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Abstract

Current spoken dialogue systems initiate their
turns after a long period of silence (700-
1000ms), which leads to little real-time feed-
back, sluggish responses, and an overall stilted
conversational flow. Humans typically respond
within 200ms and successfully predicting ini-
tiation points in advance would allow spoken
dialogue agents to do the same. In this work,
we predict the lead-time to initiation using
prosodic features from a pre-trained speech rep-
resentation model (wav2vec 1.0) operating on
user audio and word features from a pre-trained
language model (GPT-2) operating on incre-
mental transcriptions. To evaluate errors, we
propose two metrics w.r.t. predicted and true
lead times. We train and evaluate the mod-
els on the Switchboard Corpus and find that
our method outperforms features from prior
work on both metrics and vastly outperforms
the common approach of waiting for 700ms of
silence.

1 Introduction

Spoken dialogue agents have exploded in popular
use (e.g., Alexa, Siri, and Google Home). How-
ever, they only support explicit turn-taking mech-
anisms: they detect user initiation and barge-ins
using wake-words and identify end of user turns
based on a silence period (typically between 700–
1000ms). Turn-taking feels unnatural under such
mechanisms, leading to less “conversational” inter-
actions (Woodruff and Aoki, 2003). This is particu-
larly damaging for open-ended social conversations
where thoughtful silences get wrongly interrupted
(Chi et al., 2021). To fix this issue, we predict initi-
ation opportunities for spoken dialogue agents for
both turn-taking and backchanneling.

Prior work predicting initiation points uses
prosodic features like pitch and frequency variation
with bag-of-embeddings to predict backchannels
(Ruede et al., 2017a) and turn-completion (Skantze,
2017), and more recently, Ekstedt and Skantze

Figure 1: Humans produce overlapping speech with
small gaps. By predicting lead to initiation, virtual
agents can respond without long waiting periods

(2021) finetuned GPT-2 on dialogue datasets to
predict turn-completion using only word features.
However, they either predict a binary label indi-
cating initiation in a wide event horizon, which
is imprecise; or they predict a binary label for an
initiation to happen at a set offset in the future, in
which case a single incorrect prediction leads to a
missed initiation.

As a robust generalization of previous ap-
proaches, we predict the lead time to initiation as
a continuous value. We model initiation (next ut-
terance from a different speaker) directly and not
end-of-turn because there is a variable (and possi-
bly negative) gap between the two (Skantze, 2021).
In this work, we combine two models: wav2vec 1.0
(Schneider et al., 2019) for representing prosodic
features and finetuned GPT-2 (Radford et al., 2019)
for word features. We model the task with a Gaus-
sian Mixture Model (GMM) to account for inherent
uncertainty. We train and evaluate our models on
Switchboard (Godfrey et al., 1992) and find that the
combination of the pretrained models performs the
best, vastly outperforming a silence-based baseline
that waits for 700ms of silence and baselines using
features from prior work.
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2 Related Work

Prior work for dialogue turn-taking either uses
silent gaps as cues or predicts future events re-
peatedly. A key issue with systems that use silent
gaps as initiation cues (Huang et al., 2011; Co-
hen et al., 2004; Witt, 2015) is the difficulty of
adjusting the silence thresholds to accommodate
dialogue states (Skantze, 2021). When predicting
turn-taking repeatedly, i.e. predicting future ac-
tions at every timestep, acoustic features such as
pitch and frequency are often used, with additional
linguistic features including part-of-speech or word
embeddings (Ruede et al., 2017a,b; Skantze, 2017;
Ward et al., 2018; Roddy et al., 2018). More re-
cently, Ekstedt and Skantze (2021) implement a
spoken dialogue system for travel conversations
using TurnGPT (Ekstedt and Skantze, 2020). How-
ever, a short silence threshold is still used to deter-
mine initiation of agent responses.

Outside of dialogue, Neumann et al. (2019) pro-
pose probabilistic models for predicting events in
videos, Lei et al. (2020) forecast frames and Von-
drick et al. (2016) forecast actions. Time-to-event
analysis in the medical domain involves modeling
patient status as a function of time (Meira-Machado
et al., 2009; Soleimani et al., 2017).

