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Abstract

We describe the work carried out by AMEX Al
Labs on the structured sentiment analysis task
at SemEval-2022. This task focuses on extract-
ing fine grained information w.r.t. to source,
target and polar expressions in a given text. We
propose a BERT based encoder, which utilizes
a novel concatenation mechanism for combin-
ing syntactic and pretrained embeddings with
BERT embeddings. Our system achieved an
average rank of 14/32 systems, based on the
average scores across seven datasets for five
languages provided for the monolingual task.
The proposed BERT based approaches outper-
formed BiLSTM based approaches used for
structured sentiment extraction problem. We
provide an in-depth analysis based on our post
submission analysis.

1 Introduction

In this paper we present the work done by AMEX
Al Labs on the structured sentiment analysis mono-
lingual task at SemEval-2022 (Barnes et al., 2022).
Structured sentiment analysis (SSA) focuses on per-
forming fine grained analysis and extracting opin-
ion tuples from a given input text (Barnes et al.,
2021). An example is presented in Fig. 1.

Input sentence: Some others give the new
UMUC 5 stars - don’t believe them

Expected outputs are two tuples:

"on

* Tuplel - ("source": "Some others", "target":
"the new UMUC", "polar expression": "5
stars")

e n

* Tuple2 - ("source": "", "target": "them", "po-
lar expression": "don’t believe").

Aspect based sentiment analysis is a popular
and widely researched topic in the NLP commu-
nity (Wagner et al., 2014; Pontiki et al., 2015;
Schouten and Frasincar, 2015). However, the SSA
task goes beyond traditional aspect based sentiment
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Figure 1: Sample sentence, source: (Barnes et al., 2021)

mining. The main challenges in SSA task are as
follows:

* Focus is on correct span detection of source,
targets, and polar expression elements as
shown in Fig. 1.

* Correctly identifying relationships between
source, target, and polar expression elements,
as illustrated in the example above.

* Building a robust, generalized approach that
is applicable across domains as well as across
languages.

Most of the state-of-the-art (SOTA) approaches
have explored joint learning, span based multi-
task learning, BiLSTM encoders or CRF based
approaches for SSA related tasks (Barnes et al.,
2021; Li et al., 2019; Zhao et al., 2020; Chen et al.,
2020). We propose a contextualized BERT based
approach called ‘CBERT’, for capturing context
information effectively and address the main chal-
lenges for SSA task as discussed above.

The main contributions of our work are:

* We propose a BERT based encoding approach
and combine syntactic and pre-trained embed-
dings using a novel concatenation approach
to extract and find opinion tuples effectively.

* We performed a detailed error analysis high-
lighting the main challenges of SSA task and
suggest future directions for building a more
efficient and effective system for SSA.
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The outline of this paper is as follows: Section 2
describes the prior work in the area of SSA. Sec-
tion 3 presents an abstract overview of our pro-
posed system. Section 4 provides a detailed descrip-
tion of our CBERT system. Section 5 describes the
datasets, tools and resources used for the experi-
mental setup. Section 6 present the main results
of the proposed system and describes an in-depth
error analysis. Section 7 describes the main con-
clusions and leanings.

2 Background

Structured Sentiment Analysis (SSA) aims at cap-
turing the natural hierarchical structure of different
aspects, their corresponding sentiments in a sen-
tence and the correlation between them. Almars
et al. (2017) leveraged a hierarchical tree struc-
ture on the aspect terms, analyses the opinions
on those aspect terms and connects them to the
corresponding evidence for the same. Choi et al.
(2006) identify two types of opinion-related en-
tities — expressions of opinions and sources of
opinions — along with the linking relation that
exists between them. To identify the joint exis-
tence of opinion terms, they had utilized integer
linear programming approach. Over years, this task
was recognized further as Aspect Based Sentiment
Analysis which focuses more on the precise iden-
tification of aspects and their corresponding senti-
ments (Chen et al., 2014), (Liu et al., 2012). Other
intermediate works also focus on transition based
end-to-end opinion extraction approaches (Zhang
et al., 2019) which ignore the polarity classification
subtask. Target Sentiment Analysis, which is an-
other modified form of SSA focuses on extracting
only sentiment targets and classifying their polarity
(Jiang et al., 2011), (Mitchell et al., 2013).

