
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1457 - 1468
July 14-15, 2022 ©2022 Association for Computational Linguistics

DAMO-NLP at SemEval-2022 Task 11:
A Knowledge-based System for Multilingual Named Entity Recognition

Xinyu Wang⋄⋆, Yongliang Shen♠⋆, Jiong Cai⋄⋆, Tao Wang, Xiaobin Wang†, Pengjun Xie†
Fei Huang†, Weiming Lu♠, Yueting Zhuang♠, Kewei Tu⋄, Wei Lu‡, Yong Jiang†∗

†DAMO Academy, Alibaba Group
⋄School of Information Science and Technology, ShanghaiTech University

♠College of Computer Science and Technology, Zhejiang University
‡StatNLP Research Group, Singapore University of Technology and Design

{wangxy1,caijiong,tukw}@shanghaitech.edu.cn
{syl,luwm}@zju.edu.cn, luwei@sutd.edu.sg

yongjiang.jy@alibaba-inc.com

Abstract

The MultiCoNER shared task aims at detecting
semantically ambiguous and complex named
entities in short and low-context settings for
multiple languages. The lack of contexts makes
the recognition of ambiguous named entities
challenging. To alleviate this issue, our team
DAMO-NLP proposes a knowledge-based sys-
tem, where we build a multilingual knowledge
base based on Wikipedia to provide related con-
text information to the named entity recogni-
tion (NER) model. Given an input sentence,
our system effectively retrieves related contexts
from the knowledge base. The original input
sentences are then augmented with such con-
text information, allowing significantly better
contextualized token representations to be cap-
tured. Our system wins 10 out of 13 tracks in
the MultiCoNER shared task.1

1 Introduction

The MultiCoNER shared task (Malmasi et al.,
2022b) aims at building Named Entity Recognition
(NER) systems for 11 languages, including English,
Spanish, Dutch, Russian, Turkish, Korean, Farsi,
German, Chinese, Hindi, and Bangla. The task has
three kinds of tracks including one multilingual
track, 11 monolingual tracks and one code-mixed
track. The multilingual track requires training mul-
tilingual NER models that are able to handle all
languages. The monolingual tracks require training
individual monolingual models where each model
works for only one language. The code-mixed
track requires handling code-mixed samples (sen-
tences that may involve multiple languages). The
datasets mainly contain sentences from three do-
mains: Wikipedia, web questions and user queries,

∗: project lead. ⋆: equal contributions.
1Our code is publicly available at https://github.

com/Alibaba-NLP/KB-NER.

köpings is rate
Input Sentence: Retrieve

in KB

Predict
with

knowledge

Predict
without

knowledge

köpings | LOC is rate köpings is | GRP rate

Retrieval Results:

1. Kis: Köpings IS, a Swedish sports club
2. Köping, Sweden: Köpings IS, association club,

bandy and handball
3. Kalle Samuelsson: Kalle Samuelsson (born

February 15, 1986) is a Swedish Bandy player who
plays for Västerås SK as a goalkeeper. Kalle was a
youth product of Köpings IS.

4. …

Figure 1: A motivating example from the English test
set. In the retrieval results, the bold phrases are the title
of the retrieved page and the underlined phrases contain
the hyperlinks to other pages. LOC and GRP are entity
labels representing location and group respectively.

which are usually short and low-context sentences.
Moreover, these short sentences usually contain se-
mantically ambiguous and complex entities, which
makes the problem more difficult. In practice,
professional annotators usually use their domain
knowledge to disambiguate such kinds of entities.
They may retrieve the related documents from a
knowledge base (KB) or from a search engine to
better guide them the annotation of ambiguous
named entities (Wang et al., 2019). Therefore, we
believe retrieving related knowledge can help the
NER model to disambiguate hard samples in the
shared task as well. A motivating example is shown
in Figure 1, which shows how the retrieval results
could help to improve the prediction in practice.

In this paper, we propose a general knowledge-
based system for the MultiCoNER shared task. We
propose to retrieve the related documents of the in-
put sentence so that the recognition of difficult enti-
ties can be significantly eased. Based on Wikipedia
of the 11 languages, we build a multilingual KB
to search for the related documents of the input
sentence. We then feed the input sentence and the
related documents into the NER model. Moreover,
we propose an iterative retrieval approach to im-

1457

https://github.com/Alibaba-NLP/KB-NER
https://github.com/Alibaba-NLP/KB-NER

prove the retrieval quality. During training, we
propose multi-stage fine-tuning. We first train a
multilingual model so that the NER model can
learn from all annotations. Next, we train the
monolingual models (one for each language) and a
code-mixed model by using the fine-tuned XLM-
RoBERTa (XLM-R) (Conneau et al., 2020) embed-
dings in the multilingual model as initialization to
further boost model performance on monolingual
and code-mixed tracks. For each track, we train
multiple models with different random seeds and
use majority voting to form the final predictions.

Besides the system description, we make the
following observations based on our experiments:
1. Knowledge-based systems can significantly im-

prove both in- and out-of-domain performance
compared with system without knowledge in-
puts.

2. Our multi-stage fine-tuning approach can help
improve model performance in all the monolin-
gual and code-mixed tracks. The approach can
also reduce the training time to speed up our
system building at different stages.

3. Our iterative retrieval strategy can further im-
prove the retrieval quality and result in signifi-
cant improvement on the performance of code-
mixed track.

4. Searching over Wikipedia KB performs better
than using online search engines on the Multi-
CoNER datasets.

5. Comparing with other model variants we have
tried, our NER model enjoys a good balance
between model performance and speed.

