The Duration of a Turn Cannot be Used to Predict When It Ends
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Abstract

Turn taking in conversation is a complex pro-
cess. We still do not know how listeners are
able to anticipate the end of a speaker’s turn.
Previous work focuses on prosodic, semantic,
and non-verbal cues that a turn is coming to
an end. In this paper, we look at simple mea-
sures of duration—time, word count, and syl-
lable count—to see if we can exploit the dura-
tion of turns as a cue. We find strong evidence
that these metrics are useless.

1 Introduction

Turn-taking is a fundamental aspect of dialogue.
Timing of turn initiation is critical. Sometimes long
pauses are socially relevant (Bogels et al., 2015).
Sometimes people overlap in conversation without
the reason being clear (Heldner and Edlund, 2010).
When trouble occurs, people can pause to signal
misunderstandings (Mertens and De Ruiter, 2021).
But turn taking as a whole is not well understood.

What is known is that the time between succes-
sive turns is generally very short—much shorter
than can be attributed to simple reactions to a turn
ending (De Ruiter, 2019). What this means is that
people must anticipate the end of a turn (Ruiter
et al., 2006). If we are anticipating the end of a
turn, then there must be some features of utterances
that we use to predict their ending, enabling fluid
turn transition.

In artificial agents that engage in spoken di-
alogue, turn-taking often falls by the wayside,
leading to stilted conversations with long delays
between turns or interruptions at inappropriate
times (Skantze, 2021). Typical human interactions
with current conversational agents work uniformly
sequentially, as the agent processes and responds
to the human once the end of an utterance has been
completed, and it does not expect interruptions or
overlaps (Gervits et al., 2020).
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In general, computers can process information
much faster than humans, but we have not yet devel-
oped fluid turn-taking algorithms. Humans prepare
a one-word utterance in around 600ms (Indefrey
and Levelt, 2004). Computers can perform much
faster than this and their speed is still increasing.
But if an agent doesn’t know when a turn ends, flu-
idity can be compromised. For smooth turn taking,
agents need to know how to time their contributions
appropriately.

Previous research looks at lexical (Magyari and
de Ruiter, 2012), semantic (Gervits et al., 2020;
Riest et al., 2015), prosodic (Bogels and Torreira,
2015), or non-verbal (Roddy et al., 2018) attributes
of utterances in order to anticipate turn ends. Each
of these has its own merits and drawbacks. Lexi-
cal boundaries are relatively easy to compute and
reason about. Semantic completion of an utterance
makes logical sense for an end-point to a thought.
Prosodic cues can be computed quickly from the
speech signal, and non-verbal cues are ripe for deep
learning techniques (Lala et al., 2019). Turn dura-
tion, however, has not been studied yet for its use
as a cue in anticipating its end, despite its ready
availability to any spoken dialogue system.

Intuitively, one would expect that the duration
of a turn is a strong cue about its ending. It would
be plausible to assume that the longer someone has
been talking already, the higher the probability is
that the speaker will end their turn. Compare it
to waiting for a bus — we tend to assume that the
longer we have waited for the bus, the higher the
probability that it will finally arrive. But this is only
so when the duration of a turn is normatively con-
strained. However, looking at distribution of a large
number of conversational turns in Dutch, De Ruiter
(2019) found that the distribution of turn-duration
looks suspiciously much like an exponential distri-
bution. And a unique and counter-intuitive property
of this distribution is that it has a constant hazard
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rate: no matter how long we have waited for the
process to complete, the probability of it terminat-
ing in the next instant remains constant. If turn
durations are in fact exponentially distributed, it
would mean that the duration of a turn so far does
not contain any information about its projected du-
ration.

However, the observation in De Ruiter (2019)
were only for one small corpus in Dutch, and mea-
sured in milliseconds. It could be that measuring
duration in other units, like words, syllables, or
other turn-related units would show a different dis-
tribution. In this study we set out to study if this
suspected property of turn durations is generaliz-
able to a larger corpus in English, and to other units
of duration.

Turns in dialogue are composed of turn construc-
tion units (TCUs). TCUs are bounded by transition
relevant places (Sacks et al., 1978). At each tran-
sition relevant place, another person could take
the floor or the current speaker could continue. In
this study, we will investigate the duration of both
TCUs and entire turns. As there may be social
preferences regarding the number of TCUs within
a turn, we will also examine the usefulness of the
number of TCUs per turn in predicting floor transi-
tions.

In the following sections, we outline the data
collection and our statistical analyses. Then we will
show the distributions of the data and the statistical
models describing the data. We will then discuss
the implications of our results, and present ideas on
how these results can be used to improve spoken
dialogue agents.

