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Abstract

This paper presents RACAI’s system used
for the shared task of "Multilingual Complex
Named Entity Recognition (MultiCoNER)",
organized as part of "The 16th International
Workshop on Semantic Evaluation (SemEval
2022)". The system employs a novel layer in-
spired by the biological mechanism of lateral
inhibition. This allowed the system to achieve
good results without any additional resources
apart from the provided training data. In ad-
dition to the system’s architecture, results are
provided as well as observations regarding the
provided dataset.

1 Introduction

Named entity recognition (NER) is a well known
task in natural language processing. It aims to
detect spans of text associated with known enti-
ties. Initially, much work focused on detecting per-
sons, organizations, and locations (Grishman and
Sundheim, 1996; Tjong Kim Sang and De Meulder,
2003). However, this limited approach is not suit-
able for every domain, thus leading to research in
domain-specific NER. For example, in the biomed-
ical domain, a number of works have addressed
entities such as genes, proteins, diseases (Hu and
Verberne, 2020), cell types (Settles, 2004), chemi-
cals (Gonzalez-Agirre et al., 2019; Ion et al., 2019).
Similarly, in the legal domain additional classes are
employed such as money value (Glaser et al., 2018),
legal reference (Landthaler et al., 2016; Păis, et al.,
2021), judge, and lawyer (Leitner et al., 2019).

In the context of "The 16th International Work-
shop on Semantic Evaluation (SemEval 2022)"1,
the task number 11 "Multilingual Complex Named
Entity Recognition (MultiCoNER)"2 (Malmasi
et al., 2022b) required participants to build a NER

1https://semeval.github.io/
SemEval2022/

2https://multiconer.github.io/

system able to recognize complex entities in 11 lan-
guages: Bangla, Chinese, Dutch, English, Farsi,
German, Hindi, Korean, Russian, Spanish, and
Turkish. In addition, a multilingual track and a
code-mixed track were available. The task focused
on 6 entity types: person, location, group, corpora-
tion, product and creative work.

As noted by Ashwini and Choi (2014), non-
traditional entities can pose a challenge for NER
systems. This happens because datasets are harder
to build and certain entities (such as creative works)
are updated more frequently than traditional ones
(persons, locations). Furthermore, traditional enti-
ties tend to occur as noun phrases, while the newly
proposed entities (for the purposes of the task) may
be linguistically complex (complex noun phrases,
gerunds, infinitives or full clauses). An interesting
result was provided by Aguilar et al. (2017), where
the top system from WNUT 2017 achieved only
8% recall when dealing with creative works.

This paper describes a system for complex NER
in a multilingual context, developed at the Research
Institute for Artificial Intelligence of the Romanian
Academy (RACAI), that participated in the Multi-
CoNER task. The system employs a new artificial
neural network layer trying to mimic the biologi-
cal process of lateral inhibition (Cohen, 2011). In
various regions of the brain, excited neurons can
reduce the activity of other neighbouring neurons.
In the visual cortex this process may account for
an increased perception in low-lighting conditions.
Thus, intuitively the newly proposed system may
better focus on subtle details present in the data
and the language model.

The paper is structured as follows: Section 2
presents related work, Section 3 describes the
dataset and pre-processing operations used, Sec-
tion 4 describes the method used with the system
architecture in Section 4.1 and performed exper-
iments in Section 4.2. The results are given in
Section 5 and finally, conclusions and future work

1562

https://semeval.github.io/SemEval2022/
https://semeval.github.io/SemEval2022/
https://multiconer.github.io/


are available in Section 6.

2 Related work

In a survey regarding NER using deep learning
models, Yadav and Bethard (2018) emphasize the
importance of pre-trained word embedding repre-
sentations. Dernoncourt et al. (2017), in the Neu-
roNER package3, combine pre-trained word em-
beddings with character level embeddings passing
through a neural network with a final CRF layer
achieving high scores on different datasets. Other
authors, using similar architectures have shown that
combining multiple static word representations can
further increase the overall system performance
(Păis, and Mitrofan, 2021).