2 Related Work

NER (Sundheim, 1995) is a fundamental task in nat-
ural language processing. The task has a lot of ap-
plications in various domains such as social media
(Derczynski et al., 2017), news (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003), E-
commerce (Fetahu et al., 2021; Wang et al., 2021b),
and medical domains (Doğan et al., 2014; Li et al.,
2016). Recently, pretrained contextual embeddings
such as BERT (Devlin et al., 2019), XLM-R and
LUKE (Yamada et al., 2020) have significantly im-
proved the NER performance. The embeddings
are trained on large-scale unlabeled data such as
Wikipedia, which can significantly improve the
contextual representations of named entities. Re-
cent efforts (Peters et al., 2018; Akbik et al., 2018;
Straková et al., 2019) concatenate different kinds

of pretrained embeddings to form stronger token
representations. Moreover, the embeddings are
trained over long documents, which allows the
model to easily model long-range dependencies
to disambiguate complex named entities in the sen-
tence. Recently, a lot of work shows that utilizing
the document-level contexts in the CoNLL NER
datasets can significantly improve token representa-
tions and achieves state-of-the-art performance (Yu
et al., 2020; Luoma and Pyysalo, 2020; Yamada
et al., 2020; Wang et al., 2021a). However, the lack
of context in the MultiCoNER datasets means the
embeddings cannot take advantage of long-range
dependencies for entity disambiguation. Recently,
Wang et al. (2021b) use Google search to retrieve
external contexts of the input sentence and success-
fully achieve state-of-the-art performance across
multiple domains. We adopt this idea so that the
embeddings can utilize the related knowledge by
taking the advantage of long-range dependencies
to form stronger token representations. Comparing
with Wang et al. (2021b), we build the local KB
based on Wikipedia because the KB matches the in-
domain data of the shared task and is fast enough
to meet the time requirement in the test phase2.

Fine-tuning pretrained contextual embeddings is
a useful and effective approach to many NLP tasks.
Recently, some of the research efforts propose to
further train the fine-tuned embeddings with spe-
cific training data or in a larger model architecture
to improve model performance. Shi and Lee (2021)
proposed two-stage fine-tuning, which first trains
a general multilingual Enhanced Universal Depen-
dency (Bouma et al., 2021) parser and then fine-
tunes on each specific language separately. Wang
et al. (2021a) proposed to train models through con-
catenating fine-tuned embeddings. We extend these
ideas as multi-stage fine-tuning, which improves
the accuracy of monolingual models that use fine-
tuned multilingual embeddings as initialization in
training. Moreover, multi-stage fine-tuning can
accelerate the training process in system building.

3 Our System

We introduce how our knowledge-based NER sys-
tem works in this section. Given a sentence of
n tokens x = {x1, · · · , xn}, the sentence is fed
into our knowledge retrieval module. The knowl-
edge retrieval module takes the sentence as the
query and retrieves top-k related paragraphs in KB.

2There are only 7 days for the test phase.

1458

𝒙

Input

Retrieval Results :

1. ------------
2. ----------------
3. -------------
4. ---------------
5. ----------------
6. …

Retrieve in KB𝒙

ෝ𝒙

𝒙, ෝ𝒙

… … …

…
…

T
ran

sfo
rm

er-B
ased

E
m

b
ed

d
in

g

…

NER Model m

…

NER Model 1

…

ෝ𝒚
Output

Majority
Voting

Ensemble

Vote

ෝ𝒚𝜃1

ෝ𝒚𝜃𝑖

ෝ𝒚𝜃𝑚

CRF

Figure 2: The architecture of our knowledge-based NER
system.

The system then concatenates the input sentence
and the related paragraphs together and feeds the
concatenated sequence into the embeddings. The
output token representations of the input sentence
are fed into a linear-chain conditional random field
(CRF) (Lafferty et al., 2001) layer and the CRF
layer produces the label predictions. Given the
label predictions of multiple NER models with dif-
ferent random seeds, the ensemble module uses
a voting strategy to decide the final predictions
ŷ = {ŷ1, · · · , ŷn} of the sentence. The architec-
ture of our framework is shown in Figure 2.

3.1 Knowledge Retrieval Module

Retrieval-augmented context is effective for named
entity recognition tasks (Wang et al., 2021b), as ex-
ternal relevant contexts can provide auxiliary infor-
mation for disambiguating complex named entities.
We construct multilingual KBs based on Wikipedia
pages of the 11 languages, and then retrieve rele-
vant documents by using the input sentence as a
query. These retrieved documents act as contexts
and are fed into the NER module. To enhance the
retrieval quality, we further designed an iterative
retrieval approach, which incorporates predicted
entities of NER models into the search query.

Knowledge Base Building Wikipedia is an
evolving source of knowledge that can facilitate
many NLP tasks (Chen et al., 2017; Verlinden et al.,
2021). Wikipedia provides a rich collection of men-
tion hyperlinks (referred to as wiki anchors). For
example, in the sentence “Steve Jobs founded Ap-
ple”, entities “Steve Jobs” and “Apple” are linked to
the wiki entries Steve_Jobs and Apple_Inc
respectively. For the NER task, these anchors pro-
vide useful clues on where the entities are to the
model. Based on Wikipedia we can build local
Wikipedia search engines to retrieve the relevant

context of the input sentences for each language.
We download the latest (2021-12-20) version of

the Wikipedia dump from Wikimedia3 and convert
it to plain texts. Then we use ElasticSearch (ES)4

to index them. ElasticSearch is document-oriented,
and the document is the least searchable unit. We
define the document in our local Wikipedia search
engines with three fields: sentence, paragraph and
title. We create inverted indexes on both the sen-
tence field and the title field. The former is used
as a sentence-level full-text retrieval field, while
the latter indicates the core entity described by the
wiki page and can be used as an entity-level re-
trieval field. The paragraph field stores the con-
texts of the sentence. To take advantage of the rich
wiki anchors in Wikipedia paragraphs, we marked
them with special markers. For example, to in-
corporate the hyperlinks [Apple → Apple Inc]
and [Steve Jobs → Steve Jobs] to the para-
graph, we transformed “Steve Jobs founded Ap-
ple” into “<e:Steve Jobs>Steve Jobs</e> founded
<e:Apple_inc>Apple</e>”5.

