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Abstract

We leverage pre-trained language models to
solve the task of complex NER for two low-
resource languages: Chinese and Spanish. We
use the technique of Whole Word Masking
(WWM) to boost the performance of masked
language modeling objective on large and un-
supervised corpora. We experiment with multi-
ple neural network architectures, incorporating
CRF, BiLSTMs, and Linear Classifiers on top
of a fine-tuned BERT layer. All our models
outperform the baseline by a significant margin
and our best performing model obtains a com-
petitive position on the evaluation leaderboard
for the blind test set.

1 Introduction

The Named Entity Recognition (NER) task aims
to identify the named entities in an input sequence
and categorize them into certain predefined cate-
gories or class labels. The task of NER can be
further broken down into two subtasks: 1) identifi-
cation of the entity span and 2) classification of the
identified entity span into predefined class labels.
For example, in the sentence: New York City is the
most densely populated major city in the United
States., New York City is a named entity of type
LOCATION with an entity span of 3 tokens.

The most popular NER task in the English lan-
guage is CoNLL (Baevski et al., 2019), which is
widely used as a benchmark for most NER mod-
els. Multiple models have been able to obtain
sufficiently high performances in this task setting
(Wang et al., 2021a; Zhou and Chen, 2021; Lu-
oma and Pyysalo, 2020; Schweter and Akbik, 2020;
Ye et al., 2021; Yamada et al., 2020; Wang et al.,
2021b). The CoNLL training set consists of 14,987
train sentences, which comprise 203,621 tokens
in total for English data. The entity space con-
sists of 4 different types of entity type labels (loca-
tions, persons, organizations, and miscellaneous)

*Equal Contribution

to classify each named token. The English data
was taken from the Reuters Corpus, which com-
prises of Reuters News Stories for one year. The
training data source, and by extension the labeled
named entities, comprises of majorly popular en-
tities found in the general English textual content
prevalent in the media. Hence, these entities were
easier to classify into the correct classes due to
the large prevalence of training data. With the use
of pre-trained transformer-based language models,
which are already trained on a large unlabelled
corpus of English text, this task became even less
challenging, as the nature of textual structure in
these corpora largely overlap with that of CoNLL.

However, this task becomes challenging in prac-
tical settings where a multitude of varieties of
named entities is possible. Many of these entities,
like Creative Works (CW) and Products (PROD)
have complex and ambiguous textual structural con-
tent. Such complex named entities rarely appear
even in the large training data sets, and the length
and structure of the named entities keep changing.

We investigate the task of complex, semantically
ambiguous, and low-resource NER (Malmasi et al.,
2022b). This task is based on the complex NER,
search query and code-mixing NER challenges in-
troduced by Meng et al. (2021) and Fetahu et al.
(2021). The shared task of MultiCoNER (stands for
multilingual complex NER) adds additional chal-
lenge by introducing rarer label types (like Creative
Work, Product, etc.).

Another way to increase the difficulty of NER
task is to perform it for low-resource languages.
There is a significant dearth of both labeled and un-
labelled data for such languages. The complexity
is further enhanced by using rarer entity types in
such languages. Therefore, the scarcity of training
data, along with the rarity of entity types, makes it
difficult for the models to perform better in the low-
resource setting. The shared task of MultiCoNER
introduces datasets in multiple low-resource lan-
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guages.
We leverage large pre-trained language models

trained on low-resource language corpora to ob-
tain competitive performances in the low-resource
and complex NER setting. We show that simpler
architectures successfully outperform other heav-
ier counterparts. We use standard BERT+CRF-
based models to obtain high performances in
the evaluation set. We experiment on two low-
resource datasets: Spanish and Chinese. The
code is available at https://github.com/
AmitPandey-Research/Complex_NER

We compare multiple architectures on the test
and validation set of the shared task. The organisers
provide a baseline of XLM-RoBERTa model (Con-
neau et al., 2019) finetuned on the training dataset
of the specified language for the given task. In this
paper, we treat the finetuned XLM-RoBERTa as
baseline (two separate models are trained for Span-
ish and Chinese language) and compare the perfor-
mances against our models. All our models beat
the baseline by a significant margin. We describe
the prior research work done with respect to both
general and low-resource NER tasks in Section 2.
We provide the formal task description in Section
3, the dataset details in Section 4, the method and
the model architecture in Section 5. We provide
details about the experimental implementation in
Section 6. We discuss the results obtained and er-
ror analysis in Sections 7 and 8 respectively, and
finally, we conclude the paper in Section 9.