2 Methods
2.1 Dataset

For this study, we are using the Switchboard cor-
pus (Godfrey and Holliman, 1993). The Switch-
board corpus is a large, well-studied corpus of
dyadic, open-ended telephone conversations. Its
use limits our ability to draw conclusions about
face-to-face speech patterns, but extends the work
of De Ruiter (2019, p.542-543) — a study of Dutch
telephone conversations — to English. Since the
corpus is well-studied, we can draw on previous
work for transcription, timing, and segmentation.
We used two transcriptions of the Switchboard
corpus. First, the Mississippi State University tran-
scriptions! were used for word-by-word timing.

"http://www.openslr.org/5/

Second, the Discourse Language Modeling Project
transcriptions” break the conversation into turn con-
struction units. We are interested in TCUs as the
basic building blocks of turns, and to compare that
to the analysis of turn duration in De Ruiter (2019,
p-542-543) which only looked at duration in sec-
onds.

After merging these two sources, we analyzed
only conversations where the word-level exact
matches were at least 90% of words in a conversa-
tion, and the total error rate of the conversation (that
is, words matching none of our word-matching
heuristics) was below 2%. Heuristics included
accounted for simple, systematic alternative tran-
scriptions, like repeated or omitted words, alterna-
tive spellings (“uh-uh” / “uh-huh”), or abandoned
words (“ho-"/ “how”). The analyses use the result-
ing 75 conversations with 5,857 turns and 11,796
turn construction units.

2.2 Probabilistic Modeling

For each aspect of the data, we will build two mod-
els. The first model will be a best-fit exponential
distribution; the second will be a best-fit gamma
distribution (except for TCUs per turn; see below).
We will show the curves of the data along with
curves for each model so that we can quantify and
visualize the differences in prediction between the
models and in reference to the data. Full descriptive
statistics can be found in the appendix.

We chose the exponential distribution as a null
model. It is the maximum entropy distribution for
positive-domain data with a known mean. It also
has the property of being memoryless, or having
a constant hazard rate. This means that no matter
how long an exponential process has been ongoing,
the chance that it will end in the next time step
is constant. This makes it a good null model, as
there is very little information that can be gained
about a distribution via the exponential distribution.
Both the mean and the hazard rate are related to
the single distribution parameter A, which is the
hazard rate or probability of the process ending
in the next time-step. More concretely, A is the
chance of stopping at the next millisecond, word,
or syllable, given that the process has not stopped
so far.

The gamma distribution is a generalization of
the exponential distribution. It is parameterized by
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a shape and rate parameter. If the shape parameter
is one, the gamma is equivalent to the exponential
distribution. Importantly, other shape parameters
allow a gamma model to fit many different positive-
domain datasets with different modes and varying
hazard rates.

TCUs per Turn data is fit to Geometric and Neg-
ative Binomial distributions, which are the discrete
forms of the Exponential and Gamma distributions,
respectively. The p and n parameters of the discrete
distributions mirror the rate and shape parameters
of their continuous analogues. This decision was
made because the small number of TCUs per turn
does not lend itself to an assumption of continuity.

We will compare the exponential and gamma
models for each dataset using the widely-applicable
information criterion (WAIC). The WAIC estimates
the effective number of parameters to adjust for
overfitting, and gives results similar to a leave-
one-out cross-validation for model-fitting. A lower
WAIC is a better fit.

3 Results

Here we will report the basic findings of our anal-
yses. The interpretation of the findings will be
delayed to discussion.

3.1 TCU Duration

Turn Construction Unit Duration

N Data
—— Gamma Model
—— Exponential Model

Density

1 2 3 a4 5 6 7 8 9 10
Seconds (s)

TCU duration exponential and gamma models were
very similar, since the best-fit gamma model has a
shape of 1.01, which is effectively the same as an
exponential distribution. We can see this close fit
in the WAIC scores, too, which were identical to
the third decimal place.

3.2 TCU Word Count

Turn Construction Unit Word Count

B Data
—— Gamma Model
—— Exponential Model

Density

Number of Words

TCU word count was interesting in that it was the
only model with a gamma shape parameter substan-
tially above one, at 1.18. We can see this reflected
in the concavity of the gamma model curve near
zero. WAIC scores were very similar, with the ex-
ponential distribution only 0.3% higher than the
gamma distribution.

3.3 TCU Syllable Count

Turn Construction Unit Syllable Count

I Data
—— Gamma Model
—— Exponential Model

Density

11 16 21
Number of Syllables
The TCU syllable count gamma model had a shape
parameter of 1.05, very nearly identical to an ex-
ponential distribution. We can see the similarity in
the chart. The WAIC is again only 0.3% higher for
the exponential model than the gamma model.

3.4 Turn Duration

Turn Duration

W Data
—— Gamma Model
—— Exponential Model

Density

Seconds (s)

In the turn duration statistics, we see a sizable dif-
ference between where the gamma model is posi-
tioned and the exponential model, but also the data.
The best fit gamma pulls the curve toward the tail
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in order to accommodate the high number of fast
turns in the data. Despite the different orientations
to the data, the trade-off between good fit on low
values or good fit at high values cancel out and the
WAIC is again only 0.3% higher for the exponential
model than the gamma model.