Sentence Retrieval Retrieval at the sentence
level takes the input sentence as a query and re-
trieves the top-k documents on the sentence field.
Given an input sentence, we select the correspond-
ing search engine according to the language of the
sentence.

Iterative Entity Retrieval The core of the NER
task lies in the entities, while retrieval at the sen-
tence level overlooks the key entities in the sen-
tences. For this reason, we consider the relevance
of the entities in the sentence to the title field in
the documents during retrieval. We concatenate
the entities in the sentences with “|” and then re-
trieve them on the title field. On the training and
development sets, we utilize the ground-truth enti-
ties directly. On the test set, we first perform the
sentence retrieval and then use the entity mentions6

predicted by the model for entity retrieval. This
bootstrapping manner can be applied for T turns.

Context Processing After top-k results from the
KB are retrieved, the system post-processes the
retrieved documents into the contexts of the in-
put sentence. There are three options of utilizing

3https://dumps.wikimedia.org/
4https://www.elastic.co/
5<e:XXX>YYY</e>: where XXX is the title of the linked

page and YYY is the phrase with hyperlink in the sentence.
6Here we define mentions as the named entities ignoring

the entity types.

1459

https://dumps.wikimedia.org/
https://www.elastic.co/

the texts in the documents, which are: 1) use the
matched paragraph; 2) use the matched sentence;
3) use the matched sentence but remove the wiki
anchors. We compare the performance of each op-
tion in section 5.4. In each retrieved document, we
concatenate the title and texts together to form the
context x̂i. The results are then concatenated into
{x̂1, · · · , x̂k} based on the retrieval ranking.

3.2 Named Entity Recognition Module
In our system, we use XLM-R large as the embed-
ding for all the tracks. It is a multilingual model
and is applicable to all tracks. Given the input sen-
tence x and the retrieved contexts {x̂1, · · · , x̂k},
we add the separator token (i.e., “</s>” in XLM-R)
between them and concatenated them together to
form the input x̃ of the NER module. We chunk re-
trieved texts to avoid the amount of subtoken in the
sequence exceeding the maximum subtoken length
in XLM-R (i.e., 512 in XLM-R).

Our system regards the NER task as a sequence
labeling problem. The embedding layer in the
NER module encode the concatenated sequence
x̃ and output the corresponding token representa-
tions {v1, · · · ,vn, · · · }. The module then feeds
the token representations {v1, · · · ,vn} of the in-
put sentence into a linear-chain CRF layer to obtain
the conditional probability pθ(y|x̃):

ψ(y′, y,vi) = exp(WT
y vi + by′,y) (1)

pθ(y|x̃) =

n∏
i=1

ψ(yi−1, yi,vi)

∑
y′∈Y(x)

n∏
i=1

ψ(y′i−1, y
′
i,vi)

where θ represents the model parameters and Y(x)
denotes the set of all possible label sequences given
x. In the potential function ψ(y′, y,vi), WT

y vi is
the emission score and by′,y is the transition score,
where WT ∈ Rt×d and b ∈ Rt×t are parameters
and the subscripts y′ and y are the indices of the ma-
trices. During training, the negative log-likelihood
loss LNLL(θ) = − log pθ(y

∗|x̃) for the concate-
nated input sequence with gold labels y∗ is used.
During inference, the model prediction ŷθ is given
by Viterbi decoding.

3.3 Ensemble Module
Given predictions {ŷθ1 , · · · , ŷθm} from m models
with different random seeds, we use majority vot-
ing to generate the final prediction ŷ. We convert
the label sequences into entity spans to perform

majority voting. Following Yamada et al. (2020),
the module ranks all spans in the predictions by the
number of votes in descending order and selects
the spans with more than 50% votes into the final
prediction. The spans with more votes are kept
if the selected spans have overlaps and the longer
spans are kept if the spans have the same votes.

4 Experimental Setup

4.1 Data and Evaluation Methodology

We use the official MultiCoNER dataset (Mal-
masi et al., 2022a) in all tracks to train our NER
models. There are mainly three domains in the
dataset: LOWNER (Low-Context Wikipedia NER)
contains low-context sentences from Wikipedia;
MSQ (MS-MARCO Question NER) is based on
MS-MARCO web question corpus (Nguyen et al.,
2016) containing a lot of natural language ques-
tions; ORCAS (Search Query NER) contains user
queries from Microsoft Bing (Craswell et al., 2020).
The MSQ and ORCAS samples are taken as out-of-
domain data in the shared task. The training and
development sets only contain a small collection
of samples of these two domains and mainly con-
tain data from the LOWNER domain. The test set,
however, contains much more MSQ and ORCAS
samples to assess the out-of-domain performance.

The results of the shared task are evaluated with
the entity-level macro F1 scores, which treat all the
labels equally. In comparison, most of the publicly
available NER datasets (e.g., CoNLL 2002, 2003
datasets) are evaluated with the entity-level micro
F1 scores, which emphasize common labels.

