwise

(10)
where the importance ratio between the target and
the proposal distribution

w(h1:t−1, ht)

=
pθ(h1:t|u1:t, r1:t)

pθ(h1:t−1|u1:t−1, r1:t−1)qϕ(ht|ht−1, rt−1, ut, rt)

∝pθ(ht, rt|ht−1, rt−1, ut)

qϕ(ht|ht−1, rt−1, ut, rt)
(11)

After we obtain the sampled latent state h1:T
from Algorithm 2, we perform parameter updating,
as outlined in Algorithm 1. The sampled latent
state h1:T is treated as if being known, and we can
calculate the gradients of log pθ(h1:T , r1:T |u1:T )
and log qϕ(h1:T |u1:T , r1:T ) w.r.t. θ and ϕ accord-
ing to Eq. (4) and Eq. (6) respectively, as if we
calculate gradients in supervised training. Thanks
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Algorithm 2 Recursive turn-level MIS sampler

Input: A T -turn dialog (u1:T , r1:T ) with cached
latent state h̄1:T , generative model pθ in Eq. (4),
inference model qϕ in Eq. (6).
for t = 1 to T do

Propose h′t ∼ qϕ(ht|ht−1, rt−1, ut, rt);
Accept h′t as ht, or reject h′t and keep h̄t as
ht, according to Eq. (10);

end for
Return: h1:T , as a posterior sample from
pθ(h1:T |u1:T , r1:T ) and used as the new cached
latent state.

to the PARO mechanism of JSA, we have such a
conceptual simplicity for learning seemly complex
conditional sequential latent variable model.

4.5 Semi-Supervised TOD Systems via JSA

Now we have introduced the method of build-
ing latent state TOD systems (Eq. (4) and
Eq. (6)) with JSA learning (Algorithm 1 and
Algorithm 2), which is referred to JSA-TOD.
Semi-supervised learning over a mix of labeled
and unlabeled data could be readily realized in
JSA-TOD by maximizing the weighted sum of
log pθ(h1:T , r1:T |u1:T ) (the conditional joint log-
likelihood) over labeled data and log pθ(r1:T |u1:T )
(the conditional marginal log-likelihood) over unla-
beled data.

The semi-supervised training procedure of JSA-
TOD is summarized in Algorithm 3. Specifically,
we first conduct supervised pre-training of both the
generative model pθ and the inference model qϕ on
labeled data in JSA-TOD. Then we randomly draw
supervised and unsupervised mini-batches from la-
beled and unlabeled data. For labeled dialogs, the
latent states ht’s are given (labeled). For unlabeled
dialogs, we apply the recursive turn-level MIS sam-
pler (Algorithm 2) to sample the latent states ht’s2

and treat them as if being given. The gradients cal-
culation and parameter updating are then the same
for labeled and unlabeled dialogs. Such simplic-
ity in application is an appealing property of JSA,
apart from its superior performance, as we show
later in experiments.

2Sampling is empirically implemented via greedy decod-
ing in our experiments.

Algorithm 3 Semi-supervised training in JSA-
TOD
Input: A mix of labeled and unlabeled dialogs.

Run supervised pre-training of θ and ϕ on la-
beled dialogs;
repeat

Draw a dialog (u1:T , r1:T );
if (u1:T , r1:T ) is not labeled then

Generate h1:T by applying the recursive
turn-level MIS sampler (Algorithm 2);

end if
Jθ = 0, Jϕ = 0;
for i = 1, · · · , T do
Jθ+ = log pθ(ht, rt|ht−1, rt−1, ut);
Jϕ+ = log qϕ(ht|ht−1, rt−1, ut, rt);

end for
Update θ by ascending: ∇θJθ;
Update ϕ by ascending: ∇ϕJϕ;

until convergence
return θ and ϕ

5 Experiments

5.1 Experiment settings

Experiments are conducted on MultiWOZ2.1 (Eric
et al., 2020), which is an English multi-domain
dialogue dataset of human-human conversations,
collected in a Wizard-of-Oz setup with 10.4k di-
alogs over 7 domains. The dataset was officially
randomly split into a train, test and development
set, which consist of 8434, 1000 and 1000 dialog
samples, respectively. The dialogs in the dataset
are all labeled with dialog states and system acts
at every turn. Compared to MultiWOZ2.0, Multi-
WOZ2.1 removed some noisy state values. Follow-
ing (Liu et al., 2022), some inappropriate state val-
ues and spelling errors are further corrected. Dialog
responses are delexicalized to reduce surface lan-
guage variability. We implement domain-adaptive
pre-processing like in DAMD (Zhang et al., 2020a).
More implementation details for our experiments
are available in Appendix B.

