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Abstract

We present a multi-modal deep learning sys-
tem for the Multimedia Automatic Misogyny
Identification (MAMI) challenge, a SemEval
task of identifying and classifying misogynistic
messages in online memes. We adapt multi-
task learning for the multimodal subtasks of the
MAMI challenge to transfer knowledge among
the correlated subtasks. We also leverage on
ensemble learning for synergistic integration
of models individually trained for the subtasks.
We finally discuss about errors of the system to
provide useful insights for future work.

1 Introduction

Multimodal machine learning processes data from
different modalities (e.g. visual, auditory, lingual)
to infer their combined meaning. This topic has
seen tremendous development, encompassing vi-
sual question answering (VQA) (Stanislaw Antol,
2015), image captioning (Chen et al., 2015), mul-
timodal classification and beyond. SemEval 2022
Task 5 “Multimedia Automatic Misogyny Identifi-
cation” (MAMI) (Fersini et al., 2022) also requires
multimodal machine learning to analyze both vi-
sual and textual information from memes (image,
caption) in order to identify and classify misogynis-
tic memes. The MAMI challenge has the following
two subtasks:

• Subtask A: Classification of a meme as either
misogynistic or not

• Subtask B: Categorisation of the type of
misogyny if the meme is identified as misog-
ynistic in Subtask A. There are 4 types (or
sub-categories) of misogyny: shaming, stereo-
type, objectification and violence

As introduced by a multimodal research survey
(Baltrušaitis et al., 2019), data representation, fu-
sion, and co-learning are the primary challenges
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in multimodal classification problems. To address
those challenges, we explore the following relevant
topics: data augmentation, multimodal pre-training,
multi-task learning and ensemble learning. Data
augmentation helps enrich under-represented fea-
tures in data. Multimodal pre-trained models may
represent multimodal data like those of the MAMI
challenge better than unimodal pre-trained mod-
els. We also adapt multi-task learning to transfer
knowledge in training data among related tasks. As
the misogyny sub-categories are correlated to each
other, this approach is especially useful in Subtask
B. Our final predictions are determined by majority
voting among the top performing models.

This paper is structured as follows: In Section 2,
we describe the task description and dataset. Sec-
tion 3 explains in details the models and methods
we incorporate into the final system architecture.
Section 4 discusses the evaluation results of the
models and methods, including multi-task learning
and ensemble learning. We conduct error analysis
in Section 5 and conclude our findings in Section 6.

2 Task Description and Dataset

SemEval 2022 Task 5 “Multimedia Automatic
Misogyny Identification” (MAMI) (Fersini et al.,
2022) is a classification task that aims at identify-
ing and classifying misogynistic memes in social
media. While most memes are funny and harmless,
some deliver misogynistic content and have strong,
negative influence due to their high speed of spread.
Such memes need to be detected and removed from
online sites to avoid gender-related hate. In partic-
ular, the MAMI task targets memes, each of which
is essentially an image characterized by a pictorial
content with an overlaying text a posteriori intro-
duced by human, thus a multi-modal (image+text)
analytics task.

The MAMI task has two subtasks. In Subtask A,
participants must classify memes into misogynis-
tic and non-misogynistic. The evaluation metric is
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macro-average F1 score. Subtask B is to identify
the type of misogyny from the possibly overlap-
ping categories: shaming, stereotype, objectifica-
tion, and violence if the meme is misogynistic. The
evaluation metric is weighted-average F1-Measure,
where the F1 scores of the four categories are aver-
aged with weights by support, i.e. the number of
true instances for each label.

The training dataset contains 10,000 memes with
English captions, assembled from social media plat-
forms. Another 1,000 memes are given as the test
dataset. Besides memes in JPEG file format, the
task also provides transcriptions of memes cap-
tions in a separate text file. Parts of the data are
collected and evaluated as described in (Gasparini
et al., 2021).

3 Methods

We present a system that utilizes a multi-task learn-
ing method to deal with dependencies between the
subtasks, fills in the lacking parts of the training
dataset by using data augmentation methods, and
combines the outputs of multiple base models with
ensemble methods.

3.1 Multimodal Base Models

The Hateful Memes Challenge (Kiela et al., 2020b),
calling for state-of-the-art models for hate speech
detection in multimodal memes, published baseline
codes called MMF, which are modular and highly
scalable. We thus chose MMF as the codebase of
our base models. We extracted 100 features from
each meme with the image feature extraction func-
tion of MMF and the configurative specifications
produced by HateDetectron (Kiela et al., 2020b),
the second runner-up of the Hateful Memes Chal-
lenge. The feature extractor is backboned by Faster-
RCNN (Ren et al., 2015) and ResNet-152 (He et al.,
2016).

