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Abstract

We describe our system for the SemEval
2022 task on detecting misogynous content in
memes. This is a pressing problem and we ex-
plore various methods ranging from traditional
machine learning to deep learning models such
as multimodal transformers. We propose a mul-
timodal BERT architecture that uses informa-
tion from both image and text. We further
incorporate common world knowledge from
pretrained CLIP and Urban dictionary. We
also provide qualitative analysis to support out
model. Our best performing model achieves an
F1 score of 0.679 on Task A (Rank 5) and 0.680
on Task B (Rank 13) of the hidden test set.
Our code is available at https://github.
com/paridhimaheshwari2708/MAMI.

1 Introduction

In this era of the internet, memes have become a
new form of communication, which predominantly
contain an image and a small caption. While their
general purpose is to invoke humour or irony, they
are also increasingly being used as a source of
harmful, offensive and misogynistic content. De-
tecting such content in an automated manner is an
important problem to avoid the spread of hate.

Memes pose a unique multimodal challenge as
their underlying implication is not just a simple
combination of the image and text, but a subtle
inference that comes naturally to humans. Another
complexity is that memes are highly contextual
and the component image and text pieces might be
completely uncorrelated. Understanding this fusion
of modalities is a challenging task for machines.
Our aim is to automatically identify misogynistic
multimodal memes using machine learning.

2 Related Work

The task of identifying misogyny in memes is a
relatively new area and is closely related to hate de-
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tection. While there has been a lot of work on iden-
tifying hateful content in unimodal data (Gandhi
et al., 2019; Fortuna and Nunes, 2018), there is
little work on multimodal hate detection. Recently,
Facebook Hateful Memes Challenge (Kiela et al.,
2020) explored fusion of text and vision models
along with advanced architectures like cross-modal
BERT (Lu et al., 2019). A major problem with
these large pretrained models is the domain gap be-
tween memes and training data. Some works try to
solve this with better pretraining (Zhu, 2020) and
disentangling hate from meme representations (Lee
et al., 2021). In this work, we build on these tech-
nologies for our specific use-case of misogyny de-
tection and incorporate common world knowledge
from Urban Dictionary (Wilson et al., 2020) and
CLIP (Radford et al., 2021) to address the domain
gap.

3 Method

3.1 Baselines
The task of detecting misogynistic content in
memes can be posed as a classification task based
on visual and textual features. We start with simple
baselines, namely SVM, Naive Bayes and Logistic
Regression, and also experiment with unimodal fea-
ture space, i.e, training classifiers with text only and
image only features. For text only models, we in-
corporate the TF-IDF technique with bag-of-words
concepts to compute features. To capture visual
cues from images, we leverage pretrained VGG-
16 (Simonyan and Zisserman, 2014) for feature
extraction. Since memes are a complex combina-
tion of text and image, we require cues from both
modalities and we therefore, move towards multi-
modal methods for classification.

3.2 Deep Learning Architectures
We leverage various Deep Learning (DL) tech-
niques for this task. We first start with unimodal
techniques, namely LSTM and CNN architectures.
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Model Binary Classification Multi-class Multi-label Classification

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Using Only Text Features

Logistic Regression 0.802 0.802 0.801 0.801 0.844 0.800 0.455 0.524
SVM 0.794 0.807 0.790 0.790 0.838 0.673 0.556 0.596
Naive Bayes 0.794 0.795 0.795 0.794 0.827 0.707 0.363 0.371

Using Only Image Features

Logistic Regression 0.634 0.634 0.634 0.634 0.762 0.462 0.399 0.425
SVM 0.631 0.631 0.631 0.631 0.767 0.468 0.385 0.417
Naive Bayes 0.633 0.632 0.632 0.632 0.677 0.441 0.558 0.480

Using Both Image and Text Features

Logistic Regression 0.760 0.760 0.759 0.634 0.808 0.583 0.516 0.545
SVM 0.786 0.786 0.786 0.786 0.818 0.593 0.577 0.584

Table 1: Evaluation of various baselines.