With the introduction of contextual word rep-
resentation models, such as BERT (Devlin et al.,
2019), ELMo (Peters et al., 2018), ROBERTA (Liu
et al., 2019), XLNet (Yang et al., 2019), NER sys-
tems have been adapted to make use of these new
models. For the majority of the contextual mod-
els, depending on the size of the artificial neural
network being used, we distinguish between a base
version and a large version (with a larger number
of parameters). Devlin et al. (2019) used the BERT-
large model for NER on the CoNLL-2003 English
dataset, achieving an F1 score of 92.8%. Nguyen
et al. (2020) propose a custom BERT-like model for
English tweets, called BERTweet, for improving
the NER performance on two datasets: WNUT-16
and WNUT-17.

Contextualized embeddings were also applied
with success in domain-specific settings. Consid-
ering the ProfNER shared task (Miranda-Escalada
et al., 2021), dedicated to identifying mentions of
occupations in health-related social media, the best
performing system made use of the BETO model
(Cañete et al., 2020) trained on a large Spanish
corpus.

Wang et al. (2021) propose an algorithm for
automatically finding a concatenation of embed-
dings that improves a system’s performance in dif-
ferent tasks, including NER. The authors consid-
ered multiple contextual and non-contextual em-
beddings and the proposed algorithm can identify
any of their combinations. Their work builds on
previous experiments that showed increased per-
formance when manually concatenating contextual
and non-contextual embeddings (Straková et al.,
2019; Wang et al., 2020).

3http://neuroner.com/

Training a contextualized embedding model re-
quires many processing resources. This means
that not all flavours are available for all languages.
Multilingual models have been proposed, mak-
ing use of training data in multiple languages.
Such models include mBERT and XLM-RoBERTa
(XLM-R) (Conneau et al., 2020). These models
are known to perform especially well on low re-
sourced languages. Considering NER, Conneau
et al. (2020) show that XLM-R large performs bet-
ter than mBERT, providing an average 2% increase
in F1 score for Dutch, Spanish and German. Inter-
estingly, in English the performance of XLM-R is
more similar to mBERT (though still offering an
improved performance of less than 1%) and less
than (Akbik et al., 2018). This seems to support
the idea that monolingual models, trained on a spe-
cific language or domain, can perform better than
multilingual ones.

Meng et al. (2021) recognizes the importance
of gazetteer resources, even in the case of state-
of-the-art systems making use of contextualized
embeddings. The authors propose using an en-
coder for obtaining Contextual Gazetteer Represen-
tations (CGRs) as a way to incorporate any number
of gazetteers into a single, span-aware, dense repre-
sentation. Then, the authors go one step further and
propose a gated Mixture-of-Experts (MoE) method
to fuse CGRs with contextual word representations
from any word-level model.

Fetahu et al. (2021) employ multilingual
gazetteers fused with transformer models in a MoE
approach to improve the recognition of entities in
code-mixed web queries. In this case the entities
were written in a different language than the rest
of the query, thus posing particular challenges to
existing NER systems.

3 Dataset and pre-processing

The dataset (Malmasi et al., 2022a) was provided in
a column-based format, with 4 columns in each file.
The text was tokenized, with tokens available in
the first column. Columns 2 and 3 did not contain
useful information (only an underscore symbol was
present). Column 4 contains the named entity anno-
tation in BIO format. The first token (or the single
token) of an entity contains the "B-" prefix. Other
entity tokens (in the case of multi-token entities)
start with an "I-" prefix, while non-entity tokens
are denoted with "O".

For each language there was a train/dev/test split
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provided by the organizers. In the train set there
were 15,300 sentences, in the dev set there were
800 sentences, while the test set was much larger.
The actual number of sentences in the test set varies
between languages, having as many as 217,818 sen-
tences for English. For the multilingual track, there
were 168,300 train sentences, 8,800 dev sentences
and 471,911 test sentences. The smallest number of
sentences was given in the code-mixed track with
only 1,500 training sentences, 500 dev sentences
and 100,000 test sentences.

Regardless of the language or additional mul-
tilingual and code-mixed tracks the development
set is very small while the test set is much larger
than the training set. In addition, the number of
training sentences in the code-mixed track seems
insufficient to build a model by themselves.

