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Abstract

This paper describes our winning system on
SemEval 2022 Task 7: Identifying Plausi-
ble Clarifications of Implicit and Underspec-
ified Phrases in Instructional Texts. A re-
placed token detection pre-trained model is uti-
lized with minorly different task-specific heads
for SubTask-A: Multi-class Classification and
SubTask-B: Ranking. Incorporating a pattern-
aware ensemble method, our system achieves
a 68.90% accuracy score and 0.8070 spear-
man’s rank correlation score surpassing the 2nd
place with a large margin by 2.7 and 2.2 per-
cent points for SubTask-A and SubTask-B, re-
spectively. Our approach is simple and easy to
implement, and we conducted ablation studies
and qualitative and quantitative analyses for the
working strategies used in our system.

1 Introduction

The Internet’s ever-increasing size has made it easy
to find instructional texts such as articles in wik-
iHow1, on almost any topic or activity. Regular
revisions of these how-to manuals are necessary
to ensure that instructions communicate the pro-
cedures required to attain a certain goal precisely.
This shared task is introduced by Roth et al. (2022),
whose intention is to find ways to improve instruc-
tional texts, evaluate to what extent current NLP
systems are able to handle implicit, ambiguous,
and underspecified language, and go beyond the
surface form of a text and take multiple plausible
interpretations into account. Thus, the proposed
NLP systems should be capable of distinguishing
between plausible and implausible clarifications of
an instruction shown in Figure. 1.

The shared task consists of two subtasks:

• SubTask-A: Multi-Class Classification. The
goal is to predict a class label (IMPLAUSI-

1https://www.wikihow.com/Main-Page
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Figure 1: An example randomly chosen from the dev
set. Each sample is associated with five clarifications
labeled ( PLAUSIBLE, NEUTRAL or IMPLAUSIBLE)
and scored on a scale from 1.0 to 5.0.

BLE, NEUTRAL, PLAUSIBLE) given the
clarification2 and its context.

• SubTask-B: Ranking. The goal is to predict
the plausibility score on a scale from 1 to 5
given the clarification and its context.

In this paper, we describe our winning system
for both subtasks. We built our system based on a
replaced token detection (RTD) task pre-training
model. The idea is that the replaced token detection
task is similar to this shared task which focuses on
distinguishing semantically similar words/phrases.
To close the gap the model trained between the pre-
training phase and fine-tuning phase, we reused the
pre-trained language modeling head during fine-
tuning on Task 7. Then, two-layers MLPs are ap-
plied on the mean-pooled hidden states of a clarifi-
cation (filler) given the context. For subtask A, we
utilized the cross-entropy loss for the multi-class
classification. For subtask B, a sigmoid function
was used to impose restrictions on the output of
the system on a scale from 1 to 5. Finally, we

2A clarification is a word/phrase that was inserted to spec-
ify information in the instruction.
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trained multiple models and aggregated the predic-
tions with a pattern-aware ensemble strategy. Our
system achieved the best overall performance in the
shared task with a 68.9% accuracy score (subtask
A) and 0.807 Spearman’s rank correlation score
(subtask B). The outcomes are promising for im-
proving the clarification of instructional texts.

2 Background

Pre-trained models (Devlin et al., 2018; Liu et al.,
2019; Sun et al., 2019; Clark et al., 2020) have
achieved state-of-the-art results in various Nat-
ural Language Processing (NLP) tasks. Recent
works (Raffel et al., 2019; Brown et al., 2020; Sun
et al., 2021) have shown that more generalization
ability and superior performance can be achieved
by pre-training models with billion or trillion pa-
rameters. Thus, we pursued the competitive pre-
trained models such as DeBERTa (He et al., 2020)
and large-scale pre-trained models ERNIE (Sun
et al., 2021) whose effectiveness has been validated
in the standard GLUE (Wang et al., 2018) and Su-
perGLUE benchmark (Wang et al., 2019).

