
Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD), pages 24 - 30
December 7, 2022 ©2022 Association for Computational Linguistics

Prompt Learning for Domain Adaptation in Task-Oriented Dialogue

Makesh Narsimhan Sreedhar
University of Wisconsin - Madison ∗

msreedhar@wisc.edu

Christopher Parisien
NVIDIA

cparisien@nvidia.com

Abstract

Conversation designers continue to face sig-
nificant obstacles when creating production-
quality task-oriented dialogue systems. The
complexity and cost involved in schema devel-
opment and data collection is often a major
barrier for such designers, limiting their abil-
ity to create natural, user-friendly experiences.
We frame the classification of user intent as the
generation of a canonical form, a lightweight
semantic representation using natural language.
We show that canonical forms offer a promis-
ing alternative to traditional methods for in-
tent classification. By tuning soft prompts for
a frozen large language model, we show that
canonical forms generalize very well to new,
unseen domains in a zero- or few-shot setting.
The method is also sample-efficient, reducing
the complexity and effort of developing new
task-oriented dialogue domains.

1 Introduction

Task-oriented dialogue systems in Conversational
AI are challenging for developers to create. The
current generation of dialogue frameworks requires
developers to define actions (intents) and parame-
ters (slots) that the natural language understanding
(NLU) module accepts. This is then used to popu-
late API service calls that operate in the backend
to fulfill the user request. Casting natural language
utterances from the user to a discrete set of in-
tents and slots is often not very intuitive. This in
turn leads to a situation where developers rely on
hand-crafted rule-based grammars or a large anno-
tated set of training samples for machine learning
models to implement a given design. Any change
to the design of the dialogue system would then
require the developers to revisit and modify the im-
plementation which is very often a time-consuming
process. In this work, we aim to make dialogue
system design easier and more intuitive.

∗ Work done as part of an internship with NVIDIA

The tremendous success of pre-trained language
models such as BERT (Devlin et al., 2019) have
made them the de facto standard for most intent
classification and slot-filling tasks. However, these
models are not immune to the challenge of adapt-
ing and extending existing models to new domains.
One adaptation approach that has exploded in pop-
ularity in recent times is the usage of prompts with
these language models. With a task description
and few samples showing the input-output pairs,
these language models become extremely effective
at solving these tasks, especially at larger model
sizes.

Manually specifying prompts suffers from sen-
sitivity to phrasing; we get widely varying results
based on how we frame the prompt. Prompt tun-
ing (Lester et al., 2021) and p-tuning (Liu et al.,
2021) have emerged as strong alternatives to man-
ual prompt designing and they help optimize task-
specific prompt tokens to get the best performance
while keeping the language model itself frozen. In
this work, we explore the task of intent classifi-
cation using these large language models and p-
tuning. Generative methods for classification tasks
have not been widely adopted because generation
is inherently difficult to control and utilize for fur-
ther downstream tasks. Using our experiments on
the Schema Guided Dialogue (Rastogi et al., 2019)
dataset and the Virtual Assistant Benchmark (Liu
et al., 2019), we show that with p-tuning we can
achieve promising zero-shot and few-shot general-
ization capabilities to unseen domains.

In the task of intent classification, the intent la-
bels provided as part of the dataset are usually
terse and rigid. Generative models generalize better
when intent labels are more descriptive but struc-
tured at the same. We borrow some aspects and
terminology from semantic parsing to cast the in-
tent labels to a more compositional format, known
as canonical forms. In the traditional sense, canon-
ical forms are paraphrases of the user utterances to

24

convert them to a form that the semantic parser can
operate on to output logical representations. In our
use case, we loosely use the term, canonical forms,
to refer to intent labels that are more descriptive
than the discrete ones but are not too verbose, e.g.,
"transfer_money" → "transfer money to bank ac-
count". We manually frame these canonical forms
and do not rely on any grammar, simplifying the
approach.

