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Abstract

Named Entity Recognition (NER), an essential
subtask in NLP that identifies text belonging
to predefined semantics such as a person, lo-
cation, organization, drug, time, clinical pro-
cedure, biological protein, etc. NER plays a
vital role in various fields such as information
extraction, question answering, and machine
translation. This paper describes our participat-
ing system run to the Named entity recognition
and classification shared task SemEval-2022.
The task is motivated towards detecting seman-
tically ambiguous and complex entities in short
and low-context settings. Our team focused on
improving entity recognition by improving the
word embeddings. We concatenated the word
representations from State-of-the-art language
models and passed them to find the best repre-
sentation through a reinforcement trainer. Our
results highlight the improvements achieved by
various embedding concatenations.

1 Introduction

Named entity recognition and classification is an
essential subtask in natural language processing
(NLP). The task of identifying named entities like
a person, location, organization, drug, time, clin-
ical procedure, biological protein, etc. in a text
document is key to many applications, including
information extraction and retrieval, machine trans-
lation(Al-Onaizan and Knight, 2002; Steinberger
et al., 2013), topic modeling(Newman et al., 2006),
text summarization(Schiffman et al., 2002), and
question answering. It can also be used in domain-
specific entity types such as disease, symptoms,
and treatments. Recently many researchers have
identified the name identification issue in a variety
of languages and have made efforts to apply named
entity recognition.

Complex and ambiguous Named entities, like
the title of creative works such as books, songs, and
movies, are not simple nouns and are thus harder
to recognize(Ashwini and Choi, 2014). Unlike the

traditional NEs these works take the form of lin-
guistic constituents such as "Remember me when
we are parted," which is an imperative clause and
does not look like the traditional NEs (Locations,
Person name, organizations). This ambiguity in
syntax makes it difficult to identify them based on
their context. There can also occur instances where
these titles are semantically ambiguous; for exam-
ple, "the girl on the train" can be a preposition or
the name of a book. Such entities are growing at a
faster rate as compared to the traditional categories.
Therefore, processing these NEs has always been
a challenging task in NLP in practical and open-
domain settings. However, it has received enough
engagement from the research community.

Despite the high score produced by Neu-
ral models on benchmark datasets like
CoNLL03/OntoNotes, it has been noticed
(Augenstein et al., 2017) that these models perform
significantly low on complex or unseen data.
This happens because the scores were driven by
the presence of easy entities, well-formed text,
and memorization due to entity overlap between
train/test sets. Various researchers have noted that
the majority of the errors in their downstream tasks
have occurred due to the failure of NER systems to
recognize complex entities. Various researchers
using NER on downstream tasks have noted that
a significant proportion of their errors are due to
NER systems failing to recognize complex entities.

This paper presents our system for Shared Task
on "MultiCoNER Multilingual Complex Named
Entity Recognition @ SemEval 2022" (Malmasi
et al., 2022b), (Meng et al., 2021), (Fetahu et al.,
2021). The task focused on detecting complex
and ambiguous entities in short and low-context
settings. Our team focused on improving entity
recognition by improving the word representations,
following (Wang et al., 2021; Yamada et al., 2020).
We concatenated the word embeddings from State-
of-the-art language models and passed them to find
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the best representation through a reinforcement
trainer.

2 Related Work

Name entity recognition has always been a chal-
lenging task that requires massive prior knowledge
resources for good performance (Ratinov and Roth,
2009; Nadeau and Sekine, 2007). Research in var-
ious domains using a variety of approaches has
been done. Early methods included heuristics and
handcrafted rules, lexicons, orthographic features,
and ontologies. These systems involved recogniz-
ing entities based on pattern matching with input
documents(Rau, 1991; Collins and Singer, 1999).
A higher degree of accuracy may be achieved us-
ing the rule-based system. However, it is time-
consuming and challenging to port the developed
rules from one domain to another.

Later machine learning methods were used
(Borthwick, 1999; McCallum and Li, 2003;
Takeuchi and Collier, 2002) . This learning tech-
nique involved supervised and unsupervised ap-
proaches. The supervised being a dominant tech-
nique for named entity recognition (Nadeau and
Sekine, 2007). However, this method required mas-
sive high-quality annotated data. There also exist
some hybrid models that make use of different rule-
based and/or learning methods for enhanced per-
formance (Srihari, 2000; Rocktäschel et al., 2012).
These systems make the best use of good features
and methods for improved performance.

