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Abstract

This paper describes my participation in the
SemEval-2022 Task 4: Patronizing and Conde-
scending Language Detection. I participate in
both subtasks: Patronizing and Condescending
Language (PCL) Identification and Patronizing
and Condescending Language Categorization,
with the main focus put on subtask 1. The ex-
periments compare pre-BERT neural network
(NN) based systems against post-BERT pre-
trained language model RoBERTa. This re-
search finds that NN-based systems in the ex-
periments perform worse on the task compared
to the pretrained language models. The top-
performing RoBERTa system is ranked 26 out
of 78 teams (F1-score: 54.64) in subtask 1, and
23 out of 49 teams (F1-score: 30.03) in subtask
2.

1 Introduction

An entity is considered to engage Patronizing and
Condescending Language (PCL) when its language
use presents a superior attitude towards others
or depicts them in a compassionate way (Pérez-
Almendros et al., 2020). Such language is of-
ten used toward vulnerable communities such as
women, refugees, and homeless people. These
unfair treatments of the vulnerable groups are be-
lieved to result in further exclusion and inequalities
in society. Compared to other types of harmful
language (e.g. hate speech), PCL is considered
more subtle and unconscious. Given the negative
effects of PCL on society and its subtle nature, en-
abling computers to identify and categorize PCL
presents an interesting technical challenge to the
NLP community.

This paper describes my participation in both
subtasks of the SemEval-2022 Task 4: Patronizing
and Condescending Language Detection (Pérez-
Almendros et al., 2022). Subtask 1, Patronizing
and Condescending Language Identification is a
binary text classification task to predict whether

a given paragraph contains PCL or not. Subtask
2, Patronizing and Condescending Language Cat-
egorization is a multi-label classification task to
identify the categories of a given paragraph accord-
ing to the taxonomy defined in Pérez-Almendros
et al. (2020), which categorizes PCL into 7 types:
1) Unbalanced power relations 2) Shallow solution
3) Presupposition 4) Authority voice 5) Metaphor
6) Compassion 7) The poorer, the merrier. The
dataset (Pérez-Almendros et al., 2020) contains an-
notated paragraphs in English, collected from news
stories in 20 English-speaking countries.1

The focus of my experiments is primarily on
subtask 1, meanwhile, this paper also proposes a
solution to subtask 2. For subtask 1, the exper-
iments compare pre-BERT neural network (NN)
based systems including a majority voting system
of NN models against pretrained language model
RoBERTa. The experiments start with building in-
dividual NN models from the most basic artificial
neural network (ANN) to long short-term memory
network (LSTM) models following previous work
on NN for text classification. It was found that
the NN-based systems in the experiments perform
worse on this task in comparison to the pretrained
language models. The best-performing NN-based
voting system could not outperform the RoBERTa
baseline model. For subtask 2, this paper simply
proposes a RoBERTa solution.

The code is released at: github.com/JINHXu/
PCL-Detection-SemEval2022-task4.

2 Background

Numerous previous research had been conducted
on the treatment of condescension and patroniza-
tion. The studies range in various areas from so-

119 countries and Hong Kong: Australia, Bangladesh,
Canada, Ghana, Ireland, India, Jamaica, Kenya, Sri, Lanka,
Malaysia, Nigeria, NewZealand, Philipines, Pakistan, Sin-
gapore, Tanzania, UK, United States, South Africa, and the
special administrative region of China, Hong Kong.
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ciolinguistics (Irisawa et al., 1993) to medicine
(Komrad, 1983). Whereas in the field of natural
language processing, automatically identifying or
categorizing PCL has been an understudied area.
Most research on harmful language detection has
focused on more explicit and aggressive topics such
as hateful speech (MacAvaney et al., 2019), offen-
sive language (Zampieri et al., 2019), and fake
news (Conroy et al., 2015). Only in recent years,
few in the research community have started to show
interest in enabling computers to identify conde-
scending language. Prior to this shared task, for
instance, Wang and Potts (2019) proposed an anno-
tated TalkDown corpus of condescending language
from social media.

3 Dataset

The corpus used for this shared task, the Don’t
Patronize Me! dataset is described in Pérez-
Almendros et al. (2020). The corpus consists of
10,637 paragraphs extracted from the News on Web
(NoW) corpus (Davies, 2013). The paragraphs
were selected according to 10 keywords related
to potentially vulnerable communities (disabled,
homeless, hopeless, immigrant, in need, migrant,
poor families, refugee, vulnerable, and women).
And for each keyword, a similar number of para-
graphs were chosen for each of the 20 English-
speaking countries.2 Each paragraph is annotated
with a true/false label indicating whether it con-
tains PCL or not, and the ones that contain PCL are
annotated with a category label. Each category la-
bel is a set of 7 binary predictions, each prediction
indicates the existence of a specific type of PCL.