For text, we use the GloVe (Pennington et al., 2014)
embeddings to initialize individual words and pass
this sequence through an LSTM layer. Finally,
this embedding is fed to FC layers that outputs a
score for each class. For image, we extract the
feature representations from a pretrained VGG-
16 (Simonyan and Zisserman, 2014) model and
pass through a classifier head which is composed
of FC layers. All models are trained end-to-end
using binary cross entropy loss for every class inde-
pendently. Note that we do not pose this as softmax
classification as each meme can belong to multi-
ple classes simultaneously, i.e., multi-label classi-
fication. To handle class imbalance in the dataset,
we give more importance to the positive examples.
Specifically, we weigh the positive component of
the binary cross entropy loss with the ratio of nega-
tive to positive occurrences per class.

Since our data is inherently multimodal, we pro-
pose advanced DL methods that incorporate both
textual and visual features. This is important be-
cause memes are complex entities and the fusion of
both modalities is necessary to understand the full
meaning of the meme (which might not be apparent
from a single modality alone). We experiment with
the following mulitmodal networks:

1. CNN + LSTM: This architecture does a sim-
ple late-fusion of the two unimodal designs.
We concatenate image and text features and
pass through a FC classifier for prediction.

2. VQA: There has been significant work in mul-
timodal learning on Visual Question Answer-
ing, which requires subtle reasoning around
both modalities to answer complex queries.
Given similar reasoning in memes, we experi-
ment with the VQA model (Antol et al., 2015).

Both image and text (question) features are
transformed to a common space and fused via
element-wise product, which is then passed to
a FC layer to get class scores (answers).

3. MUTAN: This model (Ben-Younes et al.,
2017) tries to effectively mix and merge in-
formation from the two modalities. It uses
a multimodal Tucker decomposition to effi-
ciently parametrize bilinear interactions be-
tween visual and textual representations. It
demonstrates improved performance on the
visual question-answering task by learning in-
terpretable embedding spaces.

Recently, Bidirectional Encoder Representations
from Transformers (BERT) models (Devlin et al.,
2019) trained on large-corpus have proven to pro-
vide state-of-the-art results for diverse NLP applica-
tions. Given an input sentence, a pretrained BERT
model gives a hidden representation for each token
in the sentence along a pooled output for the entire
sentence. These representations are rich in contex-
tual knowledge and we explore different ways to
use this information as follows:

4. Concat BERT: The pooled output for text
is concatenated with the image feature, and
passed through a FC classifier.

5. Average BERT: Similar to the previous set-
ting, but the average of the final hidden state
is taken as the text feature.

6. Gated BERT: The final hidden state is aver-
aged to get text feature. We combine the text
and image feature using a Multimodal Gated
Layer (Ovalle et al., 2017), which weights rel-
evance of each modality and combines them
to output prediction classes.
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3.3 Common World Knowledge

Language in memes is informal and often contains
slang words. We propose to use the Urban dictio-
nary which is a crowd-sourced repository of com-
mon slangs along with their definitions. Particu-
larly, we initialize our constituent words with em-
beddings pretrained on the Urban Dictionary (Wil-
son et al., 2020) instead of GloVe vectors. These
features perform well on extrinsic tasks such as sen-
timent analysis and sarcasm detection where some
knowledge of colloquial language is required.

Popular vision algorithms (such as VGG-16) are
trained on object detection tasks and they require
explicit supervision from labels. This limits their
usability. More recently, pretraining on image-text
matching (Radford et al., 2021) has gained traction
by outperforming other methods. Since the images
are crawled from the internet, we believe that the
distribution captured by CLIP (Radford et al., 2021)
are more relevant and representative of the online
media today, and hence, more suitable for our task.

3.4 Joint Learning

In the previous sections, we were considering the
two tasks independently and training separate mod-
els. Given the synergy between the two tasks, we
propose a joint learning framework where we use
weight sharing between networks to exploit the
commonalities and learn improved features. We
propose two approaches to achieve this:

1. Multi-Task Learning: We start with a multi-
modal deep network as a shared embedding
layer for both modalities, and followed by two
different classifier heads, one for each task.