Recently neural network systems (Collobert
et al., 2011) have also become a popular method.
These systems with minimal feature engineering
have become appealing because they do not require
sources such as lexicons or ontologies, thus making
them domain independent. Most of the neural ar-
chitectures proposed are based on recurrent neural
networks (RNN).

3 Dataset Description

The English dataset provided by SemEval 2022
(Malmasi et al., 2022a) comprises 233,917 in-
stances of data. The training sample included
15300 annotated statements, the dev set comprised
800 annotated sentences, and the test set included
217817 test data (as shown in the table). The sen-
tences in the data are allocated a respective id. Each
sentence is further divided into tokens which are
separated by a newline. Each token is assigned a la-
bel according to the standard BIO tagging followed

by the named entity tag in the specified format.
<token>_<BIO_tag>-<NE>

In the BIO tagging, B and I tags are followed
by <NE> tag, while O tags have no following tag.
As presented in the fig, an instance of the dataset,
statements with the ’O’ tag represents a non-named
entity. The statements with ’B’ tags represent the
beginning of the named entity, and ’I’ tags rep-
resent the continuation of the same-named entity.
The tokens are assigned one of the six named en-
tities Person (abbreviated as PER), Location (ab-
breviated as LOC), Group (abbreviated as GRP),
Corporation (abbreviated as CORP), Product (ab-
breviated as PROD), Creative Work (abbreviated
as CW).

4 Methodology

The method used focuses on automating the pro-
cess of finding better concatenation of embeddings
for improved performance. In this approach, a
task model and controller module repeatedly in-
teract. To achieve high accuracy, the controller
searches for a better embedding concatenation from
the given set of pre-trained embeddings. The task
model, on the other hand, produces a task output.
The architecture works on a reward basis. The
controller is rewarded every time the task model
is trained over the task data after an embedding
is generated. The controller receives a reward for
updating its parameter and sampling new embed-
ding concatenations. The general architecture of
our approach is shown in Figure 1.

4.1 Design of Task Model
For the task model, a sequence-structure approach
is used. Considering the input sentence to be m
and the structured output to be n, the probability
distribution P(n|m) can be calculated as:

P (n|m) =
exp(Score(m,n))∑

n′∈N(m) exp(Score(m,n′))
(1)

where N(m) represents all possible output structures
given the input sentence n. The BiLSTM-CRF
model (Ma and Hovy, 2016; Lample et al., 2016)
was used for sequence-structured outputs.

P seq(n|m) = BiLSTM − CRF (E,n) (2)

where E = [e1; e2; ... en], E ∈Rd×w is matrix
of word representation for the input sentence m
comprising of w words, The hidden size of the
concatenation of embeddings is represented by d.
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Ei is the word representation of the ith word, which
is a concatenation of L types of word embeddings:

eli = embedli(m); ei = [e1i ; e
2
i ; ... e

L
i ] (3)

Figure 1: Architecture of our approach. It shows the task
model, returning of reward function and the embeddings
being concatenated

4.2 Design of Search Space
A set of neural networks can be used to repre-
sent neural architecture search space (Elsken et al.,
2017). In this method, we have represented the
embedding candidates as nodes. The sentence n is
passed as the input to the nodes, and the resulting
output is the embeddings el. Since the embeddings
are concatenated as word representations, there is
no connection between the nodes in search space,
resulting in a significantly reduced search space.

A variety of embeddings are available for the ex-
traction of word representation, for instance, fine-
tuned XLM-RoBERTa-large embeddings.However,
due to the restriction on the use of a multilingual
model for a single language track, we finetuned the
BERT embeddings on the provided training data
and concatenated the last four layers as word fea-
tures applying mean pooling operation over them
(Devlin et al., 2019).

Unlike (Kondratyuk and Straka, 2019), applying
a weighted sum of all twelve layers did not signif-
icantly differ the empirical results. There was no
significant difference between the XLM-RoBERTa
CONLL-03 English embeddings and the Finetuned
BERT-Large embeddings for the submitted predic-
tions. Thus we used regular embeddings to reduce
search space. Subsequently, each embedding only
has a specific operation resulting in a search space
that contains 2L-1 possible combinations of nodes.