The dataset is highly imbalanced. The
POS:NEG ratio is approximately 1:10, which poses
a challenge to the predictive modeling process. In
the experiments of this paper, various strategies
were employed in order to deal with the imbalance
in data. The following sections will describe these
strategies in detail.

Additionally, the shared task provides a compara-
ble 80/20 split of the training data for development.
In the experiments of this paper, the same split was
used to train models and generate predictions in the
development stage.

2Except for Hong Kong, which is not a country.

4 Model

4.1 Preprocessing

In the preliminary experiments, it was found that
preprocessing data by removing stop words de-
creases model performance. Thus in the following
model training process, the text data are used as-is.
Furthermore, in order to deal with data imbalance,
various approaches including data oversampling,
undersampling, and setting class weights were ex-
perimented with. The neural network models were
found in preliminary experiments to work the best
with the original data, with class weights set to 10:1
according to the POS:NEG ratio in data. Whereas
the RoBERTa models present the best performance
with oversampled data with default class weights.

4.2 Neural Network Models

The experiments start with exploring NN models
for the binary text classification subtask. Previ-
ous work has shown that linear classic machine
learning models such as Linear SVM (Suthaharan,
2016), Bernoulli Naive Bayes (Webb et al., 2010),
and Logistic Regression (Wright, 1995) have ad-
vanced performance on binary text classification
with proper feature engineering. This paper is, how-
ever, interested in exploring neural network solu-
tions to the task, given the sufficient size of the
dataset.

Neural network models have been regarded to
be capable of achieving remarkable performance
on text classification. In addition to the popular
LSTM (Hochreiter and Schmidhuber, 1997) mod-
els, some basic ANN (McCulloch and Pitts, 1943)
models have also been proved in previous work
to perform well on the task of binary text classi-
fication. The experiments of this paper start with
building individual NN models from the most basic
ANN models to the more sophisticated LSTM mod-
els. Furthermore, in order to continue improving
system performance from the individual models,
a majority voting system that uses the predictions
of both of the best-performing ANN and LSTM
models was built.

4.2.1 Basic ANNs
Common basic ANN architectures for binary text
classification tasks typically consist of an Embed-
ding layer, a pooling layer of different types (av-
erage, minimum, maximum), and various dense
layers. Following the previous work, the ex-
periments start with building a baseline ANN
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model using a GloVe (Pennington et al., 2014)
embedding layer for word representation, with a
GlobalAveragePooling1D built on top of it,
followed by a ReLU layer, and a sigmoid layer
to generate predictions. In the preliminary experi-
ments, various types of pooling were tried, and the
model with the GlobalAveragePooling1D
layer presented the best performance. The con-
fidence threshold was initially set to 0.5, which
resulted in low precision and high recall. Thus the
threshold was gradually increased in experiments,
with 0.7 found to generate the best predictions in
the development stage.

In order to improve the ANN model from the
baseline, more dense layers were added to the net-
work gradually. Since there are no rules of thumb in
building a neural network, the strategy employed in
this experiment is to continue adding dense layers
of tanh and ReLU to the baseline model before the
output layer. The F-score reaches a peak value af-
ter two additional tanh layers with a ReLU layer in
between were added to the baseline model. Adding
more dense layers did not further help increase the
model performance in the experiments.

4.2.2 LSTM
The LSTM model uses the same GloVe embedding
layer for word representation, with a single layer
of LSTM units (output dimension size 60) built
on top of it. A GlobalMaxPool1D layer is built
on top of the LSTM layer, followed by a ReLU
layer, and a sigmoid layer to generate predictions.
The dropout rate is set to 0.1. With the confidence
threshold set to 0.5, relatively even precision and
recall were obtained.

4.2.3 NN voting system
NN model performance can be unstable in each
run, this was also confirmed in the experiments of
this paper. In order to handle the instability, also to
continue increasing system performance from the
individual models, a majority voting system based
on both NN models was built. The system consid-
ers the predictions of both the ANN and the LSTM
models in two separate runs, which results in four
votes in total. The systems prediction for each
paragraph is then based on the majority vote of
the four votes produced by both models in two runs.

All NN models in the experiments are im-
plemented using tensorflow.keras (Chollet
et al., 2015). During training, each model uses 10%

of data for validation, with class weights set to 10:1
as mentioned in a previous section.

