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Abstract

This paper presents an overview of Task 4 at
SemEval-2022, which was focused on detect-
ing Patronizing and Condescending Language
(PCL) towards vulnerable communities. Two
sub-tasks were considered: a binary classifica-
tion task, where participants needed to classify
a given paragraph as containing PCL or not,
and a multi-label classification task, where par-
ticipants needed to identify which types of PCL
are present (if any). The task attracted 77 teams.
We provide an overview of how the task was
organized, discuss the techniques that were em-
ployed by the different participants, and sum-
marize the main resulting insights about PCL
detection and categorization.

1 Introduction

The study of unfair, misleading or offensive lan-
guage has attracted the interest of many scholars
from the NLP research community. Most rele-
vant tasks in this context focus on explicit, aggres-
sive and flagrant phenomena, such as fake news
detection or fact-checking (Conroy et al., 2015;
Nakov et al., 2018; Atanasova et al., 2019; Barron-
Cedeno et al., 2020); detecting propaganda tech-
niques (Da San Martino et al., 2020); modeling
offensive language (Zampieri et al., 2019, 2020)
identifying hate speech (Basile et al., 2019); and ru-
mour propagation (Derczynski et al., 2017). How-
ever, there also exist subtler but equally harmful
types of language, which have received less atten-
tion by the NLP community, and which, due to
their subtle nature, we can expect to be more diffi-
cult to detect. This is the case, among others, for
Patronizing and Condescending Language (PCL),
which was the focus of Task 4 at SemEval-2022.
An entity engages in patronizing or condescend-
ing communication when its use of language re-
veals a superior attitude towards others. These
attitudes, when normalized, routinize discrimina-
tion and make it less visible (Ng, 2007). Further-
more, the use of PCL is often unconscious and

well-intended, especially when referring to vulner-
able communities (Wilson and Gutierrez, 1985;
Merskin, 2011). This good will can make PCL
especially harmful, as the audience receives this
discriminatory language with low defense and is
often unaware of its effects.

Research in sociolinguistics presents PCL as a
subtle, often unconscious but harmful and discrim-
inative kind of language (Mendelsohn et al., 2020).
It creates and feeds stereotypes (Fiske, 1993),
which result in greater exclusion, rumour spread-
ing and misinformation (Nolan and Mikami, 2013).
PCL also tends to strengthen power-knowledge re-
lationships (Foucault, 1980), calling for charitable
action instead of cooperation and presenting those
who can help as saviours of those in a less privi-
leged position (Bell, 2013; Straubhaar, 2015). Fur-
thermore, PCL tends to conceal who is responsible
for very deep-rooted societal problems, sometimes
by implicitly or explicitly blaming the underprivi-
leged communities or individuals for their situation,
and often involves ephemeral and simple solutions.
(Chouliaraki, 2010). The use of PCL by privileged
communities has also been related to the so-called
pornography of poverty (Nathanson, 2013), a com-
munication style that depicts vulnerable situations
with a pity discourse to move a target audience to
charitable action and/or compassionate attitudes.

While the negative impact of PCL, both in so-
cial interactions and in corporate and political dis-
course, has been extensively studied in the social
sciences, it still remains an under-explored phe-
nomenon in NLP. Nonetheless, we believe that PCL
detection offers a number of important challenges
for NLP research, which warrant more work in
this area, especially given the societal benefits that
would result. For instance, given its subtle and
subjective nature, we can expect PCL detection to
be harder than tasks that are focused on more fla-
grant phenomena. Moreover, PCL detection often
involves the need for an implied understanding of
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human values and ethics, which requires a form
of commonsense reasoning that NLP models are
likely to struggle with. In this context, we have
organized SemEval 2022 Task 4: Patronizing and
Condescending Language (PCL) Detection. This
task has attracted more than 300 participants, orga-
nized in 77 teams, during the official competition.
The competition remains open on Codal.ab to en-
courage further research on this topic'.