However, in our initial experiment, we found that
the aforementioned models, though have promising
results on sentence-level or paragraph-level tasks,
failed to distinguish the word/phrase-level semanti-
cally similar clarifications (fillers) in a given con-
text. We believe the failure is due to the way these
models were trained using a masked language mod-
eling (MLM) task in the pre-training phase. MLM
aims to map tokens with similar semantics to the
embedding space that are close to each other in-
stead of distinguishing them.

Based on the above finding, we believe what we
need is a discriminator (Clark et al., 2020; He et al.,
2021) pre-trained via a replaced token detection
(RTD) task which is more aligned with this shared
task. In RTD, the discriminator needs to determine
if a corresponding token is either an original token
or a token replaced by the generator. Formally, the
loss function for the discriminator is as follows:

LRTD = −
∑

i

log p
(
1 (x̃i = xi) | X̃, i

)
(1)

where X̃ is the input sequence constructed by re-
placing masked tokens with plausible tokens sam-
pled from a generator, and the indicator function
1(·) distinguishes whether the plausible tokens are
generated or the original ones.

3 Method

In this section, we will describe the strategies we
used in our system in detail. In Section. 3.1, the sys-
tem is presented on how we formalize the data as
input, basic modules, and task-specific design for
each subtask. Then, we describe the optimization
object for each subtask (see Section. 3.2). Finally,
we introduce a pattern-aware ensemble strategy to
further boost the performance beyond a normal
ensembled model in Section. 3.3.

3.1 System Description
As illustrated in Figure. 2, the framework for both
tasks is nearly the same which consists of 4 parts,
namely the input, a basic model, a pre-trained
head, and a task-specific head.

The input sequence. Each sample is constructed
by joining the Pattern, Title, Section Header,
Previous Sentence, Target Sentence and Follow-up
Sentence in order demonstrated in Figure. 1. Each
candidate phase is filled in in its original position
in the Target Sentence. When modeling the filled
target sentence independently, the training set will
be 5 times larger than the original since each target
phrase has five candidates.

Basic Model. The pre-trained transformer is our
starting point. The basic model takes as input the
sequence x̃ and outputs the contextual representa-
tion of each token as follows:

Hb = Transformer(x̃) (2)

where Hb ∈ Rn×d with n tokens and d dimension.

Pre-trained Head. During the pre-training phase,
a language modeling head is appended for a lan-
guage modeling task. The head is usually discarded
in the fine-tuning phase. However, in our experi-
ment, we found better performance can be achieved
when reusing the pre-trained head. Formally, the
language modeling head takes as the input Hb and
output representations for task-specific head as fol-
lows:

Hp = LN(Act(HbW1 + b1)) (3)

where W1 ∈ Rd×d,b1 ∈ Rd is the weight
and bias, Act(·) and LN(·) are the activation
function and the layernorm layer (Ba et al., 2016)
respectively.
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Figure 2: The illustration of our system.

Task-specfic Head. As there are several tokens
after tokenizing the target phrase, we apply a mean
pooing layer for the hidden states of the target
phrase denoted as Hp,i:j as follows:

ht =

∑j
i Hp,i

j − i
(4)

where ht ∈ R1×d is the mean embedding of the
target phase, i, j are the start and end token index
of the tokenized target phrase respectively. Then,
we sequentially appended a dropout layer, a dense
layer with a Tanh activation function and a dropout
layer for ht as follows:

h̃t = Dropout(Tanh(Dropout(ht)W2+b2)) (5)

where h̃t ∈ R1×d,W2 ∈ Rd×d,b2 ∈ Rd are the
enhanced embedding of the target phase, learnable
weight and bias respectively. Finally, the h̃t is
transformed to fit the three-class classification task
and regression task as follows:

ỹc = Softmax(h̃tW3 + b3) (6)

ỹr = Sigmoid(h̃tW4 + b4) ∗ 4 + 1 (7)

where ỹc ∈ R1×3,W3 ∈ Rd×3,b3 ∈ R3 are the
probabilty distribution, learnable weight and bias
for subtask A, and ỹr ∈ R1,W3 ∈ Rd×1,b3 ∈ R1

are the regression score, learnable weight and bias
for subtask B. The Sigmoid function restricts the
range of output space between 0 to 1, then we
shift the number by multiplying four and adding

one. The above method successfully restrict the
regression score within the golden score on a scale
of 1 to 5.