2. Hierarchical Learning: We utilize the inher-
ent hierarchy between the two tasks where
the second classifier kicks in only when the
probability for “misogynous" class from first
classifier is greater than 0.5. The model ar-
chitecture is same as the multi-task setup, but
now the second classifier head for finer catego-
rization is only trained on misogynous items.

4 Experiments and Results

4.1 Task and Dataset

We work on the “Multimedia Automatic Misog-
yny Identification" task (Fersini et al., 2022) at
SemEval 2022. The problem comprises of two
sub-tasks: (i) Binary Classification to categorize

a given meme as misogynous or not; (ii) Multi-
class Multi-label Classification to further classify
misogynous memes into fine-grained, overlapping
categories (shaming, stereotype, objectification, vi-
olence). Our dataset consists of 10,000 memes and
we partition them into 70% / 20% / 10% for train,
validation and test respectively. We only report
metrics on this data split as we do not have the
ground truth labels for the competition’s hidden
test set. We measure the performance using these
metrics: average accuracy per class, and weighted-
average precision, recall and F1 scores where the
weights are determined by the support of that class.

4.2 Textual and Visual Cues
Prior work on detecting sexism in memes (Fersini
et al., 2019) use specially curated textual and visual
cues. We curated the profanity scores for text using
a pretrained model on toxic comment classification
(Pearson coeff. -0.05), sentiment polarity from
Textblob (Pearson coeff. -0.012), and percentage
of skin in images (Pearson coeff. 0.125). Thus,
many intuitive cues showed no correlation with
misogyny, exemplifying the difficulty of our task.

4.3 Baselines
Table 1 presents the baseline results. We extend
these linear models to the multi-label setting as a
one-vs-all task, where separate classifier are trained
for each class. We observe the following: (i) Tex-
tual models perform better than image only models.
(ii) Performance of text + image models is similar
to text only methods, implying that TF-IDF vectors
are a strong indicator for meme classification.

4.4 Deep Learning Architectures
The results are tabulated in Table 2 and we make the
following observations: (i) Using both image and
text significantly improves performance over the
unimodal variants. We further provide qualitative
comparison of unimodal and multimodal methods
in Figure 1, which also illustrates the complexity
of the task and the subtle relations between the
two modalities. (ii) Similar to the baselines, text
only methods give better results than image only
methods. (iii) BERT-based models show significant
improvement in performance for multi-label classi-
fication task. (iv) For the multi-class, multi-label
classification problem, there is a skewed distribu-
tion of positive and negative examples within a
class. Hence, performance varies across different
classes, as shown in Figure 2. Here, training the
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Figure 1: Qualitative evaluation of Text Only, Image Only and Text + Image models.

Model Binary Classification Multi-class Multi-label Classification

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Using Only Text Features

LSTM 0.772 0.773 0.770 0.770 0.654 0.504 0.712 0.558
LSTM (CWK) 0.778 0.779 0.776 0.777 0.644 0.453 0.571 0.478

Using Only Image Features

CNN 0.717 0.727 0.712 0.711 0.673 0.497 0.629 0.524
CNN (CWK) 0.839 0.838 0.838 0.838 0.769 0.580 0.790 0.654

Using Both Image and Text Features

CNN + LSTM 0.799 0.798 0.799 0.798 0.700 0.522 0.761 0.598
VQA 0.785 0.789 0.787 0.784 0.669 0.503 0.821 0.599
MUTAN 0.821 0.821 0.820 0.820 0.639 0.483 0.855 0.594
Concat BERT 0.715 0.719 0.712 0.711 0.780 0.531 0.477 0.501
Average BERT 0.742 0.746 0.740 0.740 0.796 0.563 0.541 0.540
Gated BERT 0.728 0.728 0.727 0.727 0.800 0.587 0.523 0.553

CNN + LSTM (CWK) 0.836 0.837 0.834 0.835 0.770 0.585 0.798 0.658
VQA (CWK) 0.828 0.829 0.826 0.827 0.771 0.592 0.800 0.662
MUTAN (CWK) 0.828 0.827 0.827 0.827 0.781 0.607 0.791 0.670
Concat BERT (CWK) 0.840 0.841 0.841 0.840 0.798 0.628 0.723 0.658
Average BERT (CWK) 0.837 0.837 0.836 0.836 0.838 0.655 0.700 0.676
Gated BERT (CWK) 0.839 0.839 0.839 0.838 0.845 0.665 0.710 0.684

Table 2: Evaluation of various deep learning architectures. Here, CWK refers to common world knowledge sources,
namely Urban Dictionary (Wilson et al., 2020) and CLIP (Radford et al., 2021), for text and image respectively.