2 Related Work

As already mentioned in the introduction, PCL has
been extensively studied within the context of so-
ciolinguistics (Margi¢, 2017; Giles et al., 1993;
Huckin, 2002; Chouliaraki, 2006). Within NLP,
however, modelling of patronizing discourse has
only received limited attention. As a notable excep-
tion, Wang and Potts (2019) compiled a corpus of
Reddit comments, which were annotated as using
a condescending tone or not. Note that in contrast
to our SemEval task, their work did not specif-
ically focus on vulnerable communities. In our
previous work (Perez-Almendros et al., 2020), we
introduced Don’t Patronize Me!, which is, to the
best of our knowledge, the first annotated corpus of
PCL towards vulnerable communities. This corpus
was used as the training data for the SemEval task.
Some other works have studied types of discourse
that are highly related to condescension, including
Sap et al. (2020), who studied how certain uses
of language indicate power relations, Mendelsohn
et al. (2020), who discussed the dehumanization of
minorities through language and Zhou and Jurgens
(2020), who investigated how some expressions of
condolences and empathy interplay with authorita-
tive voices in online communities.

3 Dataset

The seed material for this task is Don’t Patronize
Me! (DPM), an annotated dataset with Patronizing
and Condescending Language towards vulnerable
communities, which was introduced in our previ-
ous work (Perez-Almendros et al., 2020). This
dataset contains 10,469 paragraphs, which were
used as the training set for the SemEval task. To
create the test set for this task, we annotated 3,898
additional paragraphs, following the same process.
All paragraphs were extracted from news stories
from media in 20 English speaking countries, origi-

"https://competitions.codalab.org/competitions/34344

nally provided by the News on Web (NoW) corpus?
(Davies, 2013).

We used a keyword-based strategy to collect
paragraphs, focusing on texts in which vulnera-
ble communities are mentioned (e.g., refugees or
homeless). The data was annotated by three anno-
tators, with backgrounds in communication, media
and data science. For the main dataset, two anno-
tators annotated the instances with the following
labels: O (not PCL), 1 (borderline), and 2 (PCL),
achieving an inter-annotator agreement (IAA) of
41% for the raw annotations and 61% when remov-
ing borderline cases. For all the total disagreements
(paragraphs labeled 0 by one annotator and 2 by
the other), the third annotator acted as a referee,
providing a final label. The final dataset uses a
scale from O to 4, indicating the level of agreement
between the annotators. Labels 0 and 4 correspond
to clearly not condescending and clearly conde-
scending (i.e. both annotators assigned O or both
assigned 2), label 2 means that both annotators
marked that paragraph as a borderline case (1-1),
and labels 1 and 3 correspond to cases where either
one of the annotators assigned the borderline label
(0-1 or 1-2), or there was a disagreement that was
resolved by the third annotator. Each positive ex-
ample from the dataset is furthermore labelled with
one or more PCL categories. We briefly recall the
meaning of these categories.

Unbalanced power relations (UNB): the author
entitles themselves as being in a privileged sit-
uation, considering themselves as saviours of
those in need (Bell, 2013; Straubhaar, 2015).

Shallow solution (SHAL): a charitable, superfi-
cial and short-term action is presented as life
changing.

Presupposition (PRES): stereotypes and clichés
are used to describe a community, relying on
assumptions without having all the informa-
tion.

Authority voice (AUTH): the author stands as
spokesperson and defendant of the commu-
nity or individual and/or allows themselves
to give expert advice about how to overcome
underprivileged situations.

Metaphor (MET): the author describes a diffi-
cult situation in a more poetic way through

*Used with permission from the author.
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Cat. Examples

UNB  They deserve another opportunity or You can
make a difference in their lives.

SHAL Raise money to combat homelessness by curling
up in sleeping bags for one night.

PRES Elderly or disabled people who are simply unable

to evacuate due to physical limitations.

AUTH Accepting their situation is the first step to having
a normal life.

MET  Poor children might find more obstacles in their

race to a worthy future.
COMP |[...] discarded in the streets of Europe |[...]

MERR Her mom is disabled and living with her gives her
strength to face everyday’s life or Refugees are
wonderful people.