We observe that using such canonical forms as
labels for the intent classification task allows the
model to generalize better to domains that are adja-
cent, but not seen at train time (e.g., Flight Reser-
vations → Bus Bookings). We also find that it is
beneficial to do a two-stage P-tuning for domain
adaption, i.e., once we have a p-tuned large lan-
guage model on a wide set of domains, we can
continue p-tuning this model on a small set of la-
belled samples from the target domain to allow
the model to generalize better. We find that this
few-shot approach works very well and this has
promising implications for developers for dialogue
systems; with minimal effort it would be feasible
to adapt an existing model pre-trained on multi-
ple domains to a new domain. In summary, our
contributions are:

• We cast the problem of intent classification
into a generative approach and rewrite intent
labels in a more descriptive format (canonical
forms).

• When using such canonical forms, genera-
tive approaches with Large Language Mod-
els(LLMs) show promising results when com-
pared with traditional methods for intent clas-
sification.

• Generative models generalize very well to
unseen domains in zero-shot and few-shot
settings when compared with BERT-style ap-
proaches.

• We demonstrate the sample efficiency of p-
tuning LLMs where we can achieve close to
full dataset performance with a fraction of the
data.

2 Method

In this section, we describe the creation of canon-
ical forms and the prompt tuning technique we
adopt for intent classification in the task-oriented
dialogue setting.

2.1 Canonical Forms

Canonical forms are usually paraphrases of the
user utterance to a standardized form that can be
utilized by downstream systems. These forms are
traditionally obtained by using a set of grammar
rules written by experts. The output of this process
is a natural language sequence, but structured in
a form that makes it better suited for a semantic
parser. Different semantic parsers employ different
canonical forms and thus transfer across datasets is
quite challenging.

Utterance Canonical Form

what is the newest published article? article that has the largest publication date
who has published the most articles? person that is author of the most number of article

Table 1: Examples of canonical forms corresponding to
user utterances from the Overnight (Wang et al., 2015)
semantic parsing dataset.

Our work uses canonical forms as a method of
obtaining the intent of a user utterance. Tradition-
ally, intent labels tend to be terse, which makes
it difficult for models to generalize to unseen do-
mains. The expressive and compositional nature
of language models can be exploited if the intent
labels are more verbose, allowing them to extrap-
olate the generated intents to capture even novel
domains. At the same time, if the intent labels
tend to be very long and riddled with descriptions,
the language models become susceptible to hallu-
cinations. Our work proposes the use of canonical
forms as a way of establishing a balance between
being terse and too verbose. We map intent labels
to short descriptive phrases, e.g., "check_balance"
→ "check balance in bank account". Unlike tradi-
tional canonical forms, we do not use any formal
grammar to perform this mapping and the phrases
are manually specified. We believe that such an
approach would reduce the burden on developers
and designers of conversational systems.

2.2 P-tuning

Large Language Models (LLMs) have exhibited
remarkable generalization capability when queried
using prompts that contain examples of the task to
be performed. However, the performance of LLMs
varies widely depending on how such prompts are
constructed. In order to overcome this issue of
LLM sensitivity to the format of the prompt, mul-
tiple studies have come up with methods for auto-
mated prompt construction using discrete tokens
(Lester et al., 2021) as well as soft tokens (Liu et al.,

25

2021).
In this work, we utilize the p-tuning approach

that appends learnt soft tokens into the prompt that
is fed to the LLM. The soft tokens traditionally
do not have a mapping to words/subwords in the
model vocabulary and are simply vectors optimized
using gradient descent. Following the setup pro-
posed by Liu et al. (2021), we use an LSTM model
to learn and predict these soft tokens. The parame-
ters of the LLM are frozen and only the parameters
of this LSTM model are updated during p-tuning.
We initialize the LSTM with random weights at the
beginning of the p-tuning process and then update it
during the training stage to output the optimal soft
tokens. At the end of the training phase, we store
these soft tokens and append them with the prompt
to the LLM to get its prediction. The advantage
of p-tuning is that we freeze the LM weights and
update only the weights of the LSTM (14M param-
eters). This results in modifying only a very small
fraction of the weights compared to traditional fine-
tuning where all of the weights are updated.

The LM of choice in our experiments are the
Megatron-GPT (Narayanan et al., 2021) models
that are decoder-only transformers.