Yang and Cardie (2012) is a strong baseline
which suggests that the use of Conditional Ran-
dom Fields could enhance the aspect terms pre-
diction, given a smaller dataset with annotations,
for training. During this time, some prominent re-
search works discussed the advantage of semantic
dependency parsing (Dozat and Manning, 2018),
(Kurtz et al., 2020) which was leveraged for SSA
task and for the establishment of the state-of-the-
art SSA model which was proposed by (Barnes
et al., 2021). This work formulates the SSA task
as a dependency parsing problem and predicts all
tuple components as a dependency graph. We aim
to extend this aforementioned work and propose a

modified architecture to improve the results across
various language datasets.

3 Model Overview

For the SSA task, prior works have deployed sepa-
rate models for detecting various elements (source,
target and polar expression) (Barnes et al., 2022).
However, this results in information regarding pre-
diction of individual elements not being passed on
to other element predictions.

target

Some others give the new UMUC 5 stars - don’t believe them.

Figure 2: Sample sentence :
tion (Barnes et al., 2021)

source €xp:pos

head-first representa-

source target

Some others give the new UMUC 5 stars - don’t believe them.

Figure 3: Sample sentence :
tion (Barnes et al., 2021)

head-final representa-

For leveraging a joint learning technique,
(Barnes et al., 2021) suggest two sets of approaches,
viz., head-first and head-final representation. Head-
first considers spans of opinion elements using the
first token of each element, i.e., head token first,
as shown in Fig. 2. Head-final considers the last
token, i.e., head token last, as shown in Fig. 3. Our
proposed architecture was inspired by this joint
learning technique and is elaborated in Section 4.

SSA task involves prediction of opinion ele-
ments along with the relationship between them,
referred to as arc prediction. In this paper, we pro-
vide a comparison between two methods - VBERT,
which uses only BERT embeddings and CBERT,
which uses BERT embeddings along with concate-
nation of head and dependent BiLSTM blocks, de-
tailed in Section 4. A comparison of results from
these two approaches are provided in Section 6.

4 System Description

In this section we provide a detailed description
of our proposed CBERT system. Fig. 4 presents
the main architecture, comprising of seven main
components, detailed below respectively.
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4.1 Encoding Block

The BERT context shown in Fig. 4 represents
BERT’s role as an encoder. Our proposed model
uses a BERT base multilingual cased' model (De-
vlin et al., 2018) which has ¢ transformer layers
to calculate the fine-tuned BERT vector from the
input tokens, x = (z1, x2, z3, ..., T, ) of n padded
sequence length. The output BERT fine-tuned vec-
tor is shown as, b = (b}, bh,...,b) € R dime
where dimy, denotes it’s dimension.
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Figure 4: CBERT Architecture

The Head Context and Dependent Context as
shown in Fig. 4, represent independent BiLSTM
blocks where we fine-tune the syntactic and pre-
trained context in our CBERT system. However,
in the VBERT system we do not have the afore-
mentioned independent BiLSTM blocks (for more
details refer Section A.4).

The input embedding in the BiLSTM block is a
concatenation of Stanza® pretrained syntactic vec-
tors (Qi et al., 2020) (U-pos, Lemma, Depparse)
and ELMo® (Peters et al., 1802) embedding rep-
resented as, e = (eq, €3, ..., €,) € R™¥™e where

'"https://huggingface.co/
bert-base-multilingual-cased

https://stanfordnlp.github.io/stanza/
index.html

‘https://allenai.org/allennlp/
software/elmo

dim, is the dimension of the input embedding. Af-
ter passing these vectors through two independent
identical BiLSTM blocks, we get the head and de-
pendent fine-tuned vectors h = (hy, hj, ..., h]) €
R dime and d = (dy,db,...,d}) € Rmdime
where dim,. is the dimension of the fine-tuned vec-
tor and 7 is the number of recurrent layers in the
BiLSTM block.