Table 1: Examples of the different PCL categories.

figures-of-speech such as metaphors and eu-
phemisms.

Compassion (COMP): the message uses flowery
wording to reflect on the vulnerability or
toughness of the situation, raising a feeling
of pity among the audience.

The poorer, the merrier (MERR): the author
praises the vulnerability, granting positive
values to all members of a vulnerable
community and showing their admiration.

Table 1 contains examples for each of these cate-
gories. The average of the IAA among categories
is 57.43%3. It is worth mentioning that the distri-
bution of labels is highly unbalanced in our dataset,
with only around 9.5% of the inputs being labeled
as containing PCL (positive cases). For the cate-
gories, the distribution is as follows: 73% UNB,
19% SHALL, 23.1% PRES, 23.6% AUTH, 48.7%
COMP, 20.1% MET and 4.1% MERR.

4 Task Description

The aim of the proposed task is to identify the pres-
ence of PCL (Subtask 1), and to identify the cate-
gories of PCL that are present in a given paragraph
(Subtask 2).

Training data The 10,469 annotated paragraphs
from the DPM corpus were provided as training
data. To frame Subtask 1 as a binary classifica-
tion problem, paragraphs with labels O and 1 were
considered as negative examples, while paragraphs

3See Perez-Almendros et al. (2020) for further details.

with labels 3 and 4 were considered as positive
examples of PCL. The original labels on the scale
from O to 4 were also made available. The 993
positive examples in the training data are labelled
with the corresponding PCL categories. Span an-
notations for these categories were also provided.

Test data A total of 3,898 paragraphs were re-
leased as test set, with the same format and meta-
information as the training set, but without labels
and span annotations. Paragraphs initially labelled
as 2 were excluded from the test data, as these
correspond to borderline cases.

External resources We welcomed the use of ex-
ternal resources in this task. Participants were en-
couraged to explore transfer learning or data aug-
mentation techniques with a variety of source cor-
pora and language resources.

Evaluation System submissions were ranked in
the two subtasks as follows: Subtask 1: F1 score
for the positive class. Subtask 2: Macro-averaged
F1 over all categories.

4.1 Participation Framework

The task was hosted on CodaLab®*, with partici-
pants needing to register and submit their results
through the platform. The competition involved
the following three phases:

* Practice phase: The 10,469 paragraphs from
the training data were split into 8,376 training
paragraphs and 2,095 validation paragraphs.
This was done to allow participants to com-
pare their systems on a public leader board.
The training-validation split respected the nat-
ural distribution of labels in the data.

» Evaluation phase: This was the official evalu-
ation phase for the SemEval competition. The
test data was released and the leader board for
this phase remained hidden to prevent partic-
ipants from fine-tuning their systems on the
test data. Each participant was allowed two
different submissions for each subtask.

 Post-evaluation phase: The learderboard for
the evaluation phase and the official ranking
for each subtask were published, as the Sem-
Eval competition ended. Participation in the
SemEval task is no longer possible, but the

*https://competitions.codalab.org/competitions/34344
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competition remains open on CodaLab to al-
low participants to re-test and further improve
their systems.

5 Results and Discussion

A total of 77 different teams participated in the
evaluation phase of our task, with 145 valid sub-
missions for Task 1 and 84 for Task 2. For the com-
petition, we allowed a maximum of 2 submissions
per team. A total of 42 out of 77 teams outper-
formed the baseline for Subtask 1, while 37 out of
48 outperformed the baseline for Subtask 2. Ta-
bles 2 and 3 present the rankings for Subtask 1
and 2, respectively, where we have only listed the
best performing system for each team. For Subtask
1, the best-performing systems used the following
strategies:

Team PALI-NLP used an ensemble of pre-trained
RoBERTa models (Liu et al., 2019). While
training, they applied grouped Layer-Wise
Learning Rate Decay, a variant of LLRD
(Howard and Ruder, 2018), based on the idea
that different layers capture different types of
information (Yosinski et al., 2014). By opti-
mizing the learning rate in different layers, the
model captures more diverse and fine-grained
linguistic features of PCL. To tackle the class
imbalance in the dataset, they use weighted
random samples (Hashemi and Karimi, 2018)
to emphasize the positive instances.