Below are detailed descriptions of all the base
models offered in MMF that we used.

Unimodal (text): We included a unimodal
model as a control group. The modality for this
model is configurable. After experimentation, we
decided to go for text as the single modality for
prediction, as it rendered better results than using
only images or feature vectors.

ConcatBOW/BERT/MMF: MMF has baseline
models for multimodal classification tasks. We ob-
tain text representations from bag-of-word (BOW),
BERT, and MMF models and image representa-

tions as feature vectors. The “Concat” models
concatenate the two representations (text+image)
as fusion, and the fusion results are then passed
through a Multi-Layer Perceptron (MLP) to output
predictions.

LateFusionMMF: The Late fusion model takes
the mean between the text and image representa-
tions, instead of concatenation.

ViLBERT: Vision-and-Language BERT (ViL-
BERT) (Lu et al., 2019) is a BERT-based multi-
modal model pre-trained on the Conceptual Cap-
tions (Sharma et al., 2018) dataset, comprising
captioned images. It uses two pre-trained strate-
gies: (1) reconstructing image regions or words for
masked inputs based on the unmasked portions and
(2) prediction of multimodal image-text alignment.

The fundamental difference from the original
BERT architecture lies in the attention mechanism,
with co-attention used in place of self-attention.
By exchanging key-value pairs in multi-headed at-
tention, ViLBERT conducts vision-attended lan-
guage attention in the visual stream and language-
attended vision attention in the linguistic stream.
ViLBERT has shown state-of-the-art performance
on multiple vision-and-language tasks.

Visual BERT: Like ViLBERT (Li et al., 2019),
Visual BERT is another BERT-based multimodal
model. It reuses the self-attention system in trans-
formers to implicitly match image regions with
texts. The visual embeddings comprise segment
embeddings, positional embeddings, and feature
vectors of bounding boxes, generated by Faster-
RCNN (Ren et al., 2015). They are then fed into the
transformer together with text embeddings. With
visual and linguistic inputs pre-trained together,
the model can discover interesting alignments and
implicitly construct effective joint representations.

Visual BERT was pre-trained task-agnostically
on the COCO (Chen et al., 2015) dataset for two
tasks: masked language modelling and sentence-
image prediction. For better adaptation to a par-
ticular domain, Visual BERT is usually fine-tuned
using masked language modelling on task data be-
fore it is applied to downstream tasks.

MMBT: The basic idea of Multimodal Bitrans-
formers (MMBT) (Kiela et al., 2020a) is to apply
self-attention to both modalities (i.e. text and im-
age) all at once. This is achieved by utilizing seg-
ment embeddings to differentiate between the two
modalities, the same method for typical question
answering tasks to separate question from para-

649



graph.
A fundamental difference between MMBT and

other self-supervised architectures like ViLBERT
and VisualBERT is that MMBT only pre-trains in-
dividual modalities unimodally. Such design has
the plug-and-go advantage if a better vision or lan-
guage model emerges. It is trivial to replace the
pre-trained models for different modalities since
they are pre-trained separately. On the other hand,
MMBT cannot fully gauge the powerful attention
mechanism on multimodal data during pre-training.

3.2 Multi-task Learning
Our baseline models’ results (see Section 4) show a
significant gap between Subtasks A and B and also
uneven performance among the misogynistic sub-
categories of Subtask B. This means the models
fall short of generalizing the meaning of misogyny.
Therefore, we adapted multi-task learning (MTL)
to uncover the shared knowledge among all the
misogynistic sub-categories.

A MTL learns multiple tasks simultaneously by
constructing a generalized representation for the
data in different yet related contexts. It is suitable
for our dataset since we have five inter-correlated
outputs (1 from Subtask A and 4 from Subtask
B). To realize multi-task learning, we altered the
architecture of the Visual BERT baseline model.
While the encoder portion was kept unchanged,
we duplicate the classification layer of the decoder
into five, each associated with a sigmoid layer for
prediction of one of the five outputs. We used
binary cross-entropy (BCE) loss combined with
Kullback–Leibler divergence loss (KL) as the loss
function and summed all the losses generated by in-
dividual classification layers. For comparison pur-
pose, we also tried MTL on only the four misogyny
types of Subtask B, but the five layers configuration
yielded better results.

In fact, we tried to fine-tune Visual BERT on
Subtask A first before further fine-tuning it on Sub-
task B, because we view the misogynistic classifi-
cation as the main task, and the type categorization
task stems from it. Contrary to our expectations, we
observed a decrease in model performance. Instead
of the misogyny classification inferring the types of
misogyny, the results could indicate that the types
of misogyny dictate the misogyny classification.