3 Experimental Setting

In this section, we describe the datasets used, the
baselines we use for comparison and the evaluation
metrics.

3.1 Datasets

We consider two widely known datasets in the
dialogue community, the Schema Guided Dialogue
(SGD) dataset (Rastogi et al., 2019) and the Virtual
Assistant dataset (Liu et al., 2019).

Schema Guided Dialogue - This dataset
covers 16 domains and has over 16k annotated
conversations. The domains span a variety of user
actions, including setting calendars and alarms,
travel booking (car rentals, flights, buses and
trains), music, weather, movies, and more. The
dataset also contains multi-domain dialogues
where the utterances switch between domains. For
the purpose of our experiments, we consider only
the single-domain dialogues with 37 intents across
all utterances.

Virtual Assistant Dataset - This dataset
covers 21 domains with 64 intents across all

utterances. As the name suggests, the domains
relate to user queries over a wide range of topics,
including operating smart-home devices, media
consumption, weather and travel. It has over 25k
annotated user utterances that identify intents and
slot values.

3.2 Prompt Template

The prompts that we use for intent classification
have the following format

<v1..vn > utterance intent : canonical

where < v1, v2, .., vn > indicate the virtual to-
kens.

During the training stage of p-tuning, the model
is shown the entire sequence, but the loss is com-
puted only on the answer which in this case is the
predicted canonical form. During inference, the
context to the model includes the sequence until
the word "intent:" and the model completes the
sequence with its prediction for the intent. We use
100 virtual tokens with our prompt-encoder being
an LSTM model with 2 layers.

3.3 Evaluation Method

Intent Classification Evaluating generative mod-
els for a classification task is not straightforward.
This is further complicated by the fact that our
model generates a canonical form identifying the
intent of a given user utterance. We propose two
methods to cast this generation problem to a classi-
fication setting. The difficulty arises from the fact
that generated sequences very often differ from the
exact gold truth sequence that the model sees as
part of training. We utilize two approaches based
on associating the generated canonical form to its
closest label, i.e., a nearest neighbor search. Once
the canonical form label has been identified as the
prediction, it becomes trivial to compute the clas-
sification accuracy. Since we already have a one-
to-one mapping between canonical form labels and
the discrete intent label, we can easily measure the
performance of our model.

• Using Fasttext Embeddings (Bojanowski
et al., 2016): We take the mean of all the
embedding vectors of the generated canonical
form and consider the vector obtained to be
the representation of the whole sequence. We
compute similar vectors for all the canonical
form labels and consider the canonical form
label that has the maximum cosine similarity

26

with the generated one as the model’s predic-
tion.

• Using Sentence Transformers (Reimers and
Gurevych, 2019): We use the miniLM-QA
(Wang et al., 2020) transformer model that
has been pretrained on multiple datasets
on the text entailment/semantic search task,
i.e., given a query and a set of keys (docu-
ments/labels), it ranks the keys in order of
relevance. We give as input to the model the
generated canonical form (query) and the list
of canonical form labels (keys). The model
then returns the closest canonical form label
to the generated canonical form which we con-
sider as the prediction.

3.4 Baselines
We consider the following baselines for the intent
classification task.

• BERT-based finetuned model (Intent Clas-
sification): We finetune BERT models on
the datasets described in section 3.1. While
some of the Megatron-GPT models we use
are larger than the BERT model in terms of
number of parameters, it should be noted that
the LM parameters are frozen during the train-
ing stage of p-tuning and only the weights of
the LSTM (14M parameters) are updated.

3.5 Evaluation Settings
We evaluate the performance of our model in two
settings: in-domain and out-of-domain.

3.5.1 In-Domain
This setting corresponds to the traditional dataset
splits where the train and test sets come from sim-
ilar distributions. We p-tune the Megatron-GPT
models on the train set and evaluate them on the
test set for intent classification.