Predictions on the test set were required to pro-
vide annotations, in the same BIO format, for each
token. Furthermore, considering the multilingual
nature of the task, with very different languages
(such as German and Chinese), no pre-processing
was applied, other than converting the provided for-
mat to a format suitable for the developed system.
For the code-mixed track, a second dataset was
generated, based on the original provided dataset
augmented with new sentences. These were gener-
ated by randomly replacing existing entities in the
code-mixed dataset with similar entities extracted
from the multilingual dataset. For each sentence
containing at least one entity, a new sentence was
generated, thus doubling the size of the training
dataset for the code-mixed track.

4 Method

4.1 System Architecture

The proposed system employs the XLM-RoBERTa
(Conneau et al., 2020) large model. Given an input
sequence from the dataset it is first transformed
into model-specific tokens. The sequence is also
enhanced with the special tokens for sequence start
(CLS), sequence end (SEP) and, if needed, padding
(PAD). Then it passes through the model to obtain
associated contextual embeddings. In existing sys-
tems, the word representations usually pass through
a linear layer and finally a classification head, giv-
ing predictions for each input token. However, in
the proposed system, there is a new layer inserted
just after the XLM-RoBERTa embeddings calcu-
lation and before the linear layer. The resulting
system architecture is presented in Figure 1.

Figure 1: System architecture

The newly introduced layer follows the biologi-
cal process of lateral inhibition. Thus, an embed-
ding value is either allowed to pass unchanged to
the next layer or set to zero, depending on the other
values. Similar to a linear layer, a matrix of weights
(W) and a bias (B) were kept. However, the diag-
onal values of the weights matrix were always set
to zero to allow only interaction from adjacent neu-
rons. Furthermore, the Heaviside function (see
Equation 1) was applied to determine which val-
ues pass through the layer or become zero. The
equation associated with the forward pass is given
in Equation 2, where X is the layer’s input vector,
associated with a token embedding representation,
Diag represents the matrix diagonal, ZeroDiag
is the matrix with the value zero on the diagonal,
and W and B represent the weights and bias.

Θ(x) =

{
1, x > 0
0, x ≤ 0

(1)

F (X) = X ∗Diag(Θ(X ∗ZeroDiag(W ) +B))
(2)

To overcome the problem of computing a deriva-
tive for the Heaviside function, in the backwards
pass the Heaviside function was approximated
with the sigmoid function with a scaling parameter
(Wunderlich and Pehle, 2021). This is described in
Equation 3. The derivative of the sigmoid function
is given in Equation 4, where σ(x) is the same as in
Equation 3. This approximation technique is also
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Figure 2: σ(x) for k=1..6 and Θ(x)

Figure 3: σ′(x) for k = 1..6

known as surrogate gradient learning (Neftci et al.,
2019). It allows the use of a non-differentiable func-
tion in the forward pass (in this case the Heaviside
function) and approximates the derivative in the
backwards pass by means of a different function.

σ(x) =
1

1 + e−kx
(3)

σ′(x) = kσ(x)σ(−x) (4)

Figure 2 shows a plot for the Sigmoid function,
for various values of the scaling parameter k, su-
perimposed on a plot of the Heaviside function.
Higher values for the scaling parameter give bet-
ter approximations for the Heaviside function. A
plot for the derivative of the Sigmoid function with
k = 1..6 is given in Figure 3.

The entire system was then implemented in Py-
Torch following the system diagram given in Fig-
ure 1. The embedding vector associated with each
token is processed by the lateral inhibition layer,
then goes through a linear layer using ReLU as the
activation function and finally through the classifi-
cation head.

4.2 Experiments

Training started with the creation of a multilingual
model based on the provided multilingual corpus.
Training was performed for 40 epochs, with the
best performing model on the dev dataset being

Figure 4: Training flow for creating the multilingual
model

Figure 5: Language-specific training

stored. The resulting intermediate model was fine-
tuned with the code mixed data, for another 40
epochs. Thus, all the available data were now in-
cluded in the new intermediate model. This model
was then used as the basis for further training on
the multilingual dataset (another 40 epochs), pro-
ducing the final multilingual model. The results
from this final model were submitted in the multi-
lingual task. This training procedure is described
in Figure 4.

The final multilingual model was then used as
a starting point for the other models. The archi-
tecture was the same and the model parameters
were initialized with the multilingual parameters.
Fine-tuning was performed for 80 epochs for all
languages and in the case of the code-mixed dataset.
The best performing model for each task was stored
and the results were submitted to the corresponding
category. The language-specific training procedure
is described in Figure 5.