4.2 Training

NER Model Training Before building the final
system, we compare a lot of variants of the system.
We train these variant models on the training set
for 3 times each with different random seeds and
compare the averaged performance of the models.
According to the dataset sizes, we train the mod-
els for 5 epochs, 10 epochs and 100 epochs for
multilingual, monolingual and code-mixed models
respectively. Our final NER models are trained on
the combined dataset including both the training
and development sets on each track to fully utilize
the labeled data. For models trained on the training
set, we use the best macro F1 on the development
set during training to select the best model check-
point. For models trained on the combined dataset,

1460

System EN ES NL RU TR KO FA DE ZH HI BN MULTI MIX AVG.

Ours: Baseline 77.81 76.80 80.51 74.65 72.83 70.81 72.68 81.92 65.56 67.80 65.27 74.19 77.75 73.74
Sliced 74.54 75.11 77.66 73.73 68.77 70.66 68.66 78.90 65.21 67.00 63.05 71.07 72.74 71.32
RACAI 75.78 75.62 78.41 74.60 70.42 71.74 70.42 79.39 62.70 68.08 66.28 72.10 79.37 72.69
USTC-NELSLIP 85.47 85.44 87.67 83.82 85.52 86.36 87.05 89.05 81.69 84.64 84.24 85.30 92.90 86.09
Ours 91.22 89.94 90.50 91.50 88.69 88.59 89.70 90.65 78.06 86.23 83.51 85.31 91.79 88.13

Table 1: Part of the official results and the post-evaluation results of our baseline system.

we use the final model checkpoint after training7.

Multi-stage Fine-tuning Besides our final set-
tings, we have a lot of stages of KB settings dur-
ing our system building. Multi-stage fine-tuning
aims at transferring the parameters of fine-tuned
embeddings in a model at an early stage into other
models in the next stage. The approach stores the
checkpoint of fine-tuned XLM-R embeddings at
the early stage and uses it as the initialization of
XLM-R embeddings for model training at the next
stage. One benefit of multi-stage fine-tuning is the
monolingual and code-mixed models, can utilized
the annotations of all the tracks to further improve
the model performance. XLM-R embedding is a
multilingual embedding with strong cross-lingual
transferability over all 11 languages. Therefore,
we use the checkpoint of fine-tuned multilingual
model for continue fine-tuning on the monolingual
and code-mixed models. Another benefit of multi-
stage fine-tuning is that it accelerates the training
speed. As the size of the multilingual dataset is rel-
atively large, it is quite time-consuming to train a
multilingual model. When we try different types of
KB, we can utilize the checkpoints of multilingual
models at the previous stage to train the monolin-
gual and code-mixed models with new types of
contexts without training new multilingual models.
Moreover, we can reduce the training epochs for
faster speed since the XLM-R checkpoints have
already learned from all the datasets.

Continue Pretraining To make XLM-R learn
the data distribution of the shared task, we combine
the training and development sets on the monolin-
gual tracks to build a corpus to continue pretrain
XLM-R. Specifically, we collocate all sentences
according to their languages, then cut the text into
chunks of fixed length, and train the model on these
text chunks using the Masked Language Model-
ing objective. We continue pretrain XLM-R for
5 epochs. We use the continue pretrained XLM-
R model as the initialization of the multilingual

7Please refer to Appendix A for detailed settings.

models during training.

5 Results and Analysis

In this section, we use language codes8 to represent
languages, and use MULTI and MIX to represent
multilingual and code-mixed tracks respectively9.

5.1 Main Results

There are 55 teams that participated in the shared
task. Due to limited space, we only compare
our system with the systems from teams USTC-
NELSLIP, RACAI and Sliced10. In the post-
evaluation phase, we evaluate a baseline system
without using the knowledge retrieval module to
further show the effectiveness of our knowledge-
based system. The official results and the results
of our baseline system are shown in Table 1. Our
system performs the best on 10 out of 13 tracks and
is competitive on the other 3 tracks. Moreover, our
system outperforms our baseline by 14.39 F1 on
average, which shows the knowledge retrieval mod-
ule is extremely helpful for disambiguating com-
plex entities leading to significant improvement on
model performance.

5.2 How Significant is the Role of
Knowledge-based System on Each
Domain?

To further show the effectiveness of our knowledge-
based system, we show the relative improvements
of our system over our baseline system on each
domain in Table 2. We observe that in most of the
cases, the two out-of-domain test sets have more
relative improvements than the in-domain test set.
This observation shows that the knowledge from
Wikipedia can not only improve the performance
of the LOWNER domain which is the same domain
as the KB, but also has very strong cross-domain

8https://en.wikipedia.org/wiki/List_
of_ISO_639-1_codes

9Please refer to Appendix B for more analysis.
10Please refer to https://multiconer.github.

io/results for more details about the results.

1461

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://multiconer.github.io/results
https://multiconer.github.io/results

EN ES NL RU TR KO FA DE ZH HI BN AVG.
In

-d
om

ai
n

L
O

W
N

E
R Baseline 88.70 86.54 89.92 81.52 88.52 86.25 81.85 91.71 85.43 83.13 82.69 86.02

Ours 96.78 96.19 97.96 96.60 96.43 96.83 96.48 94.89 88.66 84.18 86.31 93.76
∆ +8.08 +9.65 +8.04 +15.08 +7.91 +10.58 +14.63 +3.18 +3.23 +1.05 +3.62 +7.74

O
ut

-o
f-

do
m

ai
n

M
S

Q

Baseline 70.49 71.86 72.63 72.31 75.49 68.57 71.54 74.63 67.38 73.57 58.66 70.65
Ours 83.50 83.10 83.34 87.03 88.76 81.96 87.36 86.18 79.80 89.20 72.00 83.84
∆ +13.01 +11.24 +10.71 +14.72 +13.27 +13.39 +15.82 +11.55 +12.42 +15.63 +13.34 +13.19