3.5.2 Out-of-Domain
In this setting, we aim to explore the generalization
capability of LLMs. We hold out certain domains
from the train set and use utterances from the held
out domains as our test. This helps us understand
how well these LLMs can generalize to unseen
domains. The held out sets that we consider are:

• Schema Guided Dialogue (SGD): We hold
out utterances corresponding to bus bookings
and hotel reservations to form our test set.

The train set includes utterances from adja-
cent domains: flight booking and restaurant
reservations. This should be a relatively easy
setting for the language model to generalize
to.

• Virtual Assistant: To make things more chal-
lenging, we hold out utterances corresponding
to operating IOT devices and media consump-
tion commands (e.g., commands that are vari-
ants of "play" - play movie, play audiobook).
The train set does not have utterances from
similar domains and this setting is more chal-
lenging for the model.

We consider the generalization capability of the
model in two modes:

• Zero-shot: P-tune the model on the train set
and evaluate zero-shot on the unseen domain
test set.

• Few-shot: After p-tuning on the train set, we
do a second stage p-tuning on a set of k sam-
ples from the target domain. Unless otherwise
noted, k here is 5, 10, 50 or 100 samples.

The few-shot paradigm may be very useful for
dialogue system developers in a limited-resource
setting. Developers can implement new domains
using existing language models and a small set
of curated examples, without the burden and ex-
pense of retraining or providing a large number of
labelled samples.

4 Results

In this section, we review the quantitative perfor-
mance of the models for intent classification.

4.1 Intent Classification

We compute and list the accuracy of the baselines
and our p-tuned GPT model in identifying the in-
tent given the user utterance.

4.1.1 In-domain
We find that both the p-tuned GPT model as well
as the BERT baseline perform very well on the
standard in-domain split where both the train and
test set come from the same distribution (Table
2). The classification accuracy of Megatron-GPT
increases as we increase the model size. The trend
of results remains consistent for both the SGD and
Assistant datasets.

27

Model SGD Assistant

BERT-Large 0.88 0.91

Megatron-GPT - 345M 0.87 0.88
Megatron-GPT - 1.3B 0.91 0.92
Megatron-GPT - 5B 0.95 0.94

Table 2: Classification Accuracy on test sets of the SGD
and Assistant datasets

4.1.2 Out-of-Domain
The out-of-domain setting is where the advantage
of using a LLM becomes apparent. It is not feasible
to expect a finetuned BERT model to generalize
to an unseen domain not present in the train set.
Such models continue to predict that the intent
belongs to one of the intent labels they see during
training. The p-tuned Megatron-GPT models, on
the other hand, show impressive zero-shot and few-
shot generalization capabilities on the SGD dataset
(Table 3). For instance, having seen intents such as
"buy flight roundtrip tickets" when presented with
utterances for Flight Reservations in training, we
can expect the model to reasonably generalize to
utterances from Bus Reservations with utterances
like "Get me a return trip on the bus" with the
model’s prediction for the intent being "buy bus
roundtrip tickets".

Mode Bus Booking Hotel Reservation

345M 1.3B 5B 345M 1.3B 5B

Zero Shot 0.755 0.762 0.787 0.379 0.448 0.467
FS - 10 samples 0.907 0.789 0.942 0.793 0.720 0.939
FS - 50 samples 0.953 0.965 0.975 0.957 0.968 0.970

Table 3: Zero-shot and Few Shot (FS) performance on
the held out domains of the SGD dataset. The columns
indicate the size of the Megatron-GPT model.

In the Assistant dataset, the p-tuned models face
the same issue as the BERT models: they struggle
to generalize to completely unseen domains and the
performance is close to random (Table 4). Unlike in
SGD, the held-out domains do not have sufficiently
similar domains in training from which to general-
ize. However, the few-shot setting holds promise as
the performance of the models improves with few
samples. Since the held out domains have far more
intents compared to the held out domains from the
SGD dataset, we employ stratified sampling to en-
sure that the few-shot examples are representative
of all intents in the domain.