Model Binary Classification Multi-class Multi-label Classification

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Multi-Task Learning

CNN + LSTM (CWK) 0.832 0.833 0.830 0.831 0.750 0.598 0.810 0.662
VQA (CWK) 0.845 0.845 0.844 0.844 0.771 0.601 0.790 0.663
MUTAN (CWK) 0.836 0.835 0.835 0.835 0.769 0.585 0.803 0.658
Average BERT (CWK) 0.843 0.843 0.843 0.843 0.757 0.598 0.816 0.665
Concat BERT (CWK) 0.838 0.838 0.838 0.838 0.734 0.580 0.804 0.646
Gated BERT (CWK) 0.842 0.842 0.842 0.842 0.725 0.571 0.803 0.639

Hierarchical Learning

CNN + LSTM (CWK) 0.839 0.838 0.839 0.838 0.773 0.590 0.804 0.663
VQA (CWK) 0.843 0.842 0.842 0.842 0.770 0.598 0.794 0.662
MUTAN (CWK) 0.829 0.828 0.829 0.828 0.772 0.587 0.777 0.653
Average BERT (CWK) 0.842 0.842 0.842 0.842 0.799 0.613 0.769 0.671
Concat BERT (CWK) 0.838 0.838 0.838 0.838 0.796 0.609 0.751 0.661
Gated BERT (CWK) 0.835 0.835 0.835 0.835 0.788 0.599 0.761 0.658

Table 3: Evaluation of various deep learning architectures using joint learning techniques.
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models with weighted cross entropy plays an im-
portant role in the precision-recall trade off. Note
that F1 score is a better measure than accuracy
because of the class imbalance.

Figure 2: Class-wise performance across metrics.

Figure 3: Multimodal features projected into two dimen-
sional space along with misogynous-or-not labels.

4.5 Common World Knowledge
Incorporating Common World Knowledge (CWK)
from Urban Dictionary and CLIP provides a sub-
stantial boost in performance across all models,
and this is because visiolinguistic models are able
to learn more discriminative features. To illustrate
this, we consider two set of multimodal features
(with and without CWK) and run dimensionality
reduction using Uniform Manifold Approximation
and Projection (McInnes et al., 2018). We visual-
ize the feature space in lesser variables and plot
the misogynous-or-not class in Figure 3. It can be
seen that the features without CWK are not able
to differentiate between the classes, whereas fea-
tures with CWK result in better separation, and are
therefore, more effective for our task. We provide
further qualitative evidence in Figure 4.

4.6 Joint Learning
The results for multi-task and hierarchical learning
are presented in Table 3. We observe that there is
an improvement in the binary classification task,
and we reason that the joint learning paradigm
provides significantly new information about sub-
classes from the multi-class setting to the binary

Figure 4: Examples where Gated BERT fails, but Gated
BERT with CWK classifies the memes correctly.

task. However, results for the multi-class setting
are comparable to the independent models.

5 Conclusion and Future Work

Our work focused on the task of misogyny detec-
tion in multimodal memes. We demonstrated that
using a combination of visual and textual, i.e, multi-
modal features outperforms the unimodal counter-
parts. In addition to simple baselines, we have
also experimented with advanced DL architectures
inspired from VQA and multimodal transform-
ers. Further, we have shown how incorporating
common world knowledge from Urban dictionary
and pretrained CLIP can significantly help in iden-
tifying misogynistic content, along with qualita-
tive evidence. Finally, the proposed joint learning
paradigm can exploit the synergy between the two
tasks, instead of training models independently.
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