3 Methods

3.1 Setup

Ikspkr is the time of k-th initiation (both backchan-
nels and transitions) by a speaker. We use the cur-
rent speaker’s audio and transcript information to
predict the the lead time to initiation, τ̂t, of the
target speaker. When the current speaker is speak-
ing, we consider an event horizon δmax to narrow
the prediction range and at time t, define the true
lead time to initiation as τt = min(δmax, I

k
tgr − t).

When the target speaker is speaking, we set τt = 0,
to ensure a well-balanced distribution.

3.2 Models

We make two novel contributions. First, we fuse
rich contextual prosodic features from a pretrained
wav2vec model with contextual word representa-
tions from a pretrained GPT-2 model. Prior work
has not used such rich contextual prosodic features
nor their combination with word representations.
Second, prior work does not model the inherent un-
certainty of initiations. Inspired by the video event
prediction literature (Neumann et al., 2019), we do

this using a Gaussian mixture model and maximize
model likelihood under the data distribution.

3.2.1 Features
Features are extracted from the current speaker’s
voice channel and transcript. We suffix model
names with abbreviated versions of the features
they use.

Wav2vec Embeddings (W): Raw audio is fed
into Wav2vec 1.0 (Schneider et al., 2019) to obtain
convolutional embeddings. We choose Wav2vec
1.0 because of its unidirectional nature, which en-
ables handling efficient incremental processing of
audio. We keep the model weights frozen.

GPT-2 Embeddings (G): This is the GPT-2
Small (Radford et al., 2019) embedding of the last
salient word from the target speaker after feeding
in prior utterances. The embedding is updated in-
crementally as more utterances are transcribed. We
fine-tune the GPT-2 model during training.

RMSE (R): We select the Root Mean Square
Energy (RMSE) of the raw waveform to signal
current speaker silence. It simulates audio energy
and power in features from prior work.

Additional Prosodic Features (A): Previous
work explores pre-neural prosodic features (Ruede
et al., 2017a,b; Skantze, 2017); to compare our
approach with previous approaches, we include
pitch and frequency, both represented as a number
for each frame. The prosodic features, including
RMSE, are calculated with a frame shift of 50 ms
and a window length of 100 ms. Additional details
for feature implementation are in Appendix A.1.

Wav2vec features are subsampled to 50 ms by
selecting embeddings at every 50ms and for other
audio features by adjusting the frame shift. Audio
features are concatenated and input to an LSTM
network. When GPT-2 embeddings are used, they
are concatenated with the LSTM’s final hidden
state. This is fed into a linear head. More training
details are presented in Appendix A.2.

3.2.2 Gaussian Mixture Model
There is an inherent uncertainty in the precise lo-
cation of an initiation (e.g., it can occur a few
milliseconds before or after the prediction) and
a single Gaussian is sufficiently powerful to model
it because the uncertainty is localized. How-
ever, a speaker can initiate at many points in time
that are far apart, for e.g., at the completions of
grammatical clauses that can happen hundreds of
milliseconds apart. We use a Gaussian mixture
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Figure 2: An explanation of our metrics. The red vertical intervals correspond to |τx − τ̂x| in the equations. As
illustrated, MAE-Pred(y) evaluates the expected error when a model predicts value y. For MAE-True(t), we highlight
the regions where MAE-True can be calculated in green; depending on how long the current speaker’s next utterance
is, the region has a maximum length of δmax + 1.

model (GMM) to capture this multimodal predic-
tion space.

At every time step, we predict the parameters:
mean, variance and weights, for T Gaussian distri-
butions {µ, σ, h}[1..T ]. The training objective is to
maximize the log of the summed likelihood of τt:

log
( T∑

i=1

hi ·
1

σi
√
2π

· exp−(τt − µi)
2

2σ2
i

)
At inference, we use the mean of the Gaussians.

3.2.3 Baselines
Silence Baseline: We compare our models with
an RMSE-based non-neural baseline. We detect
voice activity based on whether RMSE is above
a certain threshold (0.01 for this work). If there
is a gap of more than 700ms in voice-activity, the
baseline predicts an initiation τt = 0 at the current
time, otherwise predicts δmax.