3.5 Turn Word Count

Turn Word Count

Data
—— Gamma Model
—— Exponential Model

Density

\

1 11 21 31 41
Number of Words

The turn word count models show similar tenden-
cies to the turn duration models—the gamma model
better accounts for low values, but the exponential
distribution fits better at higher values. The low
shape parameter of the gamma distribution (0.718)
allows this distortion. The WAIC of the exponential
distribution is 1.1% higher than the gamma.

3.6 Turn Syllable Count

Turn Syllable Count

Data
—— Gamma Model
—— Exponential Model

Density

\

1 11 21 31 41
Number of Syllables

Similar to the turn words model, a low gamma
shape value—only 0.667—Ilets the gamma model
account for many utterances with very few sylla-
bles compared to the expectations in the exponen-
tial distribution. Here we have our largest WAIC
disparity with at 1.65% higher for the exponential
model compared to the gamma model.

3.7 TCUs per Turn

TCUs per Turn

[ Geometric Model
[ Data
0.5 I Negative Binomial Model

Number of TCUs per Turn

TCUs per turn was fit to geometric and negative bi-
nomial models rather than exponential and gamma
models. The negative binomial model has under-
estimated the low numbers, trading off probability
mass at low counts for larger predictions at high
counts. The WAIC shows that the simpler exponen-
tial model is a better fit with a 20% lower score.

4 Discussion

The analyses above, when taken together, suggest
that there is little to be learned from examining
the length of utterances as a sole heuristic for pre-
dicting their end. As was suspected on theoretical
grounds (De Ruiter, 2019) there is very little infor-
mation in simple duration. The work here extended
this previous work from timing of TCus to examine
semantic content as shown by word counts, pho-
netic information as shown by syllable counts, or
social action as shown by TCUs per turn. None of
these linguistics frames showed any substantial de-
parture from the constant hazard-rate distribution.

There may be contexts where utterance length is
a useful heuristic for TCU or turn end or situations
in which the statistics describe here do not fit well.
For example, one would suspect that different dia-
logue acts may lend themselves to different TCU
lengths — short backchannels, for example. Or,
particular social situations may lend themselves to
fewer TCUs per turn to ensure participants main-
tain the same mental models. A follow-up study
on (e.g.,) the Map Task Corpus might show these
deviation, if they exist.

The largest deviation from the exponential model
occurred in the turn word and syllable count anal-
yses. These two results reflect the combination of
high rates of single TCU turns and large shares of
low TCU word and syllable counts. Our TCU per
turn analysis shows that single-TCU turns are more
common than the exponetial model is able to fit,
but the negative binomial distribution moves prob-
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ability mass to the tail, making it an even worse fit,
both visually and statistically. Short turns skew the
data in turn-level word and syllable count toward
very low counts as compared to the exponential
model.

We expected that the TCUs per turn negative
binary model would account for the high number of
single TCU turns, much like the gamma model does
for the other data views. However, the geometric
model outperforms the negative binomial by the
largest WAIC difference of any models discussed.
Therefore, we must conclude that the geometric
model is the superior fit, and the best-fit hazard rate
for each TCU—the chance that the speaker’s turn is
over at the end of any TCU—is 50%, or a coin flip.
So, not only is the maximum entropy geometric
model a better fit, but there is no reliable bias for
whether a turn is over at the end of a TCU.

5 Conclusion

In this paper, we first confirmed the suspicions
raised in De Ruiter (2019)—the duration of TCUs
follows an exponential distribution. We then ex-
tended these findings in several ways. First, TCUs
also follow this distribution by syllable or word
count. Conversation does not orient to the amount
of phonological or semantic information. It follows
that if these factors are useful for turn taking, they
are useful based on their meaning and structure,
not their quantity or base informational load.

Next, we expanded our findings to the turn level,
rather than just TCUs. Turn duration, syllable, and
word count findings were akin to those at the TCU
level, and so we must draw the conclusions that
these turn length measurements are not useful ei-
ther to exploit as information source in turn taking.

Finally, we looked at TCUs per turn for evidence
that the number of dialogue acts of which a turn
has numerical norms. The TCU per turn analysis
showed that the end of a TCU is essentially a coin
flip for whether there will be a floor transfer. Not
only did the maximum entropy distribution have
the best fit, but the hazard rate was very close to
0.5. So, we must conclude that there is no more
pragmatic pressure to end one’s turn when it is
already very long.