Except for the character embeddings, all the
other weights of the pre-trained embedding can-

didates are fixed. The parameters of task models
are shared at each iteration of the search in ac-
cordance with Neural Architecture Search (NAS).
All the nodes in the graph are kept in the search
space. Each node performs an operation to indicate
whether the embedding is masked out. This is done
to avoid deciding which node is to be kept, making
weight sharing difficult. For this binary task.

For this task, a binary vector
o = [o1, . . . , ol, . . . , oL] is used as a mask
for those embeddings which are not selected:

ei = [e1i o1; e
2
i o2; ... ; e

l
iol; ... ; e

L
i oL] (4)

Where ol represents a binary variable. Input
E is applied to the linear layer in the BiLSTM
layer hence the multiplication operation in E, i.e.
multiplying mask with embedding, is equivalent to
directly concatenating the selected embeddings:

W T ei =
∑

W T
l eliol (5)

Also, the unused embedding candidates and the
corresponding weights in W are removed for a light
task-model after finding the best concatenation.

4.3 Searching in the Space
The controller is responsible for generating the
embedding mask using parameters which are gen-
erated using θ = [θ1; θ2; ...; θL]. The probabil-
ity distribution of selecting a concatenation o is
P ctrl (q; θ) = ΠL

l=1P
ctrl
l (ol; θl). Element ol of o

is sampled using Bernoulli distribution which is
given by:

P ctrl
l (ol; θl) =

{
σ(θl), ol = 1.

1− P ctrl
l (ol = 1; θl), ol = 0.

(6)
where σ is the sigmoid function. Given the mask,

the task model is trained until convergence and
returns an accuracy R on the dev set. The rein-
forcement algorithm is used for optimization. The
accuracy R is used as a reward signal for training
the controller, whose aim is to maximize the reward
J(θ) =EP ctrl (o;θ)[R] utilizing the policy of gradi-
ent method (Williams, 1992). The reward function
that we have used:

rt =

t−1∑

i=1

(Rt −Ri)γ
Hamm(ot,oi)−1|ot − oi| (7)

The final gradient comes out as:

∇θJ(θ) ≈
L∑

l=1

∇θ. logP
ctrl
l (otl ; θl) r

t
l (8)
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This reward function evaluates how each embed-
ding candidate contributes to the accuracy change.
The binary vector |ot − oi| represents the change
in embeddings. ot represents a binary vector at
current iteration t, and oi represents the previous
time step i. The Hamming distance Hamm(ot, oi)
is used to measure the contribution of embedding
candidates in the accuracy. As hamming distance
increases, the contribution becomes less significant.

4.4 Training the controller

The corresponding validation scores and concatena-
tions were stored in a dictionary D to train the con-
troller. Firstly the task model was trained with all
the embedding candidates concatenated. Then the
concatenation ot was sampled based on Equation
(6). The task model was trained using the equa-
tion (4) after which the model is evaluated on a
development set to return an accuracy Rt. Then the
gradient is computed for the controller following
Equation (8) using the concatenation ot, accuracy
Rt and D. Based on the computed gradient, the
parameters of the controller are updated. Finally, ot

and Rt are added to D. If a concatenation ot is in
dictionary, we compare its accuracy with the value
in the dictionary and keep the higher one. Selecting
ot−1 (i.e., previous concatenation) and zero vector
is avoided.

5 Experimental Setup

Data was provided in form of sentences which were
broken down into individual words, or tokens, each
lying in a newline and their corresponding tags
in front of them. All the tokens are first passed

Table 1: Major Hyperparameters

Parameters Value
BiLSTM size 800
BiLSTM layer 1
Optimizer SGD
Learning rate [0.1, 7.8125e-4]
Epochs 150
Episodes 20

through a function to encode them into embed-
dings, which are initial representations for the to-
kens. These tokens are pushed through the RNN
language model which forms the task model and
iteratively returns a reward to the controller.

This model first contains a dropout layer, then
an encoder layer is added which contains the em-
bedding. The next layer is an LSTM layer with a

hidden size of 800. Finally, the representations are
fed into a linear-chain CRF layer to predict the final
label sequence, where a linear layer is applied for
the representations to score each entity label. The
above deep learning model has been built using
PyTorch1 along with the transformer embeddings
that have been used.

The learning rate was set at 0.1 at the beginning
with a patience level set to 5, i.e. the learning rate
was halved if there was no improvement in moni-
tored metrics for the patience, that is the validation
loss. The batch size was set to 64 and a maximum
of 150 epochs were allowed for 20 episodes.

