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Abstract

Detecting Out-of-Domain (OOD) or unknown
intents from user queries is essential in a task-
oriented dialog system. Traditional softmax-
based confidence scores are susceptible to the
overconfidence issue. In this paper, we propose
a simple but strong energy-based score function
to detect OOD where the energy scores of OOD
samples are higher than IND samples. Further,
given a small set of labeled OOD samples, we
introduce an energy-based margin objective for
supervised OOD detection to explicitly distin-
guish OOD samples from INDs. Comprehen-
sive experiments and analysis prove our method
helps disentangle confidence score distributions
of IND and OOD data.'

1 Introduction

Detecting Out-of-Domain (OOD) or unknown in-
tents from user queries is crucial to a task-oriented
dialog system (Akasaki and Kaji, 2017; Tulshan
and Dhage, 2018; Shum et al., 2018; Lin and Xu,
2019; Xu et al., 2020; Zeng et al., 2021a; Wu et al.,
2022b). It can avoid performing wrong operations
and provide potential directions of future develop-
ment when an input query falls outside the range
of predefined intents. Since the exact number of
unknown intents in practical scenarios is hard to
know and annotate, the lack of real OOD examples
makes it challenging to identify these samples in
dialog systems.

Depending on whether labeled OOD samples
are available, previous OOD detection work can be
generally classified into two types: unsupervised
(Bendale and Boult, 2016; Hendrycks and Gim-
pel, 2017; Shu et al., 2017; Lee et al., 2018; Ren
et al., 2019; Lin and Xu, 2019; Xu et al., 2020;

*The first three authors contribute equally. Weiran Xu is
the corresponding author.
'Our code is available at https://github.com/
pris-nlp/EMNLP2022-enerqgy_for_0OD/.
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1. Can you give me a meal suggetion from the sourth  meal _suggetion meal suggetion

2. Give me a suggetion for roofers 00D meal_suggetion

Figure 1: IND (case 1) vs OOD sample (case 2). Soft-
max score recognizes OOD sample as IND intent type
because of overconfidence issue.
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Figure 2: Softmax score from MSP vs energy score
from our method. Softmax score are similar for IND
and OOD (both > 0.85) but energy score are more
distinguished.

Zeng et al., 2021a,b; Wu et al., 2022a) and super-
vised (Fei and Liu, 2016; Kim and Kim, 2018; Lar-
son et al., 2019a; Zheng et al., 2020). The former
firstly learn an in-domain (IND) intent classifier
only using labeled IND data and then estimates the
confidence score of a test query. For example, Max-
imum Softmax Probability (MSP) (Hendrycks and
Gimpel, 2017) uses maximum softmax probability
as the confidence score and regards an intent as
OOD if the score is below a fixed threshold. The
assumption is that OOD intents should produce a
lower softmax probability than INDs. However,
neural networks can produce arbitrarily high soft-
max confidence even for such abnormal OOD sam-
ples (Guo et al., 2017; Liang et al., 2018), as shown
in Fig 1&2, which we call overconfidence. Further,
another distance-based method, Gaussian discrimi-
nant analysis (GDA) (Xu et al., 2020), is proposed
to use the maximum Mahalanobis distance (Maha-
lanobis, 1936) to all in-domain classes centroids as
the confidence score. Compared to MSP, GDA gets
better OOD performance but requires expensive
computation for complex Mahalanobis distance.
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Figure 3: The overall architecture of our proposed method.

In this paper, we aim to use simple softmax con-
fidence scores for both higher performance and
efficiency. For supervised OOD detection, Fei and
Liu (2016); Larson et al. (2019a), form a (N+1)-
class classification problem where the (N+1)-th
class represents the OOD intents. Further, Zheng
et al. (2020) uses labeled OOD data to generate
an entropy regularization term. But these methods
require numerous labeled OOD intents to get supe-
rior results. We focus on using fewer labeled OOD
data (like 20 or 30) to achieve comparable even
better performance.

In this paper, we propose an energy-based score
function to detect OOD in an unsupervised manner.
The energy-based score function maps each query
to a single energy scalar which is lower for IND
samples and higher for OOD samples based on the
energy theory (LeCun et al., 2006). We first train
an in-domain intent classifier via IND data, then
replace the original softmax layer with the energy-
based score function. Our method can not only mit-
igate the issue of overconfident softmax probability
but also reduce expensive post-processing compu-
tation. Further, given a small portion of labeled
OOD samples, we propose an energy-based margin
objective to explicitly distinguish OOD samples
from IND samples. Our contributions are three-
fold: (1) We propose an energy-based learning
method for OOD intent detection to achieve higher
performance and efficiency. (2) We propose an
energy-based margin objective to distinguish en-
ergy distributions of OOD and IND samples. (3)
Extensive experiments and analysis on two bench-
marks demonstrate the effectiveness of our method.