The models were trained using a single Nvidia
Quadro RTX 5000 GPU board. The dataset was
first pre-processed, as described in Section 3. Sev-
eral experiments were performed to determine the
best parameters. However, due to limited time and
hardware resources, it was not possible to perform
an exhaustive search. The participating models em-
ployed learning rates of 1e − 05 (the majority of
the models) or 2e− 05 (Bangla and code-mixed).
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Track With Lateral Inhibition Without Lateral Inhibition Diff
P R F1 Epoch P R F1 Epoch F1

Bangla 68.08 65.33 66.28 40 65.95 63.99 64.68 68 1.60
Chinese 68.17 62.05 62.70 35 67.05 64.39 64.41 56 -1.71
Dutch 78.82 78.30 78.41 63 78.85 77.27 77.25 37 1.16
English 76.54 75.35 75.78 66 76.59 76.09 76.21 53 -0.43
Farsi 70.77 70.45 70.42 36 70.10 68.84 69.24 21 1.18
German 80.01 78.97 79.39 37 80.19 79.44 79.70 71 -0.31
Hindi 69.05 67.77 68.08 42 70.14 68.18 68.87 65 -0.79
Korean 72.06 71.93 71.74 8 71.83 72.58 71.99 70 -0.16
Russian 75.86 73.83 74.60 62 75.89 73.94 74.68 62 -0.08
Spanish 76.21 75.43 75.62 4 75.88 75.25 75.36 58 0.26
Turkish 71.81 70.25 70.42 78 71.28 69.14 69.70 74 0.72
Multilingual 72.25 72.78 72.10 33 71.78 72.72 71.87 17 0.23
Code-mixed 79.58 79.23 79.37 63 78.93 79.02 78.95 62 0.42
Intermediate
Multilingual

71.53 72.34 71.50 34 70.48 71.11 70.35 14 1.15

Intermediate
Code-mixed

79.28 79.42 79.31 31 78.50 79.00 78.73 28 0.58

Table 1: Results on the test dataset for all tracks.

A dropout value of 0.1 was used for both the lat-
eral inhibition and linear layers. For the backwards
pass approximation of the Heaviside function, the
sigmoid scaling parameter was set to 10.

5 Results

The models produced by the system described in
the previous sections participated in all the Mul-
tiCoNER tracks. The official ranking metric was
macro-averaged F1. The results are given in Table 1
for all tracks, in alphabetical order of the languages,
while the multilingual and code-mixed tracks are
shown at the end of the table.

The best best average F1 score was achieved in
the German track (79.39%), followed closely by
the code-mixed track (79.37%). All these results
were obtained by using only the provided dataset,
without external resources. For most of the tracks
precision and recall are similar (with precision be-
ing approximately 1% higher than recall), with the
exception of Chinese (precision is 6% higher than
recall) and Russian (precision is 2% higher than
recall).

In Table 1 is also given a comparison between
the results obtained using the new lateral inhibition
layer and the results obtained by the same system
without the lateral inhibition layer. In 7 tracks
(Bangla, Dutch, Farsi, Spanish, Turkish, Multilin-

gual, Code-mixed) the new layer improved the over-
all F1 score, in 1 track (Russian) the results were
roughly the same (a difference of 0.08 %), while
in 5 tracks (Chinese, English, German, Hindi, Ko-
rean) the new layer actually decreased the system’s
performance. By looking at the size of the train-
ing corpora used in XLM-RoBERTa, as reported
by Conneau et al. (2020), it seems the new layer
improved the system performance in the case of
languages represented by less than 54Gb of data.
This seems to confirm the intuition behind the new
layer, that the model is able to better focus on de-
tails present in the data and potentially filter out the
noise. There are two exceptions: Farsi, trained on
111 Gb of data, and Hindi, trained on 20 Gb. In
this case additional investigation should probably
be performed with regard to the quality of the data
used for training the model, possibly taking into
account the relative language complexity (Bentz
et al., 2016).