6 Results

The table below shows the micro and macro F1
scores of prediction on the development set. As
the tags of the test set are unavailable to us, the
model’s performance was judged on dev set only
and the results of the best 3 models were ensem-
bled in the end, for submission. The best perform-
ing model was achieved in a model, where the
following embeddings were concatenated: Fine-
tuned BERT-large-uncased, Finetuned RoBERTa-
large, ELMo original, FastCharacterEmbeddings,
Glove, FastWordEmbeddings-english, Flair news-
en embedding. The model was trained on with
the following hyperparameters setting 150 epochs,
20 episodes, SGD optimizer, 800 hidden units of
BiLSTM-CRF, starting with a learning rate of 0.1
and a batch size of 64.

Table 2: Results with concatenated BERT embeddings

Concatenations Micro-F1 Macro-F1
TransformerWordEmbedding: BERT-large-uncased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8867 0.8745

TransformerWordEmbedding: BERT-large-cased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8596 0.8470

TransformerWordEmbedding: BERT-base-cased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8597 0.847

TransformerWordEmbedding: BERT-base-uncased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8861 0.8693

1https://pytorch.org/
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Table 3: Results with concatenated Xlm-RoBERTa embeddings

height Concatenations Micro-F1 Macro-F1
TransformerWordEmbedding: Xlm-RoBERTa-large-finetuned-conll03-english
(finetuned on current dataset)
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.868 0.8536

TransformerWordEmbedding: Xlm-RoBERTa-large-finetuned-conll03-english
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8563 0.8423

TransformerWordEmbedding-0: Xlm-RoBERTa-large-finetuned-conll03-english
TransformerWordEmbedding-1: RoBERTa-large
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8728 0.8592

TransformerWordEmbedding-0: Xlm-RoBERTa-large-finetuned-conll03-english
TransformerWordEmbedding-1: BERT-large-uncased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8997 0.8881

TransformerWordEmbedding: Xlm-RoBERTa-base
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8465 0.8332

TransformerWordEmbedding: Xlm-RoBERTa-large
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8596 0.8456

These results were ensembled with two other
models which were developed as follows:

• BERT-base-uncased, BERT-large-uncased,
and RoBERTa-large with the rest of the em-
beddings as it is.

• Finetuned BERT-large-uncased with the rest
of the embeddings as it is.

7 Result Analysis

Experiments were conducted to analyze the per-
formance of systems by using different combina-
tions of embeddings. The best concatenation of em-
beddings can be easily seen in the model contain-
ing BERT-large-uncase transformer embedding and
ELMo original, FastCharacterEmbeddings, GloVe
FastWord: english, and Flair: news-forward with
a Macro-F1 score of 0.8745 on the dev set. This
model generated the best results after ensembling
the results with the models containing BERT-base-
uncased embeddings and BERT-large-uncased fine-
tuned on the current dataset, which generated a
Macro-F1 score of 0.74182 on the test dataset.

Table 4: Comparison in baseline and our best model

Models Micro-F1 Score3

Baseline 0.715
Our Best 0.8867

One clear distinction in the result can be seen
among the BERT uncased and cased models. In the

2This is the final Macro-F1 score on the test set
3Micro-F1 score was the only metric available for baseline

BERT-uncased models, the text is set to lowercase
before the WordPiece tokenization step, hence case
is irrelevant in it, while in BERT-cased models, the
case of words is also considered. In our dataset, the
tokens were already lowercase.

For comparison’s sake, we have experimented
with RoBERTa embeddings as well and they have
produced slightly better results than BERT embed-
dings alone. One difference in the functioning of
BERT and RoBERTa was noticed during experi-
menting with their tokenizers. The BERT tokenizer
sometimes separated hyphen-separated entities and
treated them as individual entities while RoBERTa
tokenizer treated them as a combined single entity
and generated a representation for it.

For comparison, we have also experimented with
XLMR embeddings during result compilation to
show the difference (or similarity) between results.
After removing a few of the other embeddings like
ELMo, Flair, and Glove, we have also collected
results from the above model. All the results can
be referred to in Table 3.

8 Conclusion and Future work

In this paper, we present our approach to SemEval-
2022 Task 11:MultiCoNER Multilingual Complex
Named Entity Recognition. Our best submission
gave us an F1 score of 0.7418, placing us 10th on
the Evaluation Phase Leaderboard. Future work
includes experimenting with multilingual data and
embeddings and different optimizers.
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