2 Methodology

Overall Architecture Fig 3 (a) shows the overall
architecture of our proposed method. We first train

32

an in-domain intent classifier using IND data in
training stage. Then in the test stage, we extract
the intent feature of a test query and employ the
detection algorithms MSP (Hendrycks and Gimpel,
2017) or Energy to detect OOD. Fig 3 (b) demon-
strates the effectiveness of our method distinguish-
ing OOD distributions from IND?.

Energy-based Score Function To mitigate the
issue of overconfident softmax probability in MSP,
we propose an energy-based score function to push
apart score distributions of OOD and IND sam-
ples. We first briefly review the energy theory
(LeCun et al., 2006) then explain our proposed
energy-based score function for OOD detection.
The previous energy work (LeCun et al., 2006;
Zhai et al., 2016; Grathwohl et al., 2020; Liu et al.,
2020b; Kaur et al., 2021) aims to build a function
E(x) : RP — R which maps a sample x to a
single scalar called the energy. Given a data point
x € RP, the energy function can be defined as
follows:

Ex)=-T- log/ e~ EeV)/T (1)
yl

where T is the temperature parameter and E(x, y")

is the marginal energy over label 3. Essentially,

energy scores can be transfered to the likelihood

probability:

e_E(xvy)/T

e_E(xﬂy)/T
P 1% = e =
Yy

e—EX)/T

2

For OOD detection, since we focus on the detec-
tion algorithms for the test stage in this paper, we
train the same BiLSTM in-domain intent classifier

“Because the max softmax score is higher for IND sam-
ples and lower for OOD samples, we use the negative energy

score to align with the conventional definition where positive
(IND) samples get higher scores.



CLINC-Full CLINC-Small
Models IND 00D IND 00D
Acc F1 Recall F1 Acc F1 Recall F1
MSP (Hendrycks and Gimpel, 2017) | 87.16 87.64 | 41.40 44.86 | 85.02 85.18 | 35.81 36.60
Unsupervised | LOF (Lin and Xu, 2019) 85.87 86.08 | 58.32 59.28 | 82.83 8298 | 53.96 54.63
00D GDA (Xu et al., 2020) 86.83 8790 | 64.14 65.79 | 8446 84.87 | 60.72 61.89
SCL (Zeng et al., 2021a) 87.01 88.28 | 66.80 67.68 | 85.73 86.61 | 63.96 64.44
Energy (Ours) 88.71 89.17 | 68.10 69.64 | 86.42 86.48 | 65.78 66.52
N+1 91.24 8529 | 2451 31.08 |90.13 83.23 | 21.50 29.17
MSP+Entropy (Zheng et al., 2020) 87.48 87.81 | 4990 53.93 | 85.24 8531 | 4590 48.57
MSP+Bound (Liu et al., 2020a) 88.03 87.26 | 4521 56.86 | 86.16 83.04 | 42.38 51.43
MSP+Margin (Ours) 88.31 8798 | 57.27 59.96 | 85.33 8537 | 54.90 55.37
Supervised | LOF+Entropy 8598 86.37 | 61.10 61.13 | 83.49 83.86 | 57.70 57.79
00D LOF+Bound 86.36 85.66 | 57.83 60.15 | 81.36 82.88 | 64.41 59.30
LOF+Margin (Ours) 86.13 86.59 | 65.70 65.59 | 83.57 8397 | 63.60 63.18
GDA+Entropy 87.27 88.14 | 68.53 68.82 | 85.01 8553 | 65.22 65.65
GDA+Bound 87.09 86.86 | 67.32 66.41 | 8444 8475 | 65.19 64.14
GDA-+Margin (Ours) 87.54 8823 | 6842 68.73 | 85.51 85.81 | 65.13 65.68
Energy+Margin (Ours, Full Model) | 89.75 89.46 | 73.92 74.06 | 87.84 87.53 | 72.76 72.98

Table 1: Performance comparison on CLINC-Full and CLINC-Small datasets (p < 0.01 under t-test).

f(x) via IND data as Lin and Xu (2019) in the
training stage. Then given a test query, we simply
use the logits from the intent classifier to represent
E(x,y’). Therefore, the energy score function Eq
1 can be formulated as:

K
E(x;f) =-T-logy e/ (3)

where K is the size of IND intent classes and f;(x)
is the logit of x belonging to i-th class. We simply
use a threshold on the energy score to consider
whether a test query belongs to OOD. Intuitively,
the reason why the energy score works for OOD
detection is that higher energy represents a lower
likelihood of occurrence according to LeCun et al.
(2006). Therefore, unobserved OOD samples in
the training stage should get lower likelihoods as
well as higher energy scores than observed IND
samples. In Appendix C, we provide a detailed
theoretical derivation of why the energy function
can alleviate the overconfidence problem. Besides,
Experiment 4.1 also proves energy scores better
distinguish confidence distribution of OOD data
from IND data than softmax probabilities.
Energy-guided Margin Objective To further
distinguish OOD from IND, we propose an energy-
guided margin objective for few-shot supervised
OOD detection. Different from Liu et al. (2020a),
our approach directly models the energy bound-
ary by pushing apart the samples from IND and
OOD, which helps recognize OOD intents near
the decision boundary and is easier to tune and
less sensitive to the noise. Specifically, we use an
energy-based max-margin loss as well as the stan-
dard cross-entropy loss to explicitly set an energy
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CLINC Full  Small
Avg utterance length 9 9
Intents 150 150
Training set size 15100 7600
Training samples per class 100 50
Training OOD samples amount 100 100
Development set size 3100 3100
Development samples per class 20 20
Development OOD samples amount | 100 100
Testing Set Size 5500 5500
Testing samples per class 30 30
Development OOD samples amount | 1000 1000

Table 2: Statistics of the CLINC datasets.

gap between OOD and IND. We aim to learn more
discriminative representations for energy score dis-
tributions in the training stage. The energy margin
loss is formulated as:

E :IE(Xindaxood)"’D max(07 m+E(Xind) _E(Xood))
“)

where m is the energy margin and F is the en-
ergy score of IND or OOD samples in train set.
Then in the test stage, we still use the energy score
to detect OOD. Analysis 4.1 displays the effective-
ness of the margin loss over unsupervised OOD.

3 Experiments

3.1 Datasets

We use two public benchmark OOD datasets?,
CLINC-Full and CLINC-Small (Larson et al.,
2019b). We show the detailed statistic of these

3https://github.com/clinc/oos-eval
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Figure 4: Distribution of softmax scores vs energy scores.

datasets in Table 2. They both contain 150 in-
domain intents across 10 domains. The difference
is that CLINC-Small has fewer in-domain train-
ing examples than CLINC-Full. Note that all the
datasets we used have a fixed set of labeled OOD
data but we don’t use it for training.

3.2 Maetrics

We report both OOD metrics: Recall and F1-score
(F1) and in-domain metrics: F1-score (F1) and
Accuracy (ACC). Since we aim to improve the per-
formance of detecting out-of-domain intents from
user queries, OOD Recall and F1 are the main eval-
uation metrics in this paper.

3.3 Baselines

For detection algorithms, we use MSP, LOF and
GDA as baselines. For training objectives, we use
N+1, entropy and bound as baselines. We present
dataset statistics, baselines and implementation de-
tails in the appendix. We will release our code after
blind review.
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Table 1 shows the main results. (1) For unsuper-
vised OOD detection, using the energy function
achieves 24.78, 10.36, 3.85, 1.96 OOD F1 im-
provements over MSP, LOF, GDA and SCL on
CLINC-Full. The results prove the effectiveness
of energy score function for OOD detection. Be-
sides, for IND metrics, energy function also outper-
forms SCL by 0.89% (F1), which reflects energy
scores can better distinguish OOD from IND sam-
ples without sacrificing IND performance. (2) For
supervised OOD detection, we compare different
pre-training losses under the same detection score
function. We find our Margin approach achieve
consistent improvements under different detection
functions on both datasets. It demonstrates that

Main Results
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Figure 5: Unsupervised vs supervised OOD detection.

Margin objective can stably improve the represen-
tation space by directly pushing apart the samples
from IND and OOD. We also observe under MSP,
our proposed Margin objective outperforms En-
tropy by 6.03% and Bound by 3.10% on CLINC-
Full. But on GDA we find no significant perfor-
mance difference. We argue the energy-based learn-
ing may not always fit in generative distance-based
detection methods like GDA. Overall, combining
energy score function and margin objective achieve
the best performance over the previous state-of-the-
art by 5.24%.