The hyperparameter tuning process in this ex-
periment focuses on batch size and the number of
training epochs. For each model, batch sizes of 16,
32, 64, 128, and training epochs of 10, 50, 100 were
tried. All models present the best performance with
the number of training epochs set to 50. The LSTM
model works the best with training batch size of
128, and ANN models with 32.

4.3 Pretrained Language Model: RoBERTa
For both shared tasks, this paper proposes a
RoBERTa (Liu et al., 2019) solution. RoBERTa
is regarded as an improved pretraining procedure
from BERT (Devlin et al., 2018), and it is able
to match or exceed the performance of all post-
BERT methods. All pre-trained language mod-
els in the experiments are implemented using
the simpletransformers library (Rajapakse,
2019).

In subtask 1, the shared-task provides a baseline
roberta-base model with default configura-
tions, trained on undersampled data. On top of this
work, I further tuned the hyperparameters (mainly
the number of training epochs, in the search space:
1, 2, 3, 5, 10) and improved model configurations
using manually oversampled/undersampled PCL
data of various POS:NEG ratios, class weights for
fine-tuning. In addition to the roberta-base
model used in the baseline model, I also experi-
mented with a number community models3 alterna-
tive to roberta-base. Among the community
models, the experiments mainly focus on BERT-
and RoBERTa-based models for toxic language de-
tection and sentiment analysis, given the similarity
and relevance of the tasks to PCL detection. Ap-
pendix A lists the community models tried in the
experiments. However, none of these community
models in Appendix A turned out to work better
than roberta-base in my experiments. I be-
lieve the models are too specialized in their own
tasks (e.g. sentiment analysis, toxic language de-
tection), therefore resulting in poor performance
on the PCL detection task.

The best-performing model in the development
stage is a roberta-base model, with the num-
ber of training epochs set to 1, maximum input
sequence length increased to 500.4 The data was

3A list of community models can be found on the website:
huggingface.co/models.

4The longest paragraph in training data is of the length
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balanced by manually repeating all positive data
instances 9 times, and keeping the same number of
negative data instances for training. The balanced
dataset results in 8937 data instances of each class
for training. In order to reduce training time, GPUs
were used for model training and inference. All
RoBERTa-related experiments were conducted on
Google Colab.5

In subtask 2, the shared-task also provides
a RoBERTa baseline model configured with
roberta-base model, with default configura-
tions. The baseline model is trained on undersam-
pled data (794 positive data instances, 397 negative
data instances). I simply increased the maximum
input sequence length to 500 from the baseline
model and oversampled data to obtain 7146 posi-
tive data instances and 7146 negative data instances
for training.

5 Results

5.1 Subtask 1: PCL Detection

Model Precision Recall F-score
ANNbaseline 32.63 39.19 35.61
ANN 36.50 46.23 40.79
LSTM 41.44 46.23 43.70
voting_NN 46.29 40.70 43.32
RoBERTabaseline 40.98 50.25 45.14
RoBERTa-base 51.15 66.83 57.95
BERT-emotion 35.93 41.7 38.6
RoBERTa-toxic 37.5 66.33 47.91

Table 1: Model performance on development data.

Table 1 shows the precision, recall, and F1-score
of the models in the development stage. Among the
neural network systems, the LSTM model presents
the most advanced performance with an F-score of
43.7. Meanwhile, the voting system has an F-score
(43.32) only slightly lower than the LSTM model.
The F-score of the ANN model is lower than the
LSTM model, however, the performance gap is
not huge. Nevertheless, the best-performing neural
network based system LSTM does not outperform
the RoBERTa baseline model.

The tuned RoBERTa-base model has the highest
score of 57.8 among all systems in the develop-
ment stage. As mentioned in a previous section,

between 400 and 500, in case of future longer data instances
to predict on, the model’s maximum input sequence length is
set to 500.

5colab.research.google.com/

the community models pretrained on sentiment or
toxicity language data present poor performance
on the PCL data compared to the base model of
RoBERTa.6 Overall, for each model in the devel-
opment stage, the difference between precision and
recall is not vast, except for the tuned RoBERTa
model and the toxicity model of RoBERTa.

Model Precision Recall F-score
ANNbaseline 28.34 48.90 35.88
ANN 26.62 67.19 38.14
LSTM 38.31 50.16 43.44
voting_NN 48.50 40.69 44.25
RoBERTabaseline 39.02 62.78 48.13
RoBERTa-base 46.19 66.88 54.64
BERT-emotion 36.54 35.96 36.25
RoBERTa-toxic 25.19 84.54 38.81

Table 2: Model performance on test data.