2 Related Work

The task of low-resource NER has been investi-
gated before by multiple researchers. This line of
research focuses mainly on leveraging the cross-
lingual contextual information obtained from low-
resource languages. (Feng et al., 2018) use cross-
lingual knowledge transfer to train the NER model
for the low-resource target language. (Xie et al.,
2018) use bilingual dictionaries to tackle the task of
low-resource NER. (Rahimi et al., 2019b) proposes
a Bayesian graphical model approach to improve
performance on NER tasks.

NER models often use gazetteers (list of named
entities) to improve performance in NER tasks.
(Rijhwani et al., 2020) creates soft-gazetteers for
low-resource languages, leveraging English Knowl-
edge Bases. (Bari et al., 2019) focuses on an un-
supervised approach for NER for to circumvent
the label scarcity problem in low-resource lan-

guages. (Rahimi et al., 2019a) leverages multilin-
gual transfer learning from multiple languages for
low-resource NER tasks. (Hedderich et al., 2021)
uses distant supervision in the low-resource setting
for NER.

There are multiple approaches that have been
undertaken in the recent past to improve the state-
of-the-art in NER tasks. (Wang et al., 2020) uses
concatenation of embeddings to outperform the
state-of-the-art in NER tasks, as they infer that con-
catenation of embeddings leads to a better word
representation. Their method automates the pro-
cess of finding meaningful embeddings to concate-
nate for improved performance. (Zhou and Chen,
2021) propose a co-regularization framework for
entity extraction comprising of multiple models
with different architectures but different parameter
initializations. This helps to tackle overfitting of
large neural network-based models on low-resource
training data for NER. (Schweter and Akbik, 2020)
use document-level features to improve informa-
tion extraction on entity-centric tasks.

NER and Relation Extraction are the core infor-
mation extraction tasks in NLP. (Ye et al., 2021)
models this as a span-pair classification problem,
and they further improve the pair representations
by considering the dependencies between the spans
(pairs) by strategically packing the markers in the
encoder. (Yamada et al., 2020) proposes a novel
entity-aware self-attention framework for trans-
former based models for NER. (Wang et al., 2021b)
extracts document-level context for sentences for
which document information is absent. They treat
the sentence as a query and use a search engine to
extract the document level contextual information.
(Luoma and Pyysalo, 2020) uses multiple neigh-
bouring sentences as the contextual information for
NER.

Pre-trained Language Models for NER : Ever
since the introduction of BERT (Devlin et al.,
2019), transformer based pre-trained language
models have effectively utilized transfer learning
for downstream NLP tasks. NER has been tra-
ditionally modeled as a sequence labeling prob-
lem. (Huang et al., 2015) proposed a Bidirectional
LSTM with a CRF layer on top for classifying to-
kens as entities. (Jadhav, 2020) use a pretrained
BERT model with a CRF layer on top for perform-
ing NER on the DailyHunt news dataset. We use
a BERT-based model with a CRF layer on top and
achieve competitive performance on low-resource
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Label Description
PER Person
LOC Location
GRP Group

CORP Corporation
PROD Product

CW Creative Work

Table 1: Entity types in the label space

NER tasks on multiple languages, beating the base-
line by a significant margin in each case.

3 Task Description

In this task, we attempt complex NER for two low-
resource languages: Spanish and Chinese. This
task presents additional challenges in the form of
test instances consisting of short search queries and
low-context sentences. For this task, the systems
had to identify the B-I-O format (Ramshaw and
Marcus, 1999) (short for beginning, inside, outside)
tags for six NER entity type labels: 1) Person, 2)
Product, 3) Location, 4) Group, 5) Corporation,
and 6) Creative Work. The description of these
labels is shown in Table 1.

4 Dataset

The MultiCoNER dataset (Malmasi et al., 2022a)
consists of multiple low-resource languages. We
consider Chinese and Spanish languages in this
paper. For the monolingual track, the participants
have to train a model that works for a single lan-
guage. We fine-tune the language model on the
train set to obtain predictions on dev and test set.
The labels from the blind test set are not disclosed.
The dataset follows a BIO tagging scheme and
there are 6 entity types in the label space. The
statistics for the Chinese and Spanish datasets in
the monolingual track for the train and dev set are
provided in Table 2. The total number of test in-
stances for both Spanish and Chinese languages
exceed 150,000.