4.2 Target Encoding

We follow a head-first encoding (Barnes et al.,
2021) which entails adding a label map to each posi-
tion in the head-dependent 2D mapping, each label
showing which category from (Expression-positive,
Expression-negative, Source, Target, None) it be-
longs to. In the 2D mapping as shown in Fig. 5,
heads are shown as rows, dependents as columns
and a non None label shows if head-dependent re-
lation exists or not. For denoting span the starting
token of a certain span becomes the head and the
other tokens as the dependents, as shown in Fig. 5,
where "the" is linked to ("the”,"new","UMUC").
Similarly, the head token of (Expression-positive,
Expression-negative) labels point to the head to-
kens of (Source, Target), if a relation between them
exists. For eg., "5" being linked to "the" as shown
in Fig. 5. We also experimented with alternative
encoding approaches mentioned in Section A.2
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Figure 5: Encoding Structure

4.3 Concatenation layer

In this layer, we combine the BERT fine-tuned vec-
tor with the head and dependent fine-tuned vectors
separately. The head and dependent vectors are
based on a space based tokenizer while the BERT
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Figure 6: Concatenation of fine-tuned BERT with head and dependent fine-tuned vectors

vector is based on word-piece (Wu et al., 2016) to-
kenizer. Some of these space delimited tokens are
further split by word-piece into sub-tokens. For eg.,
as shown in Fig. 6, the parent token "rumination”
is split into sub-tokens ("rum”, "##ination"). So we
duplicate the parent token’s vector,v as weighted
vectors in the Duplicator as shown in Fig. 4. Higher
weight is assigned to base-token "rum" and lower to
sub-token "##ination", as we want to put more sig-
nificance on the base-token of the word for identi-
fying span offsets correctly. Initializing sub-tokens
with relatively low weighted vector instead of null
vector helps us carry the base-word context till the
sub-word. Following are the vector equations,

v = (v1,v2, ..., Up)
Vsub = (Wsub * V1, Wsub * V2, ey Wsub * 'Un)
Vbase = (Wbase * V1, Wbase * V2, .., Wbase * Un)

Here v represents the parent token vector, vgyp
the sub-token vector and vy, s, represents the base-
token vector. The lower constant weight for sub-
tokens is denoted by W, € [0, 1] compared to
Wiase = 1 assigned to base-token. The weight is
decided after doing multiple runs with variations in
Wub as shown in Fig. 8. We choose W, = 0.4
empirically, as we get higher average scores in our
experiments on the dev set.

4.4 Attention layer

The Concatenation layer outputs are then passed
into the Attention layer which uses a transition ma-
trix of Shape(U) = dimy, * labels. It transforms
the head and dependent inputs to a 3D tensor matrix
predicting the head-dependent relation arcs and la-
bels jointly as represented in Fig. 4 as the Attention
layer. The output is Preds € R™™*abels where
labels is the number of predicted labels and 7 is

the padded sequence length. (for more details refer
Section A.3)

4.5 Loss Function

We use a weighted cross-entropy function where
the weights are assigned for each of the labels, [
with respect to the target label frequency. We found
out that the frequency of None label vs other labels
was unbalanced. Hence, we conducted different
runs with the following weight distribution w =
(WNone, 1,1,1,1) by varying wyone. We choose
the weights w = (0.8,1, 1, 1, 1) empirically, as we
get higher average scores in our experiments on the
dev set, as shown in Fig. 9.

l0ssy, = —wy, * log(— 2P Enun)
" w19 (e

N loss
loss = — Y " —x25n
Zn—l anl Wy,

where x,, is the input probabilities, y,, is the cor-
responding target label, N is the batch length of

input, w are the weights and L is the number of
labels.