3.3 Data Augmentation
Upon inspection of the validation dataset errors,
we found that around 30% of them are blurry or

have low resolution, and that about 17% of them
express sarcasm against men but are misclassified
as misogyny. To address this issue, we created new
data by augmenting 10% of the original training set
that compare males with females. We augmented
them with nine transformations: (1) rotation, (2)
Gaussian noise, (3) blurring, (4) horizontal flip, (5)
contrast, (6) Affine transformation, (7) distortion,
(8) elastic transformation, and (9) change in hue
and saturation, with 100 memes per transformation.
This boosted the robustness of our model to deal
with various data qualities. The data augmentation
library we used is imgaug (Jung et al., 2020).

3.4 Ensemble Learning

Ensemble learning (Opitz and Maclin, 1999) is an
effective method that makes better achievements
by combining multiple models’ outputs. Taking ad-
vantage of the “wisdom of the crowd”, an ensemble
model can outperform a single contributing model.

Based on our baseline results (see Section 4),
all the baseline models except Concat BOW and
Unimodal Text have competency on at least one
subtask. Thus, the ensemble model pool only ex-
cludes the two underperforming models. We ex-
perimented with two ensemble strategies, 1) an
Multi-layer Perceptron (MLP) and 2) a majority
voting layer that averages output probabilities, and
compared their results, where both take as input
the concatenation of the outputs of the selected
baseline models and predict the final outputs per
subtask1.

4 Results

We show the evaluation results of the baseline mod-
els, multi-task learning and ensemble methods, and
then based on the results, present the overall archi-
tecture of the final system we used for our official
submission of the MAMI challenge in Section 4.4.

4.1 Baseline comparison

The baseline models serve as the starting point for
our experimentation. We trained and evaluated
all models included in Section 3.1 individually on
all subtasks (misogyny, shaming, stereotype, ob-
jectification, violence). Table 1 summarizes the
evaluation results.

1We refer to the lowercase "subtask" as the misogyny type
columns (misogyny, shaming, stereotype, objectification, and
violence), in comparison to the capitalized "Subtask" (Sub-
tasks A and B) in the MAMI challenge.
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Model Misogyny Shaming Sterotype Objectification Violence
Unimodal (text) 80.9% 68.8% 72.2% 74.7% 65.3%

ConcatBOW 74.9% 67.2% 63.5% 73.3% 64.0%
ConcatBERT 83.7% 68.0% 71.6% 77.5% 72.0%
ConcatMMF 84.4% 69.6% 72.7% 77.1% 74.0%
Late Fusion 82.8% 70.9% 72.3% 76.1% 69.1%
ViLBERT 83.4% 69.8% 72.1% 79.7% 75.2%

VisualBERT 84.4% 72.0% 73.8% 75.5% 71.5%
MMBT 82.3% 71.4% 70.9% 73.6% 67.2%

Table 1: Baseline performance evaluated on the validation set. Scores in this table are macro-averaged F1-scores.
The best three performance for each subtask are highlighted in bold.

Since there was no noticeable change in model
performance after we tuned the hyperparameters,
we set them as fixed values specified as follows:
Enabled early stopping, learning rate of 2e-05, ep-
silon of 1e-05, batch size of 16, learning rate ratio
of 0.6, and warm-up steps of 500.

As seen in Table 1, model performance varies
significantly from task to task. Among all the sub-
tasks, Shaming and Violence are the hardest to
learn, carrying a non-negligible difference of more
than 10% from the Misogyny subtask. This differ-
ence in performance will be addressed in the next
section.

An interesting note is that early fusion (Snoek
et al., 2005) models like Visual BERT are com-
parable to late fusion (Gunes and Piccardi, 2005)
models such as Concat BERT and MMBT. Based
on this finding, modal correlations may be picked
up at both the decision level as well as the low-
dimensional feature level, although the learnt cor-
relations could be different.

Concat BOW performs the worst since it uses
simple bags of words as text representation. Its
performance is even worse than the unimodal text
model. All other multimodal models achieved bet-
ter results than the unimodal model, showing the
involvement of visual information contributes to
the overall understanding of the meme contents.
We selected the best three models for each subtask
for later experiments.

4.2 Multi-task learning evaluation

The alteration of Visual BERT for multi-task learn-
ing resulted in an overall advancement of 2.6%
for Subtask B and a slight improvement of 1.3%
for Subtask A. We also explored different speci-
fications of the classification layers, adjusting the
number of hidden layers and activation functions.