Team STCE created adversarial examples to train
an ensemble model of RoBERTa and De-
BERTa (He et al., 2020). They also used
weighted samples to address the class imbal-
ance and explored different loss functions, es-
tablishing Cross Entropy and the contrastive
loss algorithm NT-Xent introduced by Chen
et al. (2020) as first and second loss function,
respectively.

For Subtask 2, the best-performing systems used
the following strategies:

Team BEIKE NLP participated with a system
based on prompt learning (Petroni et al., 2019;
Brown et al., 2020). They first reformulate
PCL detection as a cloze prompt task and then
fine-tune a pre-trained DeBERTa model.

Team PINGAN Omini-Sinitic proposed an en-
semble model which used prompt training and

a label attention mechanism, by adding a new
label-wise attention layer ((Dong et al., 2021;
Vu et al., 2021). Their system over-samples
the positive examples. They also use a form of
transfer learning from Subtask 1 to Subtask 2,
by pre-training on Subtask 1 and using the re-
sulting model as the starting point for training
a model for Subtask 2.

For both sub-tasks, unsurprisingly, most systems
rely on pre-trained language models, although a
few teams have used CNN, LSTM, SVM or Logis-
tic Regression based systems (XU, PC1, I12C, Ryan
Wang, McRock, Amrita_CEN, SATLab and Team
Lego, among others), or an ensemble of some of the
above together with language models (UTSA_NLP,
Taygete). Although the use of language models
usually outperformed other systems in this task,
some LSTM models, such as the one submitted by
team Xu, achieved competitive results.

The ensembling of different models has also
been a popular technique. Other strategies that
proved successful include adversarial training, data
augmentation and multitask learning. In the fol-
lowing, we summarize how these techniques have
been used by the different systems.

Ensemble learning Ensembling different models
has previously been found useful for text classifi-
cation (Nozza et al., 2016; Kanakaraj and Guddeti,
2015; Fattahi and Mejri, 2021). Accordingly, en-
sembling was one of the most common strategies
for improving on baseline PCL detection methods.
Most of the teams combined different language
models (e.g. PALI-NLP, STCE, PINGAN Omini-
Sinitic,PAI_Team, LRL_NC, SSN_NLP_MLRG,
ASRtrans, amsqr, UMass PCL). Considering the
choice of language models, the most successful
systems either used RoOBERTa, DeBERTa or an en-
semble which included the former ones and other
models. For instance, these models were used by
the best performing teams for both subtasks, i.e.
PALI-NLP and STCE for Subtask 1 and BEIKE
NLP and PINGAN Omini-Sintic for Subtask 2. To
fine-tune the language models effectively, incorpo-
rating a contrastive loss function, in addition to the
standard cross-entropy loss, has also proved useful.
Finally, it should be noted that the combination
of language models with different types of neural
networks (Taygete, UTSA_NLP) has also proven
useful.
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TEAM UNB SHAL PRES AUTH MET COMP MERR Avg