Table 2 presents model performance on the test
data in the evaluation stage. It is notable that among
the neural network models, the top-performing sys-
tem on test data becomes the voting system (F-
score: 44.25) instead of the LSTM model, which
performs the best in the development stage. The F-
score of the voting system in the evaluation stage is
also higher than in the development stage. Nonethe-
less, as the top-performing neural network based
system in the evaluation stage, the NN voting sys-
tem presents an F-score still lower than that of the
RoBERTa baseline model (F-score 48.13). Both
the LSTM and the ANN model F-score decreased
from in the development stage. While the baseline
ANN model presents a similar F-score on the test
data to that on the development data. In general,
in the evaluation stage, the gap between precision
and recall is rather big for both the ANN baseline
and the ANN model, whereas it is small for the
LSTM model and the NN voting system. By com-
paring the performance of the neural network based
systems during the development stage to the eval-
uation stage, it can be seen that the performance
of the ANN models is less stable compared to the
LSTM and the voting system.

The tuned RoBERTa-base model is still the top
performer among all models in the evaluation stage,
with an F-score of 54.64. However, this score de-
creased from in the development stage. While for
the RoBERTa baseline model, the F-score in the

6Only the performance of two of the community models
tried in the experiments are presented in the tables.
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evaluation stage is higher than in the development
stage. As for the two community models, their
performance on test data is also worse than on
the development data. Overall, every RoBERTa
model shows higher recall than precision with a
notable gap. This is also true for the ANN mod-
els as mentioned in the previous paragraph. These
models produce more false positives than false neg-
atives. While for the BERT-based emotional model,
it shows similar precision and recall, although also
a low F-score. In general, for every model in the
evaluation stage except for the BERT model, the
gap between precision and recall further increased
from that in the development stage.

5.2 Subtask 2: PCL Categorization

F-score RoBERTabaseline RoBERTa

Unb. power rel. 35.35 55.94
Shallow solu. 00.00 31.74
Presupposition 29.63 24.44
Authority voice. 00.00 19.35
Metaphor 00.00 23.88
Compassion 28.78 45.83
The p., the mer. 00.00 15.38
Average 13.40 30.94

Table 3: Model performance on development data.

Table 3 presents the per-class and average F-
scores of the RoBERTa baseline model and the
proposed RoBERTa model for subtask 2 in the de-
velopment stage. The proposed RoBERTa model is
able to produce a higher F-score for each class with
the exception of the Presupposition category. Over-
all, the average F-score is improved from baseline
by around 17%.

F-score RoBERTabaseline RoBERTa

Unb. power rel. 35.35 54.38
Shallow solu. 00.00 47.06
Presupposition 16.67 26.92
Authority voice. 00.00 24.06
Metaphor 00.00 11.11
Compassion 20.87 46.72
The p., the mer. 00.00 00.00
Average 10.41 30.03

Table 4: Model performance on test data.

Table 4 presents the per-class and average F-
scores of the RoBERTa baseline model and the

proposed RoBERTa model for subtask 2 in the eval-
uation stage. As can be seen from the table, the
proposed RoBERTa model increased the per-class
F-score from the baseline model for each category
except for only the the poorer the merrier class, for
which neither the baseline model nor the proposed
model is able to detect. The average F-score of
the proposed model is also increased from that of
the baseline model. However, the score slightly
decreased in the evaluation stage from in the devel-
opment stage.

6 Conclusion

The experiments of this paper compare some
of the pre-BERT neural network based systems
against the post-BERT pretrained language model
RoBERTa. The experiments start with building
individual NN models from the most basic ANN
models to the more sophisticated LSTM models,
and create a majority voting system based on the
individual NN models. It was found that the NN-
based systems in the experiments perform worse on
the task compared to the RoBERTa baseline model.
And the community models pretrained on relevant
data such as sentiment and toxicity data turn out to
be too specialized in their own task thus resulting
in poor performance on the PCL data compared to
the RoBERTa-base model.

This paper explores neural network models
mainly the basic ANN and LSTM models. Future
work should also consider convolutional neural net-
works (CNN) for PCL detection. In addition to
the neural networks, I suggest also investigating
classic machine learning models such as Logistic
Regression, as well as indicative linguistic features
of PCL for feature engineering. Furthermore, on
top of the RoBERTa-base model, I propose to pre-
train a RoBERTa model using the TalkDown corpus
proposed in Wang and Potts (2019), and fine-tune
the pretrained model using the PCL data. Finally,
future work should run further error analysis of the
models to improve performance.
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