Mode IOT devices Media Consumption

345M 1.3B 5B 345M 1.3B 5B

Zero Shot 0.096 0.011 0.022 0.037 0.008 0.012
FS - 10 samples 0.62 0.71 0.75 0.58 0.62 0.68
FS - 50 samples 0.69 0.83 0.87 0.67 0.86 0.89

Table 4: Zero-shot and Few Shot (FS) performance
on the held out domains of the Assistant dataset. The
columns indicate the size of the Megatron-GPT model.

5 Discussion

The results on zero-shot and few-shot settings for
unseen domains demonstrate that p-tuning a LLM
to have intents that are more verbose than discrete
labels can be very helpful.

In this section, we analyze the impact of the
structure of canonical forms, what helps the lan-
guage model generalize, how sample efficient are
these language models and what all this means for
a developer of chatbots and dialogue systems.

5.1 How important is framing the right
canonical form?

The phrasing of canonical forms has a signifi-
cant impact on zero-shot cross domain general-
ization. In our initial experiments, we observed
that the language models, especially the smaller
ones, sometimes rely on spurious correlations to
predict the intent. For instance, if the intent Search-
FlightOneWay is mapped to the canonical form
search tickets for flight one way, the model corre-
lates the word ticket in both the user utterance and
canonical form to identify the intent. When we use
this model to predict the intent of user utterances
related to bus bookings in a zero-shot manner, the
model predicts that that the intent is related to a
flight booking as most utterances in the bus domain
contain the word ticket.

Mode Accuracy

345M 1.3B 5B

ZS - Original 0.08 0.13 0.21
ZS - Modified 0.755 0.762 0.787

Table 5: Zero shot (ZS) performance on utterances from
Bus Bookings. Original refers to having the canonical
form for flight bookings as search tickets for flight one
way which led to incorrect generalizations. Modified
refers to having the improved canonical form for flight
bookings as search for flights one way.

Rephrasing the canonical form for the intent

28

SearchFlightOneWay to search for flights one way
helps the model to avoid making the spurious corre-
lation and the performance in the zero-shot setting
(Table 5) is significantly improved.

Mode Accuracy

345M 1.3B

ZS - Original 0.08 0.13
FS 10 samples- Original 0.76 0.72
FS 20 samples - Original 0.84 0.87

Table 6: Zero shot (ZS) performance on utterances from
Bus Bookings. Original refers to having the canonical
form for flight bookings as search tickets for flight one
way which led to incorrect generalizations. Adding a
small number of examples resolves the error.

However, the few-shot setting (Table 6) allevi-
ates this problem of sensitivity of the model to the
canonical form structure. When we provide the
model with a few samples from the the target do-
main, it learns to associate that the important words
to distinguish between the domains are flight and
bus and not ticket.

5.2 What do good canonical forms looks like?
Based on our experiments, a set of good canonical
forms has the following properties:

• Similarity in structure: Use similar verbs for
similar actions/domains, e.g., book a flight,
book bus tickets, search for hotels, search
for restaurant reservations.

• Compositional: Using similar structures for
canonical forms in similar domains naturally
lends to compositionality. This makes it eas-
ier for the model to generalize in the zero-
shot/few-shot setting while still allowing the
developers to easily map the generations to a
supported service on the backend.

• Looks like natural language: Since LLMs
are pretrained on very large corpora of natural
language, the benefit of pre-training is realized
when the canonical forms resemble natural
language rather than complex semantic forms.
Making discrete intents look more like typical
verb phrases brings out the expressive nature
of language models.

Future work will explore and refine methods to
automate the creation of canonical forms.

5.3 Do we need the entire training set for
p-tuning?

We look for the fewest labelled samples for p-
tuning needed to get an accuracy close to accessing
the entire train set. We randomly sample k samples
per intent (k ∈ 5, 10, 20, 30) to form the train set
the model is p-tuned on, and evaluate on the same
test set as above. The train and test sets are from
the in-domain setting for both SGD (Table 7) and
Assistant (Table 8) datasets.

#Samples/Intent Train Size Accuracy

345M 1.3B 5B

10 370 0.77 0.81 0.827
20 740 0.82 0.83 0.844
30 1110 0.84 0.85 0.87

Table 7: Accuracy on the SGD test set when using only
k samples per intent. The columns indicate the size of
the Megatron-GPT model used.