O
R

C
A

S Baseline 62.07 62.71 67.39 64.83 66.92 56.08 65.52 67.52 55.34 62.03 60.68 62.83
Ours 83.72 81.33 80.29 85.00 85.85 81.06 84.84 84.40 72.11 85.75 82.13 82.41
∆ +21.65 +18.62 +12.90 +20.17 +18.93 +24.98 +19.32 +16.88 +16.77 +23.72 +21.45 +19.58

Table 2: Per-domain macro F1 score on the test set of our system and our baseline system for each language. ∆
represents the relative improvements of our system over the baseline system.

transferability to other domains such as web ques-
tions and user queries. According to the baseline
performance over the three domains, the ORCAS
domain has the lowest score, which shows the chal-
lenges in recognizing named entities in user queries.
However, our retrieved documents in KB can sig-
nificantly ease the challenges in this domain and
results in the highest improvement out of the three
domains.

5.3 How Relevant Are the Retrieval Results to
the Queries?

To evaluate the relevance of the retrieval results
to the query, we define a character-level rele-
vance metric, which calculates the Intersection-
over-Union (IoU) between the characters of query
and result. Assuming that the character sets11 of
query and retrieval result are A and B respectively,
then the character-level IoU is A∩B

A∪B . We calculate
the character-level IoU of the sentence and its top-1
retrieval result on all tracks, and plot its distribu-
tion on the training, development and test set in
Figure 3. We have the following observations: 1)
the IoU values are concentrated around 1.0 on the
training and development sets of EN, ES, NL, RU,
TR, KO, FA, which indicates that most of the sam-
ples were derived from Wikipedia. Therefore, by
retrieving, we can obtain the original documents for
these samples. 2) the distribution of data on the test
set is consistent with the training and development
sets for most languages, except for TR. On TR, the
character-level IoU values of the samples and query
results cluster at around 0.5. We hypothesize that
this is because the source of the test set for TR is
different from the training set. However, the model
still performs strongly on this language, suggesting
that the model can mitigate the difficulties caused

11The sets take repeat characters as different characters.

by inconsistent data distribution by retrieving the
context from Wikipedia.

5.4 How Important Can the Types of KB be?

We compare several types of KBs and contexts
during our system building.

Online Search Engine In the early stage, we
tried to use the knowledge retrieved from Google
Search, which can retrieve related knowledge from
a large scale of webs and is believed to be a strong
multilingual search engine.

Three Context Types Retrieved from Wikipedia
As we mentioned in Section 3.1, there are three
context processing options, which are: 1) use the
matched paragraph; 2) use the matched sentence;
3) use the matched sentence but remove the wiki
anchors. We denote the three options as PARA,
SENT and SENT-LINK respectively.

Entity Retrieval with Gold Entities We use
gold entities on the development set to see whether
the model performance can be improved. This can
be seen as the most ideal scenario for iterative re-
trieval. We denote this process as ITERG and use
PARA for the context type.

In Table 3, we can observe that: 1) For the three
context options, PARA is the best option for EN, ES,
NL, RU, TR, KO, FA, MIX and MULTI. SENT-LINK

is the best option for HI and BN. For DE and ZH,
SENT and SENT-LINK are competitive. As a result,
we choose SENT for the two languages since we
believe the wiki anchors from the Wikipedia can
help model performance; 2) Comparing with the
baseline, the knowledge from Google Search can
improve model performance. Based on the best
context option of each track, the knowledge from
Wikipedia is better than the online search engine; 3)
For ITERG, we can find that the context can further

1462

Train

Dev

Test

MULTIBNDEEN ES FA HIKONL RU TR ZH MIX

Figure 3: The distribution of the character-level IoU between the query and its top-1 result. Each subplot is a
histogram on the corresponding dataset, where the x-axis indicates the IoU values ranging from 0 to 1.

EN ES NL RU TR KO FA DE ZH HI BN MULTI MIX

Baseline 87.13 85.88 88.87 82.38 86.22 85.98 81.25 91.21 87.65 82.62 82.80 85.78 77.92
Google Search 92.46 88.68 91.58 85.88 89.83 88.95 82.96 93.56 89.16 84.27 84.38 87.84 86.26
Wiki-PARA 95.82 94.19 97.53 95.53 97.40 96.05 95.93 92.83 87.10 82.78 83.35 93.51 85.16
Wiki-SENT 87.62 89.33 92.90 79.41 89.00 91.49 95.99 94.42 89.47 84.55 84.12 89.34 78.65
Wiki-SENT-LINK 86.83 87.65 91.86 79.15 86.66 86.36 84.37 94.46 89.32 84.78 84.83 87.35 80.07
Wiki-PARA+ITERG 94.89 94.44 97.45 95.59 96.89 96.34 95.83 94.62 88.47 86.43 85.85 93.60 90.52

Table 3: A comparison of the models utilizing different types of knowledge on the development set.

HI BN MIX

Wiki-PARA+ITERG 86.43 85.85 90.52
Wiki-SENT+ITERG 85.69 86.57 91.38
Wiki-SENT-LINK+ITERG 86.15 86.13 91.38

Wiki-OptBest 84.78 84.83 85.16
Wiki-OptBest+ITERP 83.36 84.37 88.97

Table 4: Effectiveness of iterative retrieval. OptBest rep-
resents using the best context option for each language.

HI BN MIX

Wiki-OptBest 90.02 90.81 96.72
Wiki-OptBest-Mention 90.76 90.75 96.71

Table 5: A comparison of mention detection F1 score
over NER models and mention detection models.