1 BEIKENLP 65.6 529 36.9 40.7 359 49.2 471 46.9
2 PINGAN Omini-Sinitic 59.7 53.1 41.7 434 42.7 51.3 15.4 439
3  PAI_Team 57.6 45.2 352 394 384 44.5 26.7 41.0
4  stce 62.2 54.8 38.1 32.8 333 51.0 8.7 40.1
5 PALI-NLP 61.8 54.1 37.7 32.8 32.8 51.2 8.7 39.9
6 Leo_team 57.3 47.0 28.8 36.1 34.8 474 27.0 39.8
7  Anonymus 59.9 49.1 385 37.1 35.0 48.6 8.3 39.5
8 ymf924 61.6 54.1 36.8 31.3 333 50.0 8.7 394
9  bigemo 62.5 56.1 38.0 24.3 31.3 494 8.7 38.6
10 holdon 62.2 56.1 329 23.1 333 48.7 8.7 379
11  cnxup 60.2 53.3 30.6 24.1 40.0 48.1 8.7 37.8
12 Taygete 59.7 45.8 333 21.8 304 53.6 18.8 37.6
13 DH-FBK 52.5 36.2 27.0 37.7 31.9 46.0 30.3 37.4
14  abcxyzw 60.7 53.3 34.5 21.8 32.8 50.0 8.3 374
15 nowcoder 59.8 50.0 322 22.8 394 47.8 8.3 37.2
16 GUTS 55.6 474 24.0 34.3 25.6 444 27.6 37.0
17 BLING 55.1 38.9 234 29.0 31.5 50.9 26.7 36.5
18 UMass PCL 53.9 42.4 29.1 30.7 333 40.8 23.5 36.3
19 CS-UM6P & ESL 57.0 42.0 25.7 252 20.5 46.8 214 34.1
20 Fengxing 46.4 46.3 23.0 26.5 333 38.7 24.0 34.0
21 Team LRL_NC 52.1 42.7 252 30.4 28.8 433 14.8 339
22 thetundramanagainstpcl 50.5 50.0 18.4 16.5 20.3 41.5 24.0 31.6
23 Xu 55.0 48.4 28.0 24.0 13.6 49.0 0.0 31.1
24 SATLab 424 33.1 17.0 232 17.5 31.5 14.2 25.6
25  Felix&Julia 36.6 35.1 17.6 22.1 21.1 28.5 16.7 254
26  AliEdalat team 53.9 37.7 25.6 26.2 13.5 11.3 9.1 253
27 Tesla 43.7 38.3 16.3 19.2 17.9 35.7 0.0 24.5
28 Waad 36.9 333 17.5 153 16.5 28.7 19.5 24.0
29 ms_pa 323 329 19.2 20.6 222 26.4 7.1 23.0
30 rematchka 37.7 214 18.8 21.2 15.5 26.1 13.0 22.0
31 Team Double_A 335 31.9 18.4 19.1 234 24.5 0.0 21.5
32 SSN_NLP_MLRG 34.6 33.8 20.7 19.3 12.1 27.7 0.0 21.2
33  ASRtrans 18.6 8.8 8.3 19.8 13.2 27.8 35.7 18.9
34 MaChAmp 304 21.3 3.6 10.9 30.8 5.0 6.3 15.5
35 Team PiCkLe 10.9 22.5 14.4 21.0 19.2 6.5 11.5 15.2
36 LastResort 15.8 24.8 10.0 9.3 16.0 11.3 14.8 14.6
37 Ablimet 12.6 14.1 6.5 7.2 14.0 17.2 17.1 12.7
38 RoBERTa Baseline 354 0.0 16.7 0.0 0.0 20.9 0.0 104
39 BWQ 16.0 12.5 7.2 9.7 7.0 11.4 39 9.7
40 Stanford ACM 16.0 26.5 4.2 0.0 0.0 8.6 12.1 9.6
41 Team LEGO 11.8 20.6 1.9 6.4 6.5 10.2 0.0 8.2
42 CSECU-DSG 334 0.0 0.0 0.0 0.0 21.8 0.0 7.9
43  University of Bucharest Team 14.8 21.7 35 0.0 3.9 8.3 0.0 7.4
44 PCI 11.8 12.0 6.1 8.7 2.6 8.9 0.0 7.2
45 Team YNU-HPCC 10.9 0.8 35 33 0.0 5.8 0.0 35
46 NLP-Commonsense Reasoning team 9.7 0.2 0.0 3.2 3.2 4.4 1.1 3.1
47  Jiaaaaaa 2.8 1.9 0.0 2.0 0.0 4.8 6.9 2.6
48 Anonymus 5.9 8.3 0.0 24 0.0 1.4 0.0 2.6
49  niksss 0.0 1.0 0.0 0.0 0.0 0.0 1.1 0.3