Train Dev
# sentences 15300 800

Table 2: Total sentences in Chinese and Spanish mono-
lingual track

5 System Overview

At first, we pre-train the BERT language model on
unlabelled corpora for the target low resource lan-
guage. For Chinese, we use the strategy outlined by
(Cui et al., 2020). BERT uses the WordPiece tok-
enizer (Wu et al., 2016) to split tokens into smaller
fragments. It is easier for the masked language
model to predict these masked fragments. How-
ever, for the Chinese textual texture, the Chinese
characters are not formed by alphabet-like symbols,
so the WordPiece tokenizer is unable to split the
words into small fragments. Hence, we use the
Chinese Word Segmentation (CWS) tool to split
the text into separate words and then use Whole
Word Masking (WWM) strategy for the masked
language model objective. In comparison to mask-
ing small fragments, this Whole Word Masking
strategy makes it harder for the model to predict
whole masked words, leading to more robustness.

For the Spanish variant, we adopt the strategy
outlined by Cañete et al. (2020). Similar to (Cui
et al., 2020), they use the strategy of whole word
masking for pre-training BERT language model on
unlabelled Spanish corpus.

We adopt the strategy of finetuning these pre-
trained BERT models on the downstream NER task
for each language.

5.1 BERT+CRF

Conditional random fields (CRFs) are statistical
modeling methods used for pattern recognition.
They are better suited for tasks such as Part-of-
Speech (POS) tagging and NER compared to clas-
sifiers based on softmax normalization. Classifiers
based on softmax normalization assume the likeli-
hood of the labels to be conditionally independent,
and this causes label bias. CRF alleviates this issue
of label bias by capturing inter-token dependencies
in a graphical model and learning transition scores
in addition to the hidden states. In our model, we
use linear-chain CRF. In linear CRFs, prediction
for each token is dependent only on its immediate
neighbors. As shown in equation 2, CRF tries to
maximize the ratio of the probability of an optimal
sequence of labels to the probability sum of all the
possible sequences of labels. Since CRF focuses
on the sequence of labels, it can avoid errors like
B-PER followed by an I-PROD. Therefore, based
on emission scores provided by BERT layer, we
calculate the log-likelihood of a sequence of labels.
Now we explain the steps involved BERT+CRF
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Figure 1: BERT+CRF architecture

architecture that is shown in Figure 1.
Firstly, we obtain token-level dense representa-

tions using a fine-tuned BERT-based embedding
layer. For an input sequence of tokens w =
(w1, w2, w3, ..., wn), we obtain the ith token rep-
resentation xi of dimension d, where d is the di-
mension of BERT embeddings. The token embed-
ding xi is passed to a dense linear layer to trans-
form the representation from d to k dimensional
space (emission score), where k is the number of
labels. We calculate emission scores for all the to-
kens of the given sequence. We then pass these
emission scores to the CRF layer to obtain the
probability for a sequence of labels. The emis-
sion scores, obtained from the previous layer as
P ∈ Rn×k, are passed to the CRF layer whose
parameters are A ∈ Rk+2×k+2. Element Aij de-
notes the transition score from the ith to the jth
label. 2 additional states are added to the start
and end of the sequence. For a series of tokens
w = (w1, w2, w3, ..., wn) we obtain a series of pre-
dictions y = (y1, y2, y3, ..., yn).

As described in (Lample et al., 2016), the score
of the entire sequence is defined as :

s(w, y) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Pi,yi (1)

The model is trained to maximise the log proba-
bility of the correct label sequence:

log(p(y|w)) = s(w, y)− log(
∑

ỹ∈Yw

es(w,ỹ)) (2)

where Yw are all possible label sequences.

5.2 BERT+BiLSTM+CRF

We obtain token-level contextual dense representa-
tions (BERT embeddings) using fine-tuned BERT

layer. These embeddings are then passed to a BiL-
STM layer which further extracts bidirectional in-
formation from the given sequence of vectors. The
information is encoded in the hidden-state represen-
tations of the BiLSTM. We pass these hidden states
to the CRF layer to obtain the likelihood of a se-
quence of labels. We use the pre-trained language
model to map the tokens in each input sentence to a
dense embedding representation. The BERT-based
dense embeddings are passed to the BiLSTM-CRF
layer, which is used to obtain the predicted label for
each token in the entire sequence. More formally,
for a sequence of tokens w = (w1, w2, w3, ..., wn),
we obtain the ith token representation xi of dimen-
sion d, which is the dimension of the dense vector
representations of the BERT-based embeddings ob-
tained from the pre-trained language model. The se-
quence of token embeddings is taken as an input to
the BiLSTM in each time step, and the forward hid-
den states

−→
hf = (

−→
h1,
−→
h2,
−→
h3, ...,

−→
hn) and the back-

ward hidden states
←−
hb = (

←−
h1,
←−
h2,
←−
h3, ...,

←−
hn) are

concatenated to form the combined hidden state
representation h = [

−→
hf ,
←−
hb]. The combined hidden

state representation h ∈ Rn×m, where m is the
total dimension of BiLSTM, is transformed to a k
dimensional space using a linear layer, where k is
the total number of labels. Finally, the CRF layer
outputs predicted sequence of labels.