Module Sentences/Second

Local Knowledge Base Retrieval 64.52
Google Search Retrieval 1.50
NER Module - Training 2.91
NER Module - Prediction 8.13

Table 6: Model speed of the knowledge retrieval module
and NER module in our system.

improve the performance over 8 out of 13 tracks.
However, there are only significant improvements
for HI, BN and MIX.

Iterative Entity Retrieval with Predicted Enti-
ties Based on the results in Table 3, we further
analyze how the predicted entity mentions can im-
prove the retrieval quality. We denote the iterative

entity retrieval with predicted mentions as ITERP .
In the experiment, we set T = 2.12 We extract the
predicted mentions of the development sets from
the models based on the best context option for
each track. We conduct the experiments over HI,
BN and MIX which have significant improvement
with ITERG. In Table 4, we also list the perfor-
mance of ITERG for reference, which can be seen
as using the predicted mentions with 100% accu-
racy. From the results, we observe that only MIX
can be improved.

Since iterative entity retrieval uses predicted
mentions as a part of retrieval query, the perfor-
mance of mention detection directly affects the
retrieval quality. To further analyze the observation
in Table 4, we evaluate the mention F1 score of the
NER models with sentence retrieval. For compari-
son with mention detection performance of NER
models, we additionally train mention detection
models by discarding the entity labels during train-
ing. From the results in Table 5, we suspect the
low mention F1 introduces noises in the knowledge
retrieval module for BN and HI, which lead to the
decline of performance as shown in Table 4. More-
over, the mention F1 of mention detection models
(second row of Table 5) only outperform that of the
NER models (first row of Table 5) in a moderate
scale. Therefore, we train the ITER models only
for the code-mixed track and use the NER models
with sentence retrieval to predict mentions.

12Our preliminary experiments show that there is no signifi-
cant improvement for T = 3.

1463

EN ES NL RU TR KO FA DE ZH HI BN MIX AVG.

XLM-R 92.46 88.68 91.58 85.88 89.83 88.95 82.96 93.56 89.16 84.27 84.38 84.52 88.02
CE 92.49 88.97 92.20 86.21 90.47 89.01 83.53 93.96 89.40 84.86 85.38 87.35 88.65

Table 7: A comparison of CE models and XLM-R models. Both kinds of models utilize the knowledge from Google
Search. The scores are the averaged macro F1 score on the development set.

EN ES NL RU TR KO FA DE ZH HI BN MIX AVG.

Baseline w/ MF 87.13 85.88 88.87 82.38 86.22 85.98 81.25 91.21 87.65 82.62 82.80 77.92 84.99
Baseline w/o MF 85.88 84.28 87.98 81.01 84.61 83.98 79.98 89.54 85.57 79.90 81.18 68.21 82.68

Table 8: A comparison of training the NER models with and without multi-stage fine-tuning (MF) for our baseline
system on the development set.

EN ES NL RU TR KO FA AVG.

XLM-R 95.82 94.19 97.53 95.53 97.40 96.05 95.93 96.07
Ensem 96.56 95.11 97.83 96.48 97.57 96.54 96.15 96.61
ACE 96.69 95.80 98.22 96.46 98.01 96.79 96.75 96.96

Table 9: A comparison of ACE models, XLM-R models
and an ensemble of the XLM-R models on the develop-
ment set.

5.5 Model Efficiency

Table 6 shows the speed of each module in our
system. In the table, we also show that the re-
trieval speed of our local KB is significantly faster
than that of Google Search. The bottleneck of the
system speed is the NER module rather than the
knowledge retrieval module. The main reason for
the slow speed of the NER module is that the input
length of the knowledge-based system is signifi-
cantly longer than the original input. Taking the
EN test set as an example, there are on average 10
tokens for each input sentence in the original test
set while there are 218 tokens for the input of our
knowledge-based system. The longer inputs slow
down the encoding at XLM-R embeddings.

5.6 Effect of Embedding Concatenation

We compare with some variants of our system that
we designed but did not use in the test phase.

CE (Concatenation of Embeddings) CE is one
of the usual approaches to NER, which concate-
nates different kinds of embeddings to improve the
token representations. In the early stage of our
system building, we compare CE with only using
the XLM-R embeddings based on the knowledge
retrieved from the Google Search. Results in Table
7 show that CE models are stronger than the mod-
els using XLM-R embeddings only in all the cases,
which show the effectiveness of CE.

ACE (Automated Concatenation of Embed-
dings) ACE (Wang et al., 2021a) is an improved
version of CE which automatically selects a bet-
ter concatenation of the embeddings. We use the
same embedding types as CE and the knowledge
are from our Wikipedia KB. We experiment on EN,
ES, NL, RU, TR, KO and FA, which are strong with
PARA contexts. In Table 9, we further compare
ACE with ensemble XLM-R models. Results show
ACE can improve the model performance and even
outperform the ensemble models13.

The results in Table 7 and 9 show the advantage
of the embedding concatenation. However, as we
have shown in Section 5.5, the prediction speed
is quite slow with the single XLM-R embeddings.
The CE models further slow down the prediction
speed since the models contain more embeddings.
The ACE models usually have faster prediction
speed than the CE models. However, training the
ACE models is quite slow. It takes about four days
to train a single ACE model. Moreover, the ACE
models cannot use the development set to train
the model since they use development score as
the reward to select the embedding concatenations.
Therefore, due to the time constraints, we did not
use these two variants in our submission during the
shared task period.

5.7 Effectiveness of Multi-stage Fine-tuning

In Table 8, we show the effectiveness of multi-
stage fine-tuning on the development set for our
baseline system. The result shows that multi-stage
fine-tuning can significantly improve the model
performance for all the tracks.