Table 3: SemEval Task 4: Ranking by teams for Subtask 2: Categories Classification. The table reports F1-Score
(%) for each one of the categories and the macro-averaged F1-score (%) for all categories. The categories stand for:
Unbalanced Power Relations (UNB), Shallow Solution (SHAL), Presupposition (PRES), Authority Voice (AUTH),
Metaphors (MET), Compassion (COMP) and The poorer, the merrier (MERR).
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Balancing class distribution The class imbal-
ance in the dataset has been addressed by partici-
pating teams in different ways. Some teams opted
for downsampling the number of negative exam-
ples (Ryan Wang, LastResort, MS@IW), while
others tried a cost-sensitive learning approach to
address this issue (Amrita_CEN). However, the
most popular approach to balance the class distri-
bution has been through data augmentation (amsqr,
Xu, Utrech Uni, UMass PCL, among others). To
create new positive examples, participants have
used strategies such as the use of large genera-
tive models like GPT3 (Brown et al., 2020) or T5
(Raffel et al., 2020) MS@IW, PINGAN Omini-
Sinitic and Tesla); back-translation (Taygete); the
addition of synonymous sentences to the original
data (I2C), or the application of the so-called Easy
Data Augmentation methods, a set of simple but
effective techniques such as synonym replacement,
random insertion, random swap, and random dele-
tion (AliEdalat) (Wei and Zou, 2019; Rastogi et al.,
2020).

External resources Various types of external
resources have been used. For example, lexical
databases such as WordNet (Miller, 1995) have
been used to augment, enrich and improve the train-
ing data (Ali Edalat). Datasets from related tasks,
including TalkDown (Wang and Potts, 2019), and
two metaphor detection datasets, namely MOH
(Mohammad et al., 2016) and VUA (Steen et al.,
2010), have been used both for pre-training and / or
for data augmentation by different teams. PAWS,
a dataset with Paraphrase Adversaries from Word
Scambling, (Zhang et al., 2019) and XTREME, a
bechmark for Cross-Lingual Transfer Evaluation
of Multilingual Encoders (Hu et al., 2020), have
also been used to improve several systems (Ali
Edalat, ASRtrans, Tesla, MaChAmp). Other re-
lated NLP challenges have served as auxiliary tasks
for pre-training PCL models (AliEdalat, UMass
PCL), although such strategies have not always
been successful (ULFRI). The MaChAmp team
used 7 SemEval-2022 tasks, including ours, for
training a model based on multi-task learning. The
DH-FBK team also opted for multi-task learning,
but they only used the data from the Don’t Patron-
ize Me dataset itself to create auxiliary tasks. For
instance, they trained their model to predict the
uncertainty of a label in Subtask 1, using the fine-
grained set of labels (0-4); the agreement of the
annotators in Subtask 2; the spans where the cate-

gories were present; or the country of origin of the
news outlets. AliEdalat similarly used the meta-
information from the Don’t Patronize Me dataset
as additional features for training their model.

Prompt learning Using prompts has also proven
useful for PCL detection (BEIKE NLP, PINGAN
Omini-Sintic, Ablimet). Specifically, the teams
used prompts such as “/paragraph] is [label]”, or
“is [paragraph] [label]?” where [paragraph] is the
original input. For Subtask 1, [label] is a natural
language description of the binary class label (e.g.
"is (not) condescending or patronizing"). For Sub-
task 2, [label] is the label of a given PCL category.

6 Conclusions

Patronizing and Condescending Language detec-
tion is a relatively new challenge for the NLP com-
munity. However, the high level of participation in
this task has provided the community with valuable
new insights about how to tackle this problem. A
total of 42 out of 77 teams in Subtask 1 and 37 out
of 48 for Subtask 2 outperformed the ROBERTa
baseline. The performance of the best-performing
systems shows that a judicious usage of state-of-
the-art text classification techniques can bring sig-
nificant benefits to PCL detection, especially when
it comes to addressing the relative scarcity of the
available training data and closely related external
resources. However, there still remains consid-
erable scope for further improvements. It is our
expectation that further improvements may need
to rely on techniques that are specifically targeted
at PCL, e.g. by exploiting insights from linguistics
about the linguistic features of PCL, or by build-
ing explicit models of stereotypes of vulnerable
communities.
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