For evaluation in MultiWOZ2.1, there are mainly
four metrics for corpus based evaluation (Mehri
et al., 2019). Inform Rate measures how often the
entities provided by the system are correct; Suc-
cess Rate refers to how often the system is able to
answer all the requested attributes by user; BLEU
Score is used to measure the fluency of the gener-
ated responses by analyzing the amount of n-gram
overlap between the real responses and the gener-
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Table 1: Main results on MultiWOZ2.1 for comparison
between supervised-only, variational, and JSA methods.
Results are reported as the mean and standard deviation
from 3 runs with different random seeds.

Proportion Method Inform Success BLEU Combined

100% Sup-only 84.50±0.29 72.77±0.50 18.96±0.36 97.59±0.54

20%
Sup-only 75.70±1.87 61.07±2.21 16.66±0.29 85.05±2.16

Variational 81.83±1.55 67.67±0.50 17.88±0.95 92.63±0.30
JSA 83.25± 0.65 71.40±1.20 18.72±0.07 96.04±0.85

15%
Sup-only 80.00±0.43 55.57±1.22 16.20±0.24 79.00±1.51

Variational 80.85±0.65 67.67±0.88 17.68±0.29 91.86±0.19
JSA 83.23±0.53 71.97±1.27 18.59±0.19 95.47±0.73

10%
Sup-only 67.57±0.39 50.03±1.09 15.31±0.28 74.11±0.59

Variational 80.67±1.33 66.97±1.23 17.34±0.56 91.15±1.80
JSA 81.97±0.79 70.40±0.99 18.09±0.38 94.27±1.23

5%
Sup-only 49.73±2.45 33.67±1.79 14.07±0.13 55.77±1.94

Variational 74.17±0.53 59.93±0.34 16.06±0.69 83.11±1.04
JSA 72.37±1.19 59.73±0.92 18.57±0.54 84.62±0.43

ated responses; Combined Score is computed as
(BLEU + 0.5 * (Inform + Success)). To avoid any
inconsistencies in evaluation, we use the evaluation
scripts in Nekvinda and Dušek (2021), which are
now also the standardized scripts adopted in the
MultiWOZ website.

5.2 Main Results
In the semi-supervised experiments, we randomly
draw some proportions (5%, 10%, 15% and 20%)
of the labeled dialogs from the MultiWOZ2.1 train-
ing set, with the rest dialogs in the training set
treated as unlabeled, and conduct semi-supervised
experiments. Specifically, the number of dialogs
kept as labeled under these proportions are 1686,
1265, 843, and 421, respectively, while the rest
dialogs are used as unlabeled (i.e., the original la-
bels of dialog states and system acts at all turns are
removed for those dialogs in the training set).

The main results are shown in Table 1. For
model instantiations, we use the GPT2 based
Markov generative model and inference model, as
introduced in Liu et al. (2022). It has been shown
in Liu et al. (2022) that using Markovian genera-
tive architecture achieves better results than non-
Markov models in the low-resource setting for both
supervised-only learning and semi-supervised vari-
ational learning, which makes it a strong baseline
to compare. We first train the generative model and
inference model on only the labeled data, which
is referred to as “Supervised-only” (Sup-only for
short). Then, we perform semi-supervised train-
ing on both labeled and unlabeled data. Using the
variational method in (Liu et al., 2021, 2022), we
get the baseline results of “Variational”, where the
Straight-Through trick is used to propagate the gra-
dients through discrete latent variables. Using the

JSA method proposed in Algorithm 3, we get the
results of “JSA”. We conduct the experiments with
3 random seeds and report the mean and standard
deviation in Table 1.

From Table 1, we can see that both the Vari-
ational and the JSA methods outperform the
Supervised-only method substantially across all
label proportions. This clearly demonstrate the
advantage of semi-supervised TOD systems. Re-
markably, semi-supervised JSA-TOD using 20%
labels performs close to the supervised-only base-
line using 100% labels on MultiWOZ2.1.

When comparing the two semi-supervised meth-
ods, JSA performs better than Variational signifi-
cantly across almost all label proportions in terms
of all four metrics (Inform Rate, Success Rate,
BLEU, and Combined Score). Exceptionally, in
the case of 5% labels, the Inform Rate of JSA is
worse than that of Variational, the Success Rates
are close; Nevertheless, the Combined Score of
JSA is significantly better. Presumably, this is be-
cause we use the Combined Scores to monitor the
training, apply early stopping and select the model
with the best Combined Score on the validation
set. Such model selection put more priority on the
overall performance in terms of Combined Scores.