4 Analysis

4.1 Distribution of softmax scores vs energy
scores

To figure out why energy scores outperform soft-
max scores, we compare the score histogram distri-
butions for IND and OOD data in Fig 4. We use the
same pre-trained intent classifier to compute scores
on the test set. We find softmax scores for both
IND and OOD data concentrate on high values,
resulting in severe overconfidence. By contrast,
energy scores better distinguish score distribution
of OOD data from IND data. And energy distribu-
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Figure 6: Effect of number of labeled OOD samples.

tions are smoother than softmax score distributions.
Overall, our proposed energy-based score function
can disentangle confidence score distributions for
IND and OOD data.

4.2 Unsupervised vs supervised OOD
detection

To verify the effectiveness of our proposed energy-
based margin objective, we compare the energy
score statistics of unsupervised (Energy) and su-
pervised (Margin+Energy) OOD detection in Fig
5. Each rectangle in Fig 5 represents the energy
distribution of IND or OOD data, where the middle
of the rectangle is energy mean and the width of
the rectangle is energy variance. Results show that
compared to Energy, Margin+Energy makes neg-
ative energy scores of both OOD and IND data
smaller. Further, the supervised Margin objec-
tive can significantly decrease the variance of both
OOD (1.86 ) and IND (3.11 |) data. Therefore,
Margin can push apart energy score distributions
for OOD detection by shrinking its variance to
avoid overlapping. Besides, combined with the
energy threshold (dot line in Fig 5), unsupervised
(Energy) still gets a portion of OOD samples above
the threshold which are misclassified into IND, but
supervised (Margin+Energy) on the opposite. It
proves that Margin can further mitigate the issue
of overconfidence.

4.3 Effect of number of labeled OOD samples

Fig 6 shows the effect of labeled OOD train-
ing data size for supervised OOD detection. We
find Margin+Energy consistently outperforms En-
tropy+Energy, especially in the few-shot super-
vised OOD scenario, which demonstrates strong ro-
bustness and generalization of our proposed energy-
based margin objective for OOD detection.
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4.4 Effect of Parameters

Temperature 7. Fig 7 shows the effect of differ-
ent energy temperature 7". We conduct the exper-
iments on the CLINC-Full dataset, using Energy
for unsupervised OOD. The X-axis denotes the
value of temperature 7'. In general, 7" € (0.5, 1.0)
achieves relatively better performances and has a
broad range.

Margin m. Fig 8 shows the effect of differ-
ent energy margin m. We conduct the exper-
iments on the CLINC-Full dataset, using Mar-
gin+Energy for supervised OOD. The X-axis de-
notes the value of margin m. Results show that
m = 19.0 achieves the best performance and is
robust to minor changes.

5 Conclusion

Traditional softmax-based OOD detection methods
are susceptible to the overconfidence issue. There-
fore, we propose a novel energy-based score func-
tion to mitigate the issue of softmax overconfidence.
To use labeled OOD data, we further introduce an
energy-based margin objective to explicitly distin-
guish energy score distributions of OOD from IND.
Experiments and analysis confirm the effectiveness
of our energy-based method for OOD detection.
For future work, we hope to explore theoretical
concepts of energy and provide new guidance.
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A Baseline Details

We perform main experiments based on two dif-
ferent settings, unsupervised OOD and supervised
OOD detection. For unsupervised OOD detection,
we compare our proposed energy detection algo-
rithm with other methods, MSP (Maximum Soft-
max Probability) (Hendrycks and Gimpel, 2017),
LOF (Local Outlier Factor) (Lin and Xu, 2019),
GDA (Gaussian Discriminant Analysis) (Xu et al.,
2020). For supervised OOD detection, we also
compare our proposed energy-based margin ob-
jective with entropy (Zheng et al., 2020) and N+1
(Fei and Liu, 2016; Larson et al., 2019a). Note
that margin and entropy objectives are used in the
training stage, we still need detection algorithms
MSP, GDA or Energy to detect in the test stage. We
supplement the relevant baseline details as follows:
MSP (Maximum Softmax Probability) (Hendrycks
and Gimpel, 2017) uses maximum softmax proba-
bility as the confidence score and regards an intent
as OOD if the score is below a fixed threshold.

LOF (Local Outlier Factor) (Lin and Xu, 2019)
uses the local outlier factor to detect unknown in-
tents. The motivation is that if an example’s lo-
cal density is significantly lower than its k-nearest
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neighbor’s, it is more likely to be considered as the
unknown intents.