Method Subtask A Subtask B
Top-3 models + MLP 71.6% 68.2%
Top-3 models + majority voting 66.1% 69.5%
Top-6 models + MLP 70.2% 67.9%
Top-6 models + majority voting 67.4% 69.2%

Table 2: Performance comparison between ensemble
learning methods. Scores in this table are of the metrics
used for Subtasks A and B, and evaluated on the test set.

However, none of them showed significant influ-
ence on model’s performance.

4.3 Ensemble evaluation

Table 2 summarizes the evaluation results of two
ensemble methods (MLP, majority voting) with
the top-k models (k=3,6)2. For each subtask, the
top-3 models used are highlighted in bold face in
Table 1, and all models except Concat BOW and
Unimodal Text are selected as the top-6 models.
Refer to Table 1 for the top-3 models selected for
each subtask.

The evaluation results of the ensemble methods
do not identify a single best method. The majority
voting with top-3 models shows the best perfor-
mance for Subtask B, while MLP is the best for
Subtask A. Based on these mixed results, we select
different models and ensemble methods for the two
Subtasks A and B, which is illustrated in the next
section.

4.4 Overall system architecture and
evaluation

After considering the evaluation results above, we
selected the following three models as parts of the
final system architecture:

2We refer to the lowercase "subtask" as the misogyny type
columns (misogyny, shaming, stereotype, objectification, and
violence), in comparison to the capitalized "Subtask" (Sub-
tasks A and B) in the MAMI challenge.
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Figure 1: The high-level architecture of the multimodal multitask learning and ensemble learning framework

1. A Visual BERT based multi-task learning
model

2. An ensemble learning model that feeds the
output probabilities from the top-3 models in-
dividually trained on each subtask to a Multi-
layer Perceptron (MLP)

3. An ensemble learning model that does major-
ity voting among the top-3 models individu-
ally trained on each subtask

In Subtask B, results are generated by applying yet
another majority voting layer to these three mod-
els. In Subtask A, results are directly taken from
the outputs of the ensemble model with MLP (the
second model on the list), since we found applying
majority voting to Subtask A produced suboptimal
results. During the evaluation phase of the competi-
tion, we achieved 71.6% in Subtask A and 70.6% in
Subtask B, ranked 4th and 6th on the leaderboard,
respectively. Figure 1 illustrates how the models
are integrated into the final system architecture.

5 Error Analysis

5.1 Analysis on Subtask A

Despite the competitiveness of our system, it still
misinterprets the misogyny of some memes in Sub-
task A. A deeper examination reveals the most com-
mon error clusters as discussed below.

First, memes often include references to news,
celebrities and cultural practices, e.g. those contain-
ing members of “the squad” in the 2019 US House
election. This issue may be addressed by detecting
entities in memes and collecting their details from
the Web to better represent the entities.

Second, the current system falls short of extract-
ing meaning from text positions in memes and the

order of sentences (e.g. four-frame mangas). This
issue may be addressed by correcting the sentence
order and learning their alignment to meme frames.

Third, memes of anti-violence propaganda are
often misclassified into the violence category since
they include violent-looking images, while the cap-
tion is about fighting against violence. In con-
trast, other misogynistic memes portray violent
acts against women in the caption and praise their
actions in the image, e.g. with a thumbs-up icon or
trophies.

Fourth, memes about comparison between men
and women are often confusing. We noticed that
these memes either mock males by comparing them
to females or describe the real difference between
males and females in a funny way. This issue may
be addressed by using data augmentation of switch-
ing gender-referring words (e.g. man, woman, boy,
girl) in the captions of those memes.

5.2 Analysis on Multi-task Learning

In the hold-out set from the training data, our model
achieved 83% for Subtask A and 73% for Sub-
task B. Nevertheless, the same model only yielded
69.7% and 67.5% on the test data. This discrep-
ancy may indicate that training and test data come
from different distributions. Conventional multi-
task learning is vulnerable to out-of-distribution
because it assumes the predicted targets are inde-
pendent given the input. Unfortunately, the target
sub-categories are dependent on each other. This
issue might be addressed by adapting, e.g. gen-
erative multi-task learning (Makino et al., 2022),
which considers the dependency between targets.
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6 Conclusion

In this paper, we presented our system for the Multi-
media Automatic Misogyny Identification (MAMI)
task in SemEval 2022. We augmented the data
with visual transformation techniques and extracted
features from memes by using multimodal base-
line models. We further enhanced the system by
adapting multi-task learning and ensemble learning
methods. We leave issues such as incorporating
external information about entities, frame layout in
memes, gender-related text data augmentation and
cross-subtask dependency in multi-task learning as
future works.
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