4.6 Decoding

In this subsection, we describe the methodology
behind decoding the Attention layer output into the
opinion pairs or tuples. As shown in Algorithm 1,
in lines 2 to 12, we move along the main diagonal
to find the predicted spans with labels of each cate-
gory. Each of these spans have their starting offset
denoted by the head pointing to itself as shown in
Fig. 5. The end offset of a span is the last consec-
utive occurrence of the same tag as the head. For
the next step shown in lines 13 to 22, we look at
expression head’s dependents to find if any of them
are heads to other spans. This signifies a relation
arc between spans.
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Algorithm 1 Algorithm for Decoding the scores to tuples

Input: Preds, the 3D tensor output which contains the pre-
dicted label with maximum class probability for every head-
dependent token pair.
Output: Arcs, which contain all the possible Source-Target-
Expression tuples.
Require: Preds # null
1: Initialize T'ar, Src, Exp and Arcs sets to empty
2: while Left index | < length(Preds) and Right index
I < r <length(Preds) do
3: if Preds(l,]) = T and all Preds(l,r) =
Preds(l,r — 1) then
4: Add tokens (t, ...
5: end if
6: if Preds(l,l) =

t;) to Tar

: S and all Preds(l,r) =
Preds(l,r — 1) then

7: Add tokens (¢, ...

8: end if

9: if Preds(l,l) € (EN, EP) and all Preds(l,r) =
Preds(l,r — 1) then

10: Add tokens (t, .

11: end if

12: end while

13: while Left index ! < length(Preds) and Right index
r < length(Preds) do

14: if Preds(l,l) € (EN,EP) and Preds(l,l) =
Preds(l,r) and | # r then

t,) to Src

.ty) to Exp

15: if ¢ € Tar then

16: Ares « (Tar(tr), Exp(t)))
17: end if

18: if £, € Srcthen

19: Arcs < (Src(tr), Exp(t))
20: end if

21: end if

22: end while

4.7 Post processing

For post processing, in the generated tuples from
the decoding layer, we remove overlapping Source
or Target spans from edges of Expression spans.
As shown in Example 1, "experience" is removed
from the polar expression.

Example 1: Thank you for such a wonderful
experience.
Raw tuple - ("source": "", "target": "experience",
"polar expression": "wonderful experience")
Post processed tuple - ("source":"", "target":

" wonderful").

"experience", "polar expression": "

5 Experimental Setup

5.1 Datasets & Evaluation Metric

The shared task has seven datasets across five
languages that are used for final evaluation and
ranking of submitted systems MPQA (Wiebe
et al., 2005), NoRec (@vrelid et al., 2020), Multi-
book (Barnes et al., 2018), Opener (Agerri et al.,
2013) and Darmstadt (Toprak et al., 2010). We
submitted our system for monolingual task, where

we fine-tuned our model for each individual dataset
mentioned above.

The experiments conducted as a part of this work
use Sentiment-F1 (SF1) score (Barnes et al., 2021)
as the evaluation metric, as used in SemEval-2022
Shared Task 10. This metric defines true positive
as an exact match for each element of the opinion
terms, averaging the overlap in predicted and anno-
tated spans for each element across source, target
and polar expressions.

5.2 Experimental Settings

We use the Pytorch* implementation of BERT base
multilingual cased model pretrained on the 104
languages. The model has t = 12 transformer
layers, the hidden size dimy, is 768 and 12 self-
attention heads. The padding length used for encod-
ing is 128. We use ELMo embeddings which are
domain-general with 256-dimensions, pre-trained
with 800M tokens and 28 M parameters. The Py-
torch BiLSTM implementation has hidden dimen-
sion of 64, number of layers as 2 and dropout proba-
bility as 0.3. The Concatenation layer has a output
dimension as 32 and dropout probability of 0.2.
The batch size is set to 16 for Train and 8 for de-
vset. We adopt an Adam optimizer (Kingma and
Ba, 2014) with learning rate of 2e¢ — 5 and 500
warmup steps. After conducting train-dev runs for
maximum 100 epochs we select best epoch based
on Sentiment-F1 score on dev-set. A detailed view
of these experiments have been included in Fig. 7
in Appendix. We conduct these experiments on
a DGX server consisting of 8 Nvidia Tesla V100-
SXM2 with 16GB V-RAM. We use multiple GPU’s
using the DataParallel® Pytorch class.