Further, the results in Table 1 are pooled over
all label proportions and all random seeds, and the
matched-pairs significance tests (Gillick and Cox,
1989) are conducted to compare JSA and Varia-
tional for Inform, Success and BLEU respectively.
The p-values are 9.27× 10−2, 2.576× 10−14, and
2.939× 10−39 respectively, which show that JSA
significantly outperforms Variational.

5.3 Ablation study and analysis

Notably, the JSA and the variational methods in our
experiments use the same model instantiations for
pθ and qϕ. The only difference lies in the learning
methods they used. In the following, we provide ab-
lation study to illustrate the superiority of JSA over
variational in learning latent state TOD models.

The importance of Metropolis Independence
Sampling in JSA. In JSA, we need to use Monte
Carlo sampling, particularly the Metropolis Inde-
pendence Sampling (MIS) to decide whether or not
to update the cached latent states ht’s. A naive
method is to always accept the labels proposed by
the inference model, which is somewhat like self-
training (Rosenberg et al., 2005). Another simple
method is to run session-level MIS, with the whole
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Table 2: Ablation results for using different methods to
update latent states ht’s (label proportion: 10%, random
seed:11)

Method Inform Success BLEU Combined

Without MIS 71.10 59.80 18.71 84.16
Session-level MIS 78.70 65.50 17.20 89.30

Recursive turn-level MIS 82.80 71.80 18.56 95.86

Eq. (4) as the target distribution and the whole Eq.
(6) as the proposal distribution. The whole h1:T
is proposed via ancestral sampling and then get
accepted/rejected. The results from one run with
each different method are shown in Table 2. Both
MIS based methods significantly improves the re-
sults, which clearly reveals the importance of using
MIS in JSA. By the accept/reject mechanism, we
accept latent states which have higher importance
ratios and exploit them to update both generative
model and inference model, and at the same time,
we also explore the state space by randomly ac-
cepting latent states which have lower importance
ratios. Exploitation and exploration of the latent
states seems to be well balanced in JSA, which
may explain its good performance. Our proposed
recursive turn-level MIS in Algorithm 2 clearly out-
performs the session-level MIS, since it samples in
a much lower dimensional state space.

The latent state prediction performance of in-
ference model. In both variational and JSA learn-
ing, the inference model qϕ, which is introduced
to approximate the true posterior, plays an impor-
tant role. The latent states inferred from qϕ are
used, either directly as in variational learning or
after accepted/rejected as in JSA learning, to op-
timize the generative model pθ. We measure the
quality of the latent states predicted from qϕ by la-
bel precision/recall/F1, compared to oracle bt and
at (excluding dbt) . We compare different qϕ ob-
tained from three training methods - Supervised-
only, Variational, and JSA. Note that at the end of
running any particular training method, we obtain
not only pθ but also qϕ. The performances of pθ
over the test set are shown in Table 1. The test-
ing performances of qϕ obtained from one run of
each different method are shown in Table 3. It can
be seen that semi-supervised variational learning
does not improve the prediction ability of the in-
ference model, compared to the inference model
trained only on the labeled data. In contrast, the
prediction performance of the inference model is in-
creased significantly by semi-supervised JSA learn-
ing, which is in line with the superior results of

Table 3: Performance comparison of inference mod-
els from different methods, measured by latent state
prediction precision/recall/F1 over the test set.

Label Proportion Method Precision Recall F1

20%
Supervised-only 0.928 0.908 0.918

Variational 0.924 0.900 0.912
JSA 0.936 0.925 0.931

15%
Supervised-only 0.924 0.891 0.907

Variational 0.917 0.872 0.894
JSA 0.934 0.910 0.922

10%
Supervised-only 0.916 0.868 0.891

Variational 0.887 0.880 0.883
JSA 0.930 0.898 0.914

5%
Supervised-only 0.894 0.804 0.847

Variational 0.891 0.838 0.864
JSA 0.904 0.863 0.883

Figure 3: Comparison of the gradient norms from the
inference models during training, using variational and
JSA methods respectively (label proportion: 10%).

JSA’s generative model as shown in Table 1.
The variance of the gradients from inference

model. The gradients for the inference model pa-
rameters in variational learning are known to have
high-variance, due to gradient propagation through
discrete latent variables, while JSA avoids such
drawback. From one run of semi-supervised learn-
ing under 10% labels, we plot the gradient norms
for the inference model parameters, from using
the variational and the JSA methods respectively,
which are shown in Figure 3. For clarity of compar-
ison, we normalize the sum of the gradient norms
over all iterations to be one. It can be clearly seen
from Figure 3 that the gradients during variational
training are more noisy than those in JSA tranin-
ing. Specifically, the variances of the time-series
of the gradient norms in Figure 3 are 3.097× 10−6

and 1.527× 10−6 for the variational and the JSA
methods respectively.