3.2 Optimazation Object
For subtask A, we utilized the cross-entropy loss
for multi-class classification as follows:

Lce = −
N∑

i

log(ỹi
c[y

i
c]) (8)

where N is the number of training samples, yic is
the golden label for i-th sample, ỹi

c[y
i
c] means the

predicted probability of the golden label.
For subtask B, we used the mean squared error

loss for regression as follows:

Lreg =
1

N

N∑

i

(ỹir − yir)
2 (9)

3.3 Pattern-aware Ensembling
Ensemble is the commonly used technique where
multiple diverse models are trained to predict an
outcome, then aggregates the prediction of each
model resulting in the final prediction. In our ex-
periment, we observed that the model fine-tuned
with different hyper-parameters have different pref-
erence on the Resolved Pattern3. Thus, we aggre-
gates the prediction of each model seperately based
on the performance on a subset split by the given
Resolved Pattern attribute.

3Descriptions of the resolved pattern can be found
in https://competitions.codalab.org/
competitions/35210#participate
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Pattern\Dataset Train Validation Test

ADDED COMPOUND 5000 625 625
FUSED HEAD 4995 625 625
IMPLICIT REFERENCE 4980 625 625
METONYMIC REFERENCE 5000 625 625

Total 19975 2500 2500

Table 1: Data statistics in train, validation, and test set
on the different patterns.

Hyper-parameter Model

Dropout 0.1
Warmup Ratio 0.1
Learning Rates {5e-6, 7e-6, 9e-6, 1e-5}
Batch Size {32, 48, 64}
Weight Decay 0.01
Epoches 5
Learning Rate Decay Linear

Table 2: Hyper-parameters for fine-tuning on both sub-
tasks.

4 Experiment

4.1 Data

We use the training, validation and test data pro-
vided for SemEval 2022 Task 7 without introducing
extra data. The data statistic is summarized in Ta-
ble. 1 where there is a balanced distribution among
different patterns.

4.2 Experimental Setup

DeBERTa (He et al., 2020, 2021), XLMR (Con-
neau et al., 2019) and ERNIE (Sun et al., 2021)
are used as the pre-trained language model. We
fine-tune the models using the AdamW opti-
mizer (Kingma and Ba, 2014) with the default
hyper-parameter, and additional fine-tuning hyper-
parameters are listed in Table. 2. Experiments are
carried out using eight Nvidia A100 GPUs.

4.3 Evaluation Method

For subtask A, the evaluation metric is the accu-
racy score. The model must predict one of the
following labels: {IMPLAUSIBLE, NEUTRAL,
PLAUSIBLE}.

For subtask B, the submission will be scored us-
ing Spearman’s rank correlation coefficient, which
compares the predicted plausibility ranking over
all test samples to the gold ranking.

Task SubTask-A SubTask-B

Dev Test Dev Test

2nd Place - 66.10 - 0.7850

Ensembled Model 71.08 66.50 0.8260 0.7950
+ Pattern-aware 75.20 68.90 0.8441 0.8070

Table 3: Performance of models on dev set and official
test set.

# Models SubTask-A

MLM-based Models

1 XLMR-Large 61.14
2 ERNIE 61.73

RTD-based Models

3 DeBERTa-V3-Large 67.25
4 #3 without pre-trained head 65.96

Table 4: Ablation studies on SubTask A with respect
to the accuracy score on the dev set. (We reported the
mean results with at least three runs.)