13Please refer to Appendix A.3 for detailed settings.

1464

6 Conclusion

In this paper, we describe our knowledge-based
system for the MultiCoNER shared task, which
wins 10 out of 13 tracks in the shared task. We
construct multilingual KBs and retrieve the related
documents from KBs to enhance the token repre-
sentations of input text. We show that the NER
models can use the retrieved knowledge to facil-
itate complex entity prediction, significantly im-
proving both the in-domain and out-of-domain per-
formance. Multi-stage fine-tuning can help the
monolingual models learn from the training data
of all the languages and improve the model per-
formance and training efficiency. We also show
that the system presents a good balance between
the model performance and prediction efficiency to
meet the time requirement in the test phase. We be-
lieve this system can be widely applied to other do-
mains for the task of NER. For future work, we plan
to improve the retrieval quality and adopt the sys-
tem to support other kinds of entity-related tasks.

Acknowledgements

This work was supported by Alibaba Group
through Alibaba Innovative Research Program.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.

Contextual string embeddings for sequence label-
ing. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1638–
1649, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Gosse Bouma, Djamé Seddah, and Daniel Zeman. 2021.
From raw text to enhanced Universal Dependencies:
The parsing shared task at IWPT 2021. In Proceed-
ings of the 17th International Conference on Pars-
ing Technologies and the IWPT 2021 Shared Task
on Parsing into Enhanced Universal Dependencies
(IWPT 2021), pages 146–157, Online. Association
for Computational Linguistics.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 55–64,
Brussels, Belgium. Association for Computational
Linguistics.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Nick Craswell, Daniel Campos, Bhaskar Mitra, Em-
ine Yilmaz, and Bodo Billerbeck. 2020. Orcas: 20
million clicked query-document pairs for analyzing
search. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Man-
agement, pages 2983–2989.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong
Lu. 2014. Ncbi disease corpus: a resource for dis-
ease name recognition and concept normalization.
Journal of biomedical informatics, 47:1–10.

Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, and
Shervin Malmasi. 2021. Gazetteer enhanced named
entity recognition for code-mixed web queries. In
SIGIR ’21, SIGIR ’21, New York, NY, USA. Associ-
ation for Computing Machinery.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and

1465

https://www.aclweb.org/anthology/C18-1139
https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.18653/v1/2021.iwpt-1.15
https://doi.org/10.18653/v1/2021.iwpt-1.15
http://www.aclweb.org/anthology/K18-2005
http://www.aclweb.org/anthology/K18-2005
http://www.aclweb.org/anthology/K18-2005
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3404835.3463102
https://doi.org/10.1145/3404835.3463102

Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database: The Journal of Biological Databases and
Curation, 2016.

Jouni Luoma and Sampo Pyysalo. 2020. Exploring
cross-sentence contexts for named entity recognition
with BERT. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 904–
914, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022a. MultiCoNER: a
Large-scale Multilingual dataset for Complex Named
Entity Recognition.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022b. SemEval-2022
Task 11: Multilingual Complex Named Entity Recog-
nition (MultiCoNER). In Proceedings of the 16th
International Workshop on Semantic Evaluation
(SemEval-2022). Association for Computational Lin-
guistics.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPS.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tianze Shi and Lillian Lee. 2021. TGIF: Tree-graph
integrated-format parser for enhanced UD with two-
stage generic- to individual-language finetuning. In
Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (IWPT 2021), pages 213–224, Online. Associa-
tion for Computational Linguistics.

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neu-
ral architectures for nested NER through lineariza-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
5326–5331, Florence, Italy. Association for Compu-
tational Linguistics.

Beth M. Sundheim. 1995. Named entity task definition,
version 2.1. In Proceedings of the Sixth Message
Understanding Conference, pages 319–332.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The 6th
Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Severine Verlinden, Klim Zaporojets, Johannes Deleu,
Thomas Demeester, and Chris Develder. 2021. In-
jecting knowledge base information into end-to-end
joint entity and relation extraction and coreference
resolution. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1952–1957, Online. Association for Computational
Linguistics.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021a.
Automated Concatenation of Embeddings for Struc-
tured Prediction. In the Joint Conference of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2021). Association for Computational Lin-
guistics.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021b.
Improving named entity recognition by external con-
text retrieving and cooperative learning. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1800–1812, Online.
Association for Computational Linguistics.

Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Ji-
acheng Liu, and Jiawei Han. 2019. CrossWeigh:
Training named entity tagger from imperfect anno-
tations. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5154–5163, Hong Kong, China. Association for Com-
putational Linguistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

A Detailed Experimental Setup

The detailed statistics of the MultiCoNER dataset
are listed in Table 10 and the statistics of our KBs
ares shown in Table 11.

1466

https://www.aclweb.org/anthology/2020.coling-main.78
https://www.aclweb.org/anthology/2020.coling-main.78
https://www.aclweb.org/anthology/2020.coling-main.78
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://www.aclweb.org/anthology/W02-2024
https://www.aclweb.org/anthology/W02-2024
https://www.aclweb.org/anthology/W02-2024
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.acl-long.142
https://doi.org/10.18653/v1/2021.acl-long.142
https://doi.org/10.18653/v1/D19-1519
https://doi.org/10.18653/v1/D19-1519
https://doi.org/10.18653/v1/D19-1519
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.acl-main.577

A.1 Statistics of Datasets and Knowledge
Bases

Track Train Dev Test

English 15,300 800 217,818
Spanish 15,300 800 217,887
Dutch 15,300 800 217,337
Russian 15,300 800 217,501
Turkish 15,300 800 136,935
Korean 15,300 800 178,249
Farsi 15,300 800 165,702
German 15,300 800 217,824
Chinese 15,300 800 151,661
Hindi 15,300 800 141,565
Bangla 15,300 800 133,119
Multilingual 168,300 8,800 471,911
Code-mixed 1,500 500 100,000

Table 10: Statistics of the the MultiCoNER dataset (# of
sentences). Note that the training and development sets
of the multilingual dataset are a mixture of monolingual
training and development sets respectively.