Our general conclusion therefore is that, surpris-
ingly, the duration of turns are not useful cues for
turn segmentation or turn taking decisions. This is
independent of whether we use temporal, phono-
logical, lexical, or TCU-based measures of infor-
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mation. Agents that do turn taking will need to use
linguistic or prosodic cues other than duration to
achieve accurate timing in their turn taking behav-
ior.
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A Appendix

A.1 TCU Duration

Data Mean 2.40E+03
Exponential Model Mean 2.40E+03
Gamma Model Mean 2.40E+03
Data Std Dev 3.36E+03
Exponential Model Std Dev ~ 2.40E+03
Gamma Model Std Dev 2.39E+03
Exponential Rate Mean 4.16E-04
Gamma Rate Mean 4.22E-04
Exponential Rate Std Dev 3.79E-06
Gamma Rate Std Dev 6.27E-06
Gamma Shape Mean 1.01E+00
Gamma Shape Std Dev 1.17E-02
Exponential WAIC 2.101E+05
Gamma WAIC 2.101E+05

A.2 TCU Word Count

Data Mean 7.70E+00
Exponential Model Mean ~ 7.70E+00
Gamma Model Mean 7.70E+00
Data Std Dev 7.62E+00
Model Std Dev 7.70E+00
Gamma Model Std Dev 7.10E+00
Exponential Rate Mean 1.30E-01
Gamma Rate Mean 1.53E-01
Exponential Rate Std Dev 1.20E-03
Gamma Rate Std Dev 2.23E-03
Gamma Shape Mean 1.18E+00
Gamma Shape Std Dev 1.38E-02
Exponential WAIC 7.275E+04
Gamma WAIC 7.255E+04
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A.3 TCU Syllable Count

Data Mean
ExponentialModel Mean
Gamma Model Mean
Data Std Dev
Exponential Model Std Dev
Gamma Model Std Dev
Exponential Rate Mean
Gamma Rate Mean
Exponential Rate Std Dev
Gamma Rate Std Dev
Gamma Shape Mean
Gamma Shape Std Dev
Exponential WAIC
Gamma WAIC

A.4 Turn Duration

Data Mean

Exponential Model Mean
Gamma Model Mean
Data Std Dev
Exponential Model Std Dev
Gamma Model Std Dev
Exponential Rate Mean
Gamma Rate Mean
Exponential Rate Std Dev
Gamma Rate Std Dev
Gamma Shape Mean
Gamma Shape Std Dev
Exponential WAIC
Gamma WAIC

A.5 Turn Word Count

Data Mean

Exponential Model Mean
Gamma Model Mean
Data Std Dev
Exponential Model Std Dev
Gamma Model Std Dev
Exponential Rate Mean
Gamma Rate Mean
Exponential Rate Std Dev
Gamma Rate Std Dev
Gamma Shape Mean
Gamma Shape Std Dev
Exponential WAIC
Gamma WAIC

9.81E+00
9.80E+00
9.80E+00
1.01E+01
9.80E+00
9.56E+00
1.02E-01
1.07E-01
9.44E-04
1.57E-03
1.05E+00
1.21E-02
7.852E+04
7.850E+04

4.83E+03
4.82E+03
4.83E+03
7.93E4+03
4.83E+03
5.56E+03
2.07E-04
1.56E-04
2.69E-06
3.49E-06
7.55E-01
1.23E-02
1.116E+05
1.113E+05

1.53E+01
1.53E+01
1.53E+01
2.34E+01
1.53E+01
1.81E+01
6.53E-02
4.69E-02
8.55E-04
1.04E-03
7.18E-01
1.14E-02
4.390E+04
4.341E+04
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A.6 Turn Syllable Count

Data Mean 1.95E+01
Exponential Model Mean 1.95E+01
Gamma Model Mean 1.95E+01
Exponential Model Std Dev ~ 1.95E+01
Data Std Dev 3.02E+01
Gamma Model Std Dev 2.39E+01
Exponential Rate Mean 5.13E-02
Gamma Rate Mean 3.42E-02
Exponential Rate Std Dev 6.72E-04
Gamma Rate Std Dev 7.73E-04
Gamma Shape Mean 6.67E-01
Gamma Shape Std Dev 1.05E-02
Exponential WAIC 4.676E+04
Gamma WAIC 4.600E+04

A.7 TCUs per Turn

Data Mean 1.99E+00
Geometric Model Mean 1.99E+00
Neg Binomial Model Mean 1.99E+00
Data Std Dev 1.90E+00
Geometric Model Std Dev 1.40E+00
Neg Binomial Model Std Dev 1.62E+00
Geometric p Mean 5.03E-01
Neg Binomial p Mean 7.59E-01
Geometric p Std Dev 4.61E-03
Neg Binomial p Std Dev 1.12E-02
Neg Binomial n Std Dev 6.27E+00
Neg Binomial n Std Dev 3.82E-01
Geometric 16209.397714
NegativeBinomial 20315.258775
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