4.4 Results

Our ensembled prediction on test set placed first in
the competition, with a 68.9% accuracy score for
subtask A and a 0.8070 Spearman’s rank correla-
tion coefficient for subtask B. As shown in Table. 3.
Our system outperforms the second-place system
by 2.8 and 2.2 percent points respectively. The or-
ganizers predict an upper bound of 77.1% accuracy
score and 0.89 ranking correlation based on the
manual annotations. As a result, there’s still a lot
of room for growth.

4.5 Ablation Studies
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Figure 3: The label distribution of different pattern on
training dataset.

The effectiveness of using a replaced token detec-
tion task pre-trained model and recovering the pre-
train language modeling head in the task-specific
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Pattern IMPLICIT REFERENCE METONYMIC REFERENCE FUSED HEAD ADDED COMPOUND

Hyper-paramters\Task SubTask-A SubTask-B SubTask-A SubTask-B SubTask-A SubTask-B SubTask-A SubTask-B

LR:1e-5, BSZ:32 65.12 0.8321 67.36 0.8427 67.68 0.8400 64.64 0.8272
LR:9e-6, BSZ:32 64.96 0.8340 69.60 0.8408 71.84 0.8418 63.20 0.8251
LR:1e-5, BSZ:64 71.84 0.8286 69.28 0.8382 65.12 0.8347 68.96 0.8134
LR:9e-6, BSZ:64 72.32 0.8265 69.60 0.8424 64.96 0.8325 69.28 0.8142

Table 5: Performance of the DeBERTa-V3-Large with different fine-tuning hyperparameters on the dev set. A
model can’t win all the subtasks on a subset split by the given pattern attribute. (LR and BSZ are abbreviations for
learning rate and batch size.)

head have been revealed in Table. 4. The hypoth-
esis that utilizing a model pre-trained by a similar
task aligned with SemEval-2022 Task 7 contributes
a lot is supported by comparing #1,#2 and #3. The
performance of the model improved even more af-
ter reusing the pre-trained LM head (#3 and #4).
The assumption is that the hidden states from the
pre-trained head contain more information learned
during the pre-training phase for distinguishing se-
mantically similar tokens.

The effectiveness of the pattern-aware ensem-
bling has been shown in Table.3. On subtasks A
and B, pattern-aware ensembling outperformed the
standard ensemble technique by 2.4 and 1.2 per-
cent points, respectively, compared to the standard
ensemble method.

The model trained with different hyper-
parameters may perform better on one pattern but
not on another, as seen in Table. 5. For example,
on the FUSED HEAD pattern, the model (LR:9e-6,
BSZ:32) has the highest accuracy score of 71.84%
but the lowest accuracy scores of 64.96% and
63.20% on ADDED COMPOUND and IMPLICIT
REFERENCE pattern, respectively. The model
(LR:9e-6, BSZ:64), on the other hand, has the low-
est score on FUSED HEAD pattern but the best
result on ADDED COMPOUND and IMPLICIT
REFERENCE pattern. By visualizing the label
distribution in Figure. 3, we infer that the phe-
nomenon is related to a distribution difference
in which FUSED HEAD pattern contains the low-
est number of the label NEUTRAL, and the label
PLAUSIBLE dominates the ADDED COMPOUND
and IMPLICIT REFERENCE patterns.

5 Conclusion

We built a system for identifying plausible clarifi-
cations of implicit and underspecified phrases in
instructional texts which is useful for improving
the clarification of instructional texts. The system
leverages the strength of a replaced token detec-

tion pre-trained discriminator and therefore per-
forms extremely well on this shared task with the
same goal to distinguish semantically similar to-
kens. In particular, we proposed a pattern-aware
ensembling strategy to aggregate multiple predic-
tions separately based on the pattern when there is
a label distribution difference among patterns. On
SemEval-2022 Task 7, the system achieved the best
performance in both subtasks.

In future work, it’s promising to incorporate the
replace token detection task in a large-scale pre-
trained model with billion, or even trillion parame-
ters.
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