6 Experimental Results and Analysis

The detailed results of final submission are
as shown in Table 1. The proposed CBERT
and VBERT models performed relatively better
than BiLSTM based head-first and head-final ap-
proaches. CBERT performed 9% relatively better
than VBERT, supporting the hypothesis that the
concatenation of contextualized information with
syntactic information is more effective.

Our system achieved an average rank of 14/32
systems, based on the average scores across seven
datasets. An in-depth analysis reveals that although

*nttps://huggingface.co/transformers/
v1.2.0/

Shttps://pytorch.org/docs/stable/
generated/torch.nn.DataParallel.html
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Dataset Head-first | Head-final | VBERT | CBERT | Median | Best System
Opener_en 0.524 0.542 0.576 0.634 0.623 0.760
MPQA 0.218 0.218 0.218 0.283 0.367 0.447
Darmstadt_unis 0.181 0.209 0.271 0.320 0.342 0.494
Opener_es 0.480 0.552 0.537 0.595 0.539 0.722
NoRec 0.254 0.272 0.315 0.343 0.329 0.529
Multibook_ca 0.529 0.543 0.595 0.634 0.525 0.728
Multibook_eu 0.501 0.536 0.564 0.559 0.478 0.739
Average Scores 0.384 0.410 0.439 0.481 0.458 0.631

Table 1: Results on the test set across seven datasets for five languages, scores of the final system is in bold face

our model performed quite good for five datasets
over the median system, for two datasets MPQOA
and Darmstadt_unis our proposed system did
not perform relatively well, thus hampering the
average scores. The best system scores are also
relatively quite high, than our proposed CBERT
system. One of the potential reasons for relatively
lower performance for two datasets could be the
existence of excessive number of neutral labels
in these two datasets, which was not separately
handled in the experimental setup, as discussed in
Section 3.2.

Following is a qualitative analysis to identify
main challenges in the CBERT system.

* Boundary Detection: It was observed that
there were differences in the source, target and
polar expression boundaries based on punctua-
tion marks, stopwords or adjectives. For eg., It
is really very basic. contains polar expression
as very basic in its gold annotations whereas
CBERT predicted as really very basic.

Tuple Formation: In sentences that contain a
single target with multiple polar expressions,
CBERT predicts them as a single tuple. For
eg., The rooms are clean and functional. In
this sentence, there is one target, the rooms
and its two polar expressions are clean and
functional. Gold annotations provided for the
sentence have two separate tuples for polar
expressions whereas CBERT predicts them as
a single tuple.

Differences in Gold Annotation: In the
datasets, some data annotations exist only
for texts which have an explicit indication to-
wards the theme of the dataset. For instance,
the NoRec dataset is a collection of restaurant
reviews. Hence, the data which do not have

an explicit indication towards restaurant re-
lated comments are not annotated. However,
CBERT does not distinguish between themes
and produces predictions for such texts as well.
For eg., As a gold member I enjoyed an up-
grade to a very large room with lots of floor
space . does not have any annotations. How-
ever, CBERT predicts Source as I, Target as
room and Polar Expressions as enjoyed, very
large, lots of floor space.

A detailed set of examples are shown in Table 2.

7 Conclusion and Future Scope

This paper discusses the proposed system and ex-
perimental results on SSA task at SemEval-2022.
The proposed model called CBERT, assumes a joint
learning technique using BERT-base multilingual
model embeddings along with contextualized em-
beddings created using pretrained Stanza vectors
and pretrained ELMo embeddings. The arc predic-
tion between opinion term elements are achieved
using an Attention layer. The proposed CBERT
approach performed relatively better than BiILSTM
approaches and VBERT approach. We find that
using BERT based encoding, along with concate-
nation of contextualized information with syntactic
information is more effective for SSA task.