Pretrained models on external dialog corpora
can be further improved by JSA learning for
semi-supervised TOD systems. Pretraining and
LVM based learning are two broad classes of semi-
supervised methods. Recently, pretraining on exter-
nal dialog copora has also shown to be promising
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Table 4: MultiWOZ2.1 testing results for different meth-
ods (label proportion: 3%). “+Pretrained model” means
that the method is initialized from the pretrained models
over four external dialog corpra.

Method Inform Success BLEU Combined

Supervised-only 38.70 25.60 16.42 48.57
+ Pretrained model 57.70 39.30 14.15 62.65
Semi-supervised JSA 55.50 44.80 16.93 67.08
+ Pretrained model 73.00 58.60 18.61 84.41

for building TOD systems for low-resource sce-
narios (Peng et al., 2020; Su et al., 2021). In this
section, we show that JSA learning can be used to
further improve over such pretrained models. We
use four dialog corpora - MSRE2E (Li et al., 2018),
Frames (El Asri et al., 2017), TaskMaster (Byrne
et al., 2019) and SchemaGuided (Rastogi et al.,
2020), which consist of 16545 dialogs with human
annotations on belief states and dialog acts, and
we follow the preprocessing in (Su et al., 2021).
Generative model and inference model, initialized
from GPT2, are pretrained separately on those four
corpora, the same as that in supervised-pretraining.
Then, we conduct semi-supervised training with
only 3% labels in MultiWOZ2.1 (i.e., 240 labeled
dialogs with the rest being unlabeled). The results
in Table 4 show that semi-supervisded JSA on top
of pretrained models obtains the best result. This is
an encouraging result from using 3% labels, which
is close to the naive supervised-only method using
20% labels as shown in Table 1.

6 Conclusion and Future Work

This paper represents a progress towards building
semi-supervised TOD systems by learning latent
state TOD models. Traditionally, variational learn-
ing is often used; notably, the recently emerged
JSA method has been shown to surpass variational
learning, particularly in learning of discrete latent
variable models. This paper represents the first
application of JSA in its conditional sequential ver-
sion, particularly for such long sequential genera-
tional problems like in TOD systems. Extensive ex-
periments clearly show the superiority of JSA-TOD
over its variational learning counterpart, not only
in benchmark metrics for semi-supervised TOD
systems but also from the latent state prediction
performances and the variances of the gradients of
the inference model. Since discrete latent variable
models are widely used in many natural language
procession tasks, we hope the results presented in

this paper will encourage the community to further
explore the applications of JSA and improve upon
current approaches.
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A Proof of Eq. (8)

First, we have

pθ(h1:t, r1:t|u1:t)
=pθ(h1:t−1, r1:t−1|u1:t−1, ut)

× pθ(ht, rt|u1:t−1, ut, h1:t−1, r1:t−1)

=pθ(h1:t−1, r1:t−1|u1:t−1,��ut)

× pθ(ht, rt|ht−1, rt−1, ut,((((((((((
h1:t−2, r1:t−2, u1:t−1)

=pθ(h1:t−1, r1:t−1|u1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

It can be seen that in simplifying the above equa-
tions, those conditional independence properties
hold for our generative model Eq. (4). Then,

pθ(h1:t|u1:t, r1:t) =
pθ(h1:t, r1:t|u1:t)
pθ(r1:t|u1:t)

=
pθ(h1:t−1, r1:t−1|u1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

pθ(r1:t|u1:t)
=pθ(h1:t−1|u1:t−1, r1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

× pθ(r1:t−1|u1:t−1)

pθ(r1:t|u1:t)
∝pθ(h1:t−1|u1:t−1, r1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

B Implementation Details

We implement the models with Huggingface Trans-
formers repository of version 4.8.2. We initialize
both the generative model and the inference model
with DistilGPT-2, a distilled version of GPT2. For
all of supervised pre-training, variational learning
and JSA learning, we use the AdamW optimizer
and a linear scheduler with 20% warm up steps
and maximum learning rate 10−4. The minibatch
base size is set to be 8 with gradient accumulation
steps of 4. The 3 random seeds for the results in
Table 1 are 9, 10 and 11. The total epochs for
supervised pre-training are 50, and those for both
variational learning and JSA learning are 40. We
monitor the performance on the validation set and
apply early stopping (stop when the current best
model is not exceeded by models in the following 4
epochs). We select the best model on the validation
set, then evaluate it on test set. All our experiments
are performed on a single 32GB Tesla-V100 GPU.
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