GMM-AG: We use this baseline as a proxy for
Ruede et al. (2017a), where pitch, power, and FFV
are used as the prosodic features, and word2vec
embedding of the most recent salient word is the
linguistic feature. We simulate these features using
RMSE, pitch and frequency (the prosodic features),
and GPT-2 embeddings.

GMM-G: Ekstedt and Skantze (2020) use GPT-
2 to emulate possible continuations of the current
conversation in order to decide turn-relevant places.
Although we do not use the same algorithm, we
still use GPT-2 embedding as a feature. We train
a GMM on last-salient-word GPT-2 embeddings
only, and use this as a representative baseline for
Ekstedt and Skantze (2020).

GMM-WGR-1: We train a Gaussian mixture
model with T = 1 Gaussian to examine whether

using multiple Gaussian models to capture differ-
ent factors for utterance timing is necessary. This
model is trained on the same data as our GMM-
WGR model, with Wav2vec, GPT-2, and RMS
features.

3.3 Training and Evaluation Data

For training, we randomly sample 60 second audio
segments that have its first target speaker initiation
in the first 5 to 10 seconds. This is to make sure
that there is at least one initiation with enough
context. We backpropagate losses only in a limited
range around each initiation Iitgt, [I

i
tgt−2δmax, I

i
tgt+

1] This is to ensure a balanced distribution of τt.
For evaluation and testing, we instead cover entire
dialogues by collecting 60-second segments every
20 seconds. We randomly choose the target speaker
for each segment.

3.4 Metrics

To measure the performance of our models
that produce continuous values, previous work’s
classification-based metrics are insufficient to dif-
ferentiate between a prediction error of 0.2 ver-
sus 2 seconds. Additionally, we want to differen-
tiate between how precise model predictions are
and how well they cover the initiations observed
in the dataset. We improve upon Time-to-event
error from Neumann et al. (2019), and propose
Mean Absolute Error w.r.t. Predicted Lead Time
(MAE-Pred) and Mean Absolute Error w.r.t. True
Lead Time (MAE-True) as analogues of precision
and recall that improve existing metrics (Skantze,
2017). If a practitioner needs l seconds to generate
a response, MAE-Pred(l) gives the expected error
when the model predicts l (precision) and MAE-
True(l) gives the expected error with the true lead
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Figure 3: (a) MAE-True, (b) MAE-Pred, and (c) average predicted lead time values for representative neural models
and the silence baseline. 95% C.I. are represented by the lightly shaded regions. A perfect model would achieve
the “ideal” (dashed) lines. In (b), because the silence based model only predicts 0 or δmax, only these two points
are defined in plot (b) for the silence based baseline. The corresponding MAE-Pred values for the silence baseline
are indicated as crosses in plot(b). All of our models, including the best performing GMM-WGR, significantly
outperform the silence-based model that waits for 700 ms.

time is l (recall). With the set S representing the
timesteps included in the calculations, both metrics
can be represented as∑

x∈S
|τx − τ̂x|/|S|

Specifically, for MAE-Pred(y):

S = {x|τ̂x = y}, y ∈ [0, δmax]

For MAE-True(t):

S = {Iitgt−t}, t ∈ [−1, δmax]∩[Iitgt−Ij+1
cur , Iitgt−Ijcur]

for all target-speaker initiations Iitgt, limiting to
intervals between two consecutive initiations by
the current speaker. When t ≤ 0, the initiation has
already occurred and τt = 0. We quantize both true
and predicted values into 16 buckets per second.

As an aggregated metric, we propose Macro-
MAE (MMAE). We define MMAE-X(a, b) =∑

v∈Sab
MAE-X(v)/|Sab|, where Sab is the set of

bucket values between a and b for a given set
S. We define 1 second before and 0.5s after
initiation as the interval of interest for MMAE-
True, and similarly predicted values between 0
and 1 for MMAE-Pred. We compute MMAE =
MMAE-True(−0.5, 1) + MMAE-Pred(0, 1) as a
single number quantifying model performance.

4 Experiments

For training and evaluation, we use audio conver-
sations from Switchboard (Godfrey et al., 1992).