5.3 BERT+Linear

This is the simplest architecture based on fine-tuned
BERT layer. The input token sequence is mapped
to a vector space of d dimension using a pre-trained
BERT layer. These embeddings are then passed
to a classifier that consists of two Fully Connected
(FC) layers followed by a softmax normalization
function. The classifier maps the d dimensional
BERT embeddings to k dimensions, where k is
the number of labels. These k dimensional vectors
generated by the fully connected layers are soft-
maxed to provide a probability distribution across
all labels.

6 Implementation Details

We implement all our transformer based models
using Pytorch and Huggingface library. The Chi-
nese language model with the Whole Word Mask-
ing (WWM) objective is trained on the Chinese
Wikipedia unlabelled text corpus. We use the same
training corpus of 3 billion unannotated Spanish
tokens as Cañete et al. (2020) to pre-train the BERT
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BERT+CRF BERT+BiLSTM+CRF BERT+Linear
Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.8368 0.8796 0.8577 0.8219 0.8759 0.8481 0.8194 0.8613 0.8399
PER 0.9065 0.9028 0.9047 0.9177 0.9028 0.9102 0.8933 0.9150 0.9040

PROD 0.6970 0.7468 0.7210 0.7278 0.7468 0.7372 0.6864 0.7532 0.7183
GRP 0.7952 0.7857 0.7904 0.7751 0.7798 0.7774 0.8061 0.7917 0.7988
CW 0.7965 0.7135 0.7527 0.7654 0.7135 0.7385 0.8107 0.7135 0.7590

CORP 0.8657 0.8227 0.8436 0.8397 0.7801 0.8088 0.8529 0.8227 0.8375
Average 0.8163 0.8085 0.8117 0.8079 0.7998 0.8034 0.8115 0.8096 0.8096

Table 3: Results of our models on validation dataset for Spanish language

BERT+CRF BERT+BiLSTM+CRF BERT+Linear
Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.9465 0.9365 0.9415 0.9239 0.9312 0.9275 0.9186 0.9259 0.9223
PER 0.8497 0.9225 0.9084 0.8971 0.9457 0.9208 0.8955 0.9302 0.9125

PROD 0.8867 0.8285 0.8566 0.8662 0.8504 0.8582 0.8593 0.8248 0.8417
GRP 0.7500 0.6923 0.7200 0.7727 0.6538 0.7083 0.6923 0.6923 0.6923
CW 0.8265 0.8617 0.8437 0.8556 0.8191 0.8370 0.8370 0.8191 0.8280

CORP 0.8615 0.8750 0.8682 0.8808 0.8854 0.8831 0.8883 0.8698 0.8789
Average 0.8610 0.8527 0.8564 0.8660 0.8476 0.8558 0.8485 0.8437 0.846

Table 4: Results of our models on validation dataset for Chinese language

language model on Spanish data. We implement 3
models: BERT+CRF, BERT+BiLSTM+CRF, and
BERT+Linear, for our low resource NER task
setting. We run our experiments between 1-100
epochs. We find that the best results are obtained
at 10 epochs of training for each model after which
the model starts to overfit. We use a dropout from
0.2 to 0.5 for all models. We employ Adam opti-
mizer with default parameters for all experiments.
We also experiment with a cyclic learning rate
between 1e−4 to 1e−6 to avoid getting stuck in
local minima. The size of each of the FC lay-
ers in the BERT+Linear model is 512. We vali-
date the results of all models using our validation
dataset. The hidden layer size of BiLSTM used in
the BERT+BiLSTM+CRF model is 256.

7 Results

We compare the performances of all models in the
low-resource setting for both Chinese and Spanish
languages. From tables 3 and 4 we observe that
the BERT+CRF model performs the best across
both languages on validation set. We choose the
best performing model to evaluate our results on
the blind test set. The baseline model chosen by
the organisers of this task is XLM-RoBERTa (Con-
neau et al., 2019)(base model). It is pre-trained

on 2.5TB of filtered CommonCrawl data contain-
ing 100 languages (Conneau et al., 2019). Our
approach beats the baseline by a significant margin
and outperforms multiple models in the competi-
tion. We present the precision, recall and F1 scores
for all 3 models in the Tables 3 and 4 for Span-
ish and Chinese language respectively. We also
compare the results between the baseline and our
models for the validation dataset in the Tables 5
and 6.