Table 1 also presents the training epochs associ-
ated with the best model. For some languages, the
new layer is able to reduce the number of training
epochs, but there is no clear pattern for when this
happens. Interestingly however, for Spanish and
Korean the new layer is able to reduce the training
time to less than 10 epochs.

In the multilingual and code-mixed tracks, the
model enhanced with the lateral inhibition layer

1566



Track LOC PER PROD GRP CW CORP
Bangla 69.03 77.41 62.92 73.46 49.57 65.31
Chinese 72.30 64.71 67.93 45.44 58.53 67.27
Dutch 80.85 89.82 76.99 75.14 71.35 76.29
English 77.29 90.11 73.27 72.93 66.76 74.29
Farsi 74.04 79.19 70.71 72.33 58.59 67.67
German 82.19 90.24 78.66 75.28 73.39 76.57
Hindi 70.93 75.14 66.35 68.70 57.13 70.25
Korean 76.54 77.86 72.48 68.02 64.02 71.51
Russian 74.05 80.30 75.04 71.29 70.09 76.84
Spanish 76.95 89.27 70.81 71.61 68.69 76.40
Turkish 72.44 81.80 73.01 64.85 61.91 68.49
Multilingual 76.84 83.85 68.82 64.89 66.72 71.47
Code-mixed 82.29 88.29 81.09 73.13 73.99 77.42

Table 2: F1 scores on the test dataset for all tracks and for all entity types.

was able to improve both precision (by 0.47% for
multilingual and 0.65% for code-mixed) and recall
(by 0.06% for multilingual and 0.21% for code-
mixed), leading to corresponding F1 differences.
Nevertheless, the number of epochs is not reduced
for these tracks. As described in Section 4.2 and
illustrated in Figure 4, there were also two inter-
mediate models (one multilingual and one code-
mixed). The results for these models are also pro-
vided in Table 1. The proposed approach increased
the multilingual F1 score by 0.6% for the lateral
inhibition system and by 1.52% without lateral in-
hibition. Similarly, the code-mixed performance
was increased by 0.06% (with lateral inhibition)
and by 0.22% (without lateral inhibition). It seems
in this case that the presence of the lateral inhibi-
tion layer reduced the overall gain obtained from
training the model in multiple stages. Neverthe-
less, the multi-stage approach increased the final
F1 score.

Table 2 presents the F1 results obtained with the
lateral inhibition layer, for each track and for each
entity type. It can be noticed that commonly used
named entities (locations and persons) achieve the
highest score in all tracks. The hardest to predict
(achieving the lowest scores) are group (GRP) and
creative work (CW). This observation holds for all
tracks, but particularly in Chinese, the group entity
obtains the lowest score (45.44%), and in Bangla,
the creative works entity obtains 49.57%. It seems
that these low values are due to the nature of these
entities, their complexity and their evolution over
time. Furthermore, by looking at the dataset struc-
ture for Chinese, the group entity type was the least

represented in the training set. Moreover, by look-
ing at the number of unique entities present in the
dataset, there is a high discrepancy between unique
training entities, for group and creative works, and
the corresponding unique instances in the test set,
especially for Chinese and Bangla.

6 Conclusion

The system described in this paper participated in
the MultiCoNER shared task. It made use of a new
artificial neural network layer inspired by the bio-
logical process of lateral inhibition. By means of
this mechanism, the system achieved third place
in the general ranking associated with 7 languages
(Spanish, Dutch, Russian, Korean, Farsi, German,
and Hindi). There were no additional resources
employed, apart from the provided dataset (no ad-
ditional text and no gazetteers). A simple data
augmentation method (as described in Section 3)
was applied only for the code-mixed track, while
still using only the provided data.

Experiments performed after the task deadline,
showed (as reported in Section 5) that not all tracks
benefit from using the new layer. It is likely that lan-
guages with an increased number of tokens present
when training the multilingual XLM-RoBERTa
model will benefit less from employing the new
layer. Nevertheless, models with the lateral inhi-
bition layer trained for lower resourced languages,
multilingual, and code-mixed datasets seem to
achieve higher scores. Furthermore, improvements
can be seen in both precision and recall.

The proposed lateral inhibition layer can be ap-
plied to other natural language processing tasks as
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well. In the future more experiments will be con-
ducted with this layer to determine its suitability in
other contexts.
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