Language Pages Paragraphs ES Docs

English 8,075,229 138,259,937 224,077,884
Spanish 1,813,109 29,767,543 47,248,391
Dutch 2,234,442 18,007,520 29,442,016
Russian 2,437,595 44,536,255 77,903,362
Turkish 728,950 8,196,825 12,685,674
Korean 905,976 11,965,418 16,326,787
Farsi 1,502,301 13,723,218 17,342,825
German 3,147,933 54,315,261 98,386,199
Chinese 1,659,253 20,342,685 14,888,964
Hindi 196,745 1,926,636 3,279,827
Bangla 203,869 2,526,333 4,342,959

Table 11: Detailed statistics on 11 languages.

A.2 System Configurations

For the knowledge retrieval module, we retrieve
top-10 related results from the KB. For iterative
entity retrieval, we set T = 2. In masked lan-
guage model pretraining, we use a learning rate of
5× 10−5. For the NER module, we use a learning
rate of 5 × 10−6 for fine-tuning the XLM-R em-
beddings and use a learning rate of 0.05 to update
the parameters in the CRF layer following Wang
et al. (2021b). Each NER model built by our sys-
tem can be trained and evaluated on a single Tesla
V100 GPU with 16GB memory. For the ensemble
module, we train about 10 models for each track.

A.3 Settings of CE and ACE models

In Section 5.6, we compare our NER model with
CE and ACE models. In CE and ACE mod-
els, we concatenate monolingual fastText (Bo-

DE ZH HI BN MIX AVG.

Voting 94.65 89.18 85.51 85.22 86.57 88.23
CRF 94.04 88.96 85.37 85.12 85.33 87.76

Table 12: A comparison of ensemble approaches on the
development set.

janowski et al., 2017) word embeddings, monolin-
gual/multilingual Flair embeddings (Akbik et al.,
2018), ELMo embeddings (Peters et al., 2018; Che
et al., 2018), XLM-R embeddings fine-tuned on
the whole training data and XLM-R embeddings
fine-tuned on the language data by multi-stage fine-
tuning. We only feed the knowledge-based input
into XLM-R embeddings and feed the original in-
put into other embeddings because it is hard for
the other embeddings (especially for LSTM-based
embeddings such as Flair and ELMo) to encode
such a long input. We use Bi-LSTM encoder to
encode the concatenated embeddings with a hid-
den state of 1,000 and then feed the output token
representations into the CRF layer. Following most
of the previous efforts, we use SGD optimizer with
a learning rate of 0.01. For ACE, we search the
embedding concatenation for 30 episodes.

B More Analysis

B.1 Majority Voting Ensemble and CRF
Level Ensemble

As we state in Section 3.3, we use majority voting
as the ensemble algorithm in our system. We show
an experiment about how the voting threshold af-
fect the ensemble model performance during our
system building on the development set. We en-
semble the models on DE, ZH, HI, BN, MIX with
PARA since these five tracks have relatively lower
performance than the other 7 tracks. In Figure 4,
we show how the threshold of the majority voting
affects the model performance. From the figure,
we can see that the best threshold varies over the
language. Therefore, we simply choose 0.5 as there
is no best threshold value. Moreover, we compare
the majority voting ensemble and CRF level ensem-
ble in Table 12. The CRF level ensemble averages
the emission and transition scores in the Eq. 1 pre-
dicted by the candidate models and uses the Viterbi
algorithm to get the prediction. The results show
that CRF level ensemble performs inferior to the
majority voting ensemble. The possible reason is
that training with different random seeds may lead
to different emission transition scores at different

1467

0.30.40.50.60.7
94.4

94.6

94.8

95

de

0.30.40.50.60.7

89

89.5

90

zh

0.30.40.50.60.7

85

85.5

hi

0.30.40.50.60.7

85.1

85.2

85.3

bn

0.30.40.50.60.7
85.8

86

86.2

86.4

86.6

mix

0.30.40.50.60.7

88

88.2

88.4

Avg.

Figure 4: An illustration of majority voting threshold versus the ensemble model performance.

Test Context PARA OptBest
Search KB All Language All Language

Wiki-PARA 84.57 84.94 - -
Wiki+OptBest - 84.96 84.38 84.78

Table 13: Test results for multilingual models with dif-
ferent context options and different KB size.

scales. As a result, the models with larger scales
have higher weights in the ensemble.

B.2 How the Search Space and the Context
Type Affects Multilingual Model
Performance?

In the multilingual test set, we can find 304,905
sentences in the other monolingual test sets while
there are 167,006 sentences that cannot be found.
For these sentences, we can either search on the
whole KB of all languages or first detect the lan-
guage of the input sentence and then search in the
specific language KB14. Moreover, as we discussed
in Section 5.4, using different kinds of retrieved
knowledge affects the model performance. As a
result, we train two types of multilingual models.
One is only using the PARA contexts for all lan-
guage and another is using the best option for each
language based on Table 3. From the results in Ta-
ble 13, we can observe that: 1) searching over the
language specific KB performs better than search-
ing the whole KB, 2) using the language specific
context option cannot improve the model perfor-
mance. Therefore, we ensemble both types of the
model for the final submission.

14We determine the language of the input sentence us-
ing the langdetector (https://pypi.org/project/
langdetect/) tool.

1468

https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/