For the Spanish language, we observe that the
BERT+CRF (0.8117 F1 score) beats BERT+Linear
(0.8096 F1 score) by a slender margin. This can
be attributed to the addition of the CRF layer,
which exploits inter-token dependencies. The
BERT+BiLSTM+CRF model is much heavier with
a larger number of parameters and overfits the train-
ing dataset due to the smaller number of training
instances.

For the Chinese language, we observe that
both the BERT+CRF (0.8564 F1 score) and
BERT+BiLSTM+CRF (0.8558 F1 score) beat
BERT+Linear (0.846 F1 score).

Our models outperform the baseline for both the
languages. Our best performing model BERT+CRF
beats the baseline F1 score by around 5% for Span-
ish and by around 10% for Chinese.

The details of the performance of the
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Prec Rec F1
Baseline System 0.764 0.763 0.767
BERT + Linear 0.811 0.809 0.809
BERT+BiLSTM+CRF 0.807 0.799 0.803
BERT + CRF 0.816 0.808 0.811

Table 5: Comparison of models’ performances with
baseline on validation dataset for Spanish language

Prec Rec F1
Baseline System 0.758 0.762 0.755
BERT + Linear 0.848 0.843 0.846
BERT+BiLSTM+CRF 0.866 0.847 0.855
BERT+CRF 0.861 0.852 0.856

Table 6: Comparison of models’ performances with
baseline on validation dataset for Chinese language

BERT+CRF
Class Label Prec Rec F1

LOC 0.5768 0.6571 0.6144
PER 0.7641 0.7739 0.7690

PROD 0.6292 0.5141 0.5659
GRP 0.5727 0.5560 0.5642
CW 0.5331 0.5257 0.5294

CORP 0.6605 0.6005 0.6291
Average 0.6227 0.6046 0.6120

Table 7: Performance of Spanish model on test dataset

BERT+CRF
Class Label Prec Rec F1

LOC 0.6930 0.7955 0.7407
PER 0.7952 0.6377 0.7078

PROD 0.6853 0.7232 0.7038
GRP 0.7254 0.4608 0.5636
CW 0.5520 0.6798 0.6093

CORP 0.6526 0.7361 0.6918
Average 0.6839 0.6722 0.6695

Table 8: Performance of Chinese model on test dataset

BERT+CRF model in the evaluation phase
are shown in Table 7 for the Spanish language and
the Table 8 for the Chinese language. We observe
a drop in performance on the test dataset compared
to the performance on the validation dataset. The
model scores 0.6120 F1 for Spanish and 0.6695 F1
for the Chinese language.

8 Error Analysis

We perform error analysis on all 3 different mod-
els. We qualitatively analyze the predictions on the
validation dataset for both languages. As the final
evaluation test set in blind, we are unable to per-
form analysis on the same. We find that the labels
GRP (Group), PROD (Product), and CW (Creative
Work) are the most inaccurately predicted labels
for the Spanish models. This conforms to our hy-
pothesis that the long-tailed nature of these entities
(which means the frequency of occurrence of such
entity types in the general literature of the target
language is rare). Hence, the model has the most
difficulty in recognizing these entities from the con-
textual sentences. The other label types are more
common and were present in the CoNLL dataset as
well. We also notice that the BERT+Linear does
marginally better than BERT+CRF on predicting
such labels (for the Spanish language), despite it
not being the best performing model overall. This
can be attributed to it being a lighter model, im-
parting it the capability of generalizing better while
training on a relatively lower amount of training

instances. BERT+CRF benefits from having CRF
along with the lower number of parameters com-
pared to the BERT+BiLSTM+CRF model. This
results in it having a better performance compared
to both the other models. The drop in the perfor-
mance of the model on the blind test dataset can
be attributed to the model not generalizing well
to handle instances of questions and short search
queries in the additional test set.

9 Conclusion and Future Work

We have introduced strong improvements over the
baseline for the shared task of complex NER for
low resource languages. We leverage the Whole
Word Masking objective to obtain a better perfor-
mance in this low-resource setting. We perform
extensive experiments and find that simple BERT-
CRF based models perform strongly against other
heavier models even in such low resource seman-
tically ambiguous setting as evident by the final
evaluation rankings. We find this approach to give
a higher performance as it is able to utilize the
contextual information from a sequence of tokens
and learn inter-token dependencies to accurately
predict the named entity labels. We also conduct
qualitative error analysis and describe our findings.
For future work, we aim to leverage these findings
to circumvent the label scarcity problem in other
low-resource languages and code mixed data.
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