We select a random set of 200 training, 20 valida-
tion, and 20 test dialogues out of a total of 1000
dialogues due to computational constraints. We
use the validation set to select the best performing
checkpoint based on MMAE scores and report the
numbers on the test set. For the GMM models, we
experimented with T = 1, 5, 10, 15, 20, and found
T = 15 to be the best-performing. 1

We plot the MAE-Pred and MAE-True values
in Figure 3 and the show the MMAE values in Ta-
ble 1. A perfect model would have 0 error. As a
diagnostic tool, we also plot the average predic-
tion for each t used in MAE-True (Figure 3 (c)).
Here, we expect a perfect model to be a line with
a slope of −1 passing through the origin before
flattening out at 0. We see that for all models MAE-
True peaks (roughly) at initiation (Figure 3 (b))).
Despite all the cues leading up to an initiation in
the data, it is still highly optional and the models
aren’t able to predict it perfectly. Soon afterward,
as the target speaker stays silent the models predict
smaller lead times to initiation (steeper downward
slope in Figure 3 (c)) and the MAE-True reduces.
On the other hand, for all trained models (GMM-*),
we see that MAE-Pred reduces for smaller values
of y (Figure 3 (c)) indicating that the trained mod-
els are very precise when they predict near-term
initiations.

Our models outperform the silence baseline by
a large margin in most time windows prior to and

1Our code for the models and for training is avail-
able at https://github.com/siyan-sylvia-li/
icarus_final

https://github.com/siyan-sylvia-li/icarus_final
https://github.com/siyan-sylvia-li/icarus_final
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Eval Test

Model MT MP MMAE MMAE

GMM-AG 0.90 0.63 1.53 1.51
GMM-G 0.90 0.60 1.50 1.42
GMM-WGR-1 0.67 0.59 1.26 1.30
Silence* 1.33 0.60 1.93 1.88

GMM-W 0.70 0.49 1.19 1.22
GMM-WG 0.67 0.51 1.18 1.19
GMM-WGR 0.63 0.52 1.15 1.11

Table 1: Performance of different models on the eval-
uation and the test dialogues, as measured Macro-
MAE values. MT = MMAE-True(−0.5, 1), MP =
MMAE-Pred(0, 1). * Since only 0 and δmax are valid
predictions for Silence Baseline, we use (MAE-Pred(0)
+ MAE-Pred(δmax))/2 as MMAE-Pred(0, 1).

after initiations (Figure 3 and Table 1). GMM-
WGR outperforms prior work baselines: GMM-G
(TurnGPT) and GMM-AG (Ruede et al. (2017a)).

Comparing GMM-WG vs. GMM-G, Wav2vec
features reduce MAE-True after initiation and sta-
bilizes MAE-Pred for small predicted lead times;
GMM-G’s predictions stay constant after initia-
tions, because it can only access the transcript
from the current speaker. Comparing GMM-WG
vs. GMM-W, GPT-2 features reduce MAE-True
near initiations, possibly because they provide the
model with word cues. GMM-WGR has a lower
MMAE-True(-0.5, 1) compared to GMM-WG, in-
dicating that Wav2vec doesn’t capture silences as
well as RMSE. GMM-WGR-1, our baseline with
one Gaussian, performs poorly compared to GMM-
WGR, highlighting the importance of the Gaussian
mixture.

5 Conclusion

We present the task of lead time to initiation pre-
diction as a continuous-valued problem, collaps-
ing transition and backchannel timing problems
into one. We additionally propose metrics to cap-
ture precision and coverage in these predictions.
Our models trained on pretrained prosodic and
verbal embeddings consistently outperform the
commonly-used silence baseline. We believe our
work will build a foundation for more naturalis-
tic virtual agents with human-like conversational
behaviors.
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A Appendix

A.1 Feature Implementation

1. Pitch: https://pytorch.org/
audio/main/functional.html#
compute-kaldi-pitch

2. Frequency: https://librosa.org/
doc/main/generated/librosa.
yin.html

3. Root Mean Square Energy: https:
//librosa.org/doc/main/
generated/librosa.feature.
rms.html

A.2 Training Details

The models are trained on one A100 GPU. All
model LSTM’s have two layers with 128 hidden
units. Each epoch approximately last 1000 sec-
onds, and we train each neural model for 7 epochs,
at which point overfitting would have definitely
occurred. We train all models with dropout 0.1,
Adam optimizer, and a weight decay of 0.0001. We
include a comprehensive list of our models and
their training details in Table 4.