#Samples/Intent Train Size Accuracy

345M 1.3B 5B

10 640 0.69 0.81 0.84
20 1280 0.74 0.84 0.91
30 1920 0.79 0.87 0.91

Table 8: Accuracy on the Assistant test set when using
only k samples per intent. The columns indicate the size
of the Megatron-GPT model used.

5.3.1 Comparison with BERT
We observe that Megatron-GPT is more sample
efficient than BERT-type models, even when ad-
justing for the number of parameters. We use the
345M parameter version of the Megatron-GPT for
a fair comparison. We finetune BERT-Large and
p-tune the GPT model on the same training subset
of the SGD dataset. Results are shown in Table 9.

With a small number of samples (10 per intent),
both Megatron-GPT and BERT-Large have very
similar performance. But with small increases in
the number of labelled samples per intent in the
train set, we observe that the performance of the
GPT model improves faster than the BERT model.

5.4 What does this mean for dialogue system
developers?

Task-oriented dialogue systems are challenging to
create. Most common frameworks cast utterances

29

#Samples/Intent Accuracy

345M BERT

10 0.77 0.75
20 0.82 0.767
30 0.84 0.773

Table 9: Accuracy on the SGD test set when using only k
samples per intent. MegatronGPT-345M is more sample
efficient than BERT-Large.

into discrete intents and slots, but it is often not
clear how to define these concepts for a given de-
sign. Such frameworks also employ NLU models
that often require the creation of either rule-based
grammars or a significantly large corpus of labelled
samples. While ML-based approaches have come
a long way, distributional shifts in the way utter-
ances are structured can degrade performance. By
leveraging LLMs, our approach reduces the ef-
fort involved in framing intents and training classi-
fiers. Because of the flexibility in canonical form
schemas and the sample efficiency of p-tuning, we
argue that development of new task-oriented dia-
logues becomes simpler and faster. We envision a
setting where a model publisher trains and releases
a general-purpose p-tuned language model cover-
ing a broad set of cases. A conversation designer
may then write a small set of example queries, sub-
mit a brief p-tuning job, and deploy a new applica-
tion with minimal cost.

6 Conclusion

We explore the use of Large Language Models and
p-tuning for intent classification in task-oriented
dialogue systems. We show framing intent labels
into more verbose forms allows LMs to exploit the
underlying structure better and exhibit impressive
zero-shot and few-shot generalization. We also
analyze how important the phrasing of the verbose
forms are and how many samples are needed to
get good quantitative performance. We hope that
this work on using sample efficient LLMs serves to
motivate further research in making ToD systems
simpler and quicker to develop.

7 Acknowledgements

The authors would like to thank Zhilin Wang, Vir-
ginia Adams, Sandeep Subramanian, Vlad Getse-
levich, Prasoon Varshney, and Jonathan Cohen for
many useful discussions during the course of this

work.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2019. Benchmarking natural language
understanding services for building conversational
agents.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Anand
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. 2021. Efficient large-scale lan-
guage model training on gpu clusters using megatron-
lm.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342, Beijing,
China. Association for Computational Linguistics.

30

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2104.08691
https://doi.org/10.48550/ARXIV.2104.08691
https://doi.org/10.48550/ARXIV.2103.10385
https://doi.org/10.48550/ARXIV.2103.10385
https://doi.org/10.48550/ARXIV.1903.05566
https://doi.org/10.48550/ARXIV.1903.05566
https://doi.org/10.48550/ARXIV.1903.05566
https://doi.org/10.48550/ARXIV.2104.04473
https://doi.org/10.48550/ARXIV.2104.04473
https://doi.org/10.48550/ARXIV.2104.04473
https://doi.org/10.48550/ARXIV.1909.05855
https://doi.org/10.48550/ARXIV.1909.05855
https://doi.org/10.48550/ARXIV.1909.05855
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.48550/ARXIV.2002.10957
https://doi.org/10.48550/ARXIV.2002.10957
https://doi.org/10.48550/ARXIV.2002.10957
https://doi.org/10.3115/v1/P15-1129