For improving CBERT, leveraging 2D CRFs
(Zhu et al., 2005) can be explored for better span de-
tection over longer texts. Different joint learning ar-
chitecture on top of CBERT’s encoding like SDRN
(Chen et al., 2020) can be leveraged. Approaches
to fine-tune models for specific tasks (Zhao et al.,
2020) is also a potential area for exploration.
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A Appendix
A.1 Additional Experimental Settings

* In Fig. 7, each of the values correspond to SF1
scores obtained over devset, post to training
on Training set (train/dev). It was observed
that scores are consistent at 100 epochs.

* In Fig. 8, we ran train/dev experiments for 60
epochs to record SF1 scores by varying the
sub-token weight wsg,; to find optimal wgyp
weights to be used in the Concatenation layer.

* In Fig. 9, we conducted train/dev experiments
for 60 epochs to record SF1 scores by varying
weight for None label wy e to find optimal
weight to be used in weighted cross-entropy
function.
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Figure 7: Graph showing Sentiment-F1 scores for our
proposed model against the number of epochs.
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Figure 9: Weight(None) vs devset SF1

A.2 Alternative encoding schemes

We introduce another scheme for encoding where
we mirror the labels of the lower triangular ma-
trix to the upper triangular matrix along the main
diagonal using results from our original encoding
scheme as shown in Fig. 10. This helps us reduce
the size of Attention layer’s output Preds by half,

1303


https://aclanthology.org/P10-1059
https://aclanthology.org/P10-1059
https://aclanthology.org/D12-1122
https://aclanthology.org/D12-1122
https://aclanthology.org/D12-1122
https://doi.org/10.1016/j.is.2018.09.006
https://doi.org/10.1016/j.is.2018.09.006
https://doi.org/10.18653/v1/2020.acl-main.296
https://doi.org/10.18653/v1/2020.acl-main.296
https://doi.org/10.18653/v1/2020.acl-main.296

Error Category Remarks

Example

Based on Adjectives

Boundary Detection

For, The first floor 24 hr bar was well run and no matter
what time of day there was always a waiter on hand to serve .
CBERT predicts Polar Expression as there was whereas

the annotaions contain there was always

Based on Punctuations

For, Robbed in elevator of hotel ! CBERT predicts Polar
Expression as Robbed in elevator of hotel whereas annotations

contain punctuation

Based on Stopwords

For, The best about this hotel is its location . CBERT predicts
Polar Expression as The best about whereas annotations

contain The best

Long Sentences

For, There are good conference rooms with all necessary
infrastructure ,good location allowing you to have nice
evening , pool , restaurants , internet , 5 minutes to airport
everything you need to do a business and relax after that .
CBERT predicts Source and Target efficiently but fails to

detect Polar Expressions

Tuple Formation

For Relax and enjoy CBERT predicts two Polar Expressions
separately as Relax, enjoy whereas annotations contain

Relax and enjoy as single expression

Gold Annotations

For, No words for this country and its people . no

annotations were provided

Table 2: Examples for Error Analysis categories

as we can always mask the lower half while apply-

ing the loss function.
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Figure 10: Upper Triangular encoding

A.3 Attention layer

The output of Attention layer is represented
as, y = (ynon67 Yexp—poss Yexp—negs Ytar, ysrc) €
Rrnxlabels which is a 3D tensor where Yiabel 1S @
2D tensor corresponding to a certain label, labels is
the number of predicted labels and n is the padded
input sequence length. The matrix transformations
done in the attention module (Bi-linear label Atten-
tion) (Barnes et al., 2021) are shown below,

score(hi,d;) = hl x U x d; where

h; = Concatpeqq(c;),
d; = Concatgep(ci)
Shape(U) = dimy,  labels

A.4 VBERT overview
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Figure 11: VBERT Architecture

This architecture shown in Figure 11 uses BERT
as an encoder and splits the BERT output into head
and dependent context.
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