A.3 Additional Model: Heuristic Heatmap

We have tried training another probabilistic model
from Neumann et al. (2019), Heuristic Heatmap.
We did not find this model to significantly out-
perform our GMM-Full model, although it does
exhibit interesting qualities.

Heuristic Heatmap (Histogram-based Density
Estimator): This model captures temporal shifts
in the probability distribution of lead time; as the
current speaker keeps speaking, the likelihood of an
imminent initiation increases for the target speaker,
shifting the probability mass from higher to lower
lead time values. At every time step, the model
produces a probability distribution with 2δmaxr
(r = 16, the resolution of our estimates) bucket
values hi = P (τt =

2δmaxi
2δmaxr

). Training minimizes
the difference between the predicted distribution
and a Gaussian centered at τt. During inference,
the prediction bucket with the highest probability
is returned.

Model W G Ac R
GMM-AG ✓ ✓ ✓
GMM-G ✓
GMM-W ✓
GMM-WG ✓ ✓
GMM-WGR ✓ ✓ ✓
Heatmap-WGR ✓ ✓ ✓
GMM-WGR-1 ✓ ✓ ✓

Table 2: The trained models and their features. W
represents Wav2vec features, G GPT-2 embeddings, Ac
the set of acoustic features (pitch and frequency), R the
RMSE of the current speaker waveform.

http://arxiv.org/abs/1706.01340
http://arxiv.org/abs/1706.01340
https://doi.org/10.18653/v1/W17-5527
https://doi.org/10.18653/v1/W17-5527
https://doi.org/10.18653/v1/W17-5527
https://pytorch.org/audio/main/functional.html#compute-kaldi-pitch
https://pytorch.org/audio/main/functional.html#compute-kaldi-pitch
https://pytorch.org/audio/main/functional.html#compute-kaldi-pitch
https://librosa.org/doc/main/generated/librosa.yin.html
https://librosa.org/doc/main/generated/librosa.yin.html
https://librosa.org/doc/main/generated/librosa.yin.html
https://librosa.org/doc/main/generated/librosa.feature.rms.html
https://librosa.org/doc/main/generated/librosa.feature.rms.html
https://librosa.org/doc/main/generated/librosa.feature.rms.html
https://librosa.org/doc/main/generated/librosa.feature.rms.html
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Figure 4: MAE-True, MAE-Pred graphs for all trained models. We also include the graph of average predicted lead
time values given true lead time to initiation.

Model MTEval MPEval
∑

Eval
∑

Test
GMM-AG 0.90 0.63 1.53 1.51
GMM-G 0.84 0.58 1.50 1.42
GMM-W 0.70 0.49 1.19 1.22
GMM-WG 0.67 0.51 1.18 1.19
GMM-WGR 0.63 0.52 1.15 1.11
Heatmap-WGR 0.80 0.68 1.48 1.44
GMM-WGR-1 0.67 0.59 1.26 1.30
Silence* 1.33 0.60 1.93 1.88

Table 3: Performance of different models on the evalua-
tion and the test dialogues, as measured by the sum of (1)
the average MAE-True(t) on t ∈ [1,−0.5] (MTEval and
MTTest) and (2) the average MAE-Pred(y) on y ∈ [0, 1]
(MPEval and MPTest). * For the Silence baseline, since
only 0 and δmax are valid prediction values, we calcu-
late the average of MAE-Pred(0) and MAE-Pred(δmax)
as MPEval and MPTest.

A.4 MAE-True and MAE-Pred on All Models
We also include the graphs for MAE-True, MAE-
Pred, and average predictions per ground truth time
to initiation values for all of our models. They are
presented in Figure 4.
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Model Features Learning Rate Batch Size
GMM-AG Acoustic features, GPT-2 1e-4 16
GMM-G GPT-2 embedding 1e-4 16
GMM-W Wav2vec representations 1e-4 32

GMM-WG Wav2vec and GPT-2 1e-5 16
GMM-WGR Wav2vec, GPT-2, and RMSE 1e-5 32

GMM-WGR-1 Wav2vec, GPT-2, and RMSE 1e-5 15
Heatmap-WGR Wav2vec, GPT-2, and RMSE 1e-4 32

Table 4: Set of trained models.