GDA (Gaussian Discriminant Analysis) (Xu et al.,
2020) is a generative distance-based classifier
for out-of-domain detection with Euclidean space.
They estimate the class-conditional distribution on
feature spaces of DNNs via Gaussian discriminant
analysis (GDA) to avoid over-confidence problems
and use Mahalanobis distance to measure the con-
fidence score of whether a test sample belongs to
OOD. GDA is the state-of-the-art detection method
till now, our proposed energy score still signifi-
cantly outperforms GDA.

Note that LOF and GDA both require additional
post-processing modules to estimate density or dis-
tance, which induces expensive computation. We
conduct a performance comparison for inference
time in Table 3. Since SCL only adds a pre-training
loss along with CE and also uses GDA for detec-
tion, the inference time is equal to GDA.

Detect Method | Inference time
MSP 1.00x
Energy (Ours) 1.00x
GDA/SCL 30.63x
LOF 30.89x

Table 3: Inference time comparison between different
methods.

SCL (Zeng et al., 2021a) uses a supervised con-
trastive learning objective to minimize intra-class
variance by pulling together in-domain intents be-
longing to the same class and maximize inter-class
variance by pushing apart samples from different
classes. Note that SCL still needs a confidence
score function. To keep fair comparison, we follow
the original paper using GDA detection method.
N+1 (Fei and Liu (2016); Larson et al. (2019a)) is
an N+1 classification model which simply consid-
ers OOD samples as a new class.

Entropy (Zheng et al. (2020)) uses labeled OOD
data to generate an entropy regularization term to
enforce the predicted distribution of OOD inputs
closer to the uniform distribution:

L=E(x, q)~pl—H(Po(y|To0d))] &)

where H is the Shannon entropy of the predicted
distribution. pg(y|xeeq) is the predicted distribu-
tion of the input OOD utterance x,,q.

Bound (Liu et al. (2020b)) uses a regularization
loss defined in terms of energy to further widen the

energy gap:



L :E(Xind)ND max(O, E(Xind) — mind))2

B g 0, s — Bloint))
where F is the energy score of IND or OOD sam-
ples in the train set. This learning objective using
two squared hinge loss with two hyper-parameters
Ming and m,,q4. Note that Bound aims at OOD im-
age classification and replies on two independent
energy bounds. Instead, our proposed Margin con-
structs a contrastive energy margin between IND
intents and OOD intents to better disentangle en-
ergy distributions.

B Implementation Details

We use the public pre-trained 300 dimensions
GloVe embeddings (Pennington et al., 2014)* to
embed tokens. We use a two-layer BiLSTM as
a feature extractor and set the dimension of hid-
den states to 128. The dropout value is fixed at
0.5. We use Adam optimizer (Kingma and Ba,
2014) to train our model. We set the learning
rate to 1E-03. In the training stage, we use stan-
dard cross-entropy loss for unsupervised OOD and
cross-entropy+energy-guided margin loss for super-
vised OOD. Besides, in supervised OOD scenario,
we employ restriction-oriented random sampling.
Specifically, we guarantee that IND and OOD sam-
ples are both included in each batch to facilitate
calculation of margin loss. We both set the training
epoch up to 200 with a early stop of patience 15.
For our proposed energy-guided margin loss, we
set the margin m to 19.0 and the temperature 7" to
0.8. We use the best OOD F1 scores on the valida-
tion set to calculate the threshold adaptively. Each
result of the experiments is tested 5 times under the
same setting and gets the average value. The train-
ing stage of our models lasts about 2 minutes for
unsupervised OOD and 4 minutes for supervised
OOD both on a single Tesla T4 GPU (16 GB of
memory). The average value of the trainable model
parameters is 3.05M. We will release our code after
blind review.

C A Theoretical Proof of Energy Score vs
Softmax Score

In this section, we give a theoretical proof of why
energy score outperforms softmax score. Suppos-
ing we get the output logits from the intent classi-

*https://github.com/stanfordnlp/GloVe
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fier, we represent MSP as follows:

log MSP (logits) = log maz softmax(logits)
exp(logits;)

> exp(logits;)

exp max(logits)

> exp(logits;)

= mazx(logits) — log sum exp(logits)

(7

where logits; represents the ¢-th value in the vector

logits. Recap the energy definetion:

= log mazx

= log

K
E(x;f) =—T-logy_eli/T (3

Here we set T"to 1. Therefore, we get the following
equation:
log MSP (logits) =

mazx(logits) +Energy(logits)
—_—————

regularization item
)
If the output logits get a high max value, then
max(logits) performs as a regularization item to
avoid energy score increasing. Therefore, energy
score can better mitigate the overconfidence issue
than softmax score.



