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Abstract
This paper outlines the system using which
team Nowruz participated in SemEval 2022
Task 7 “Identifying Plausible Clarifications of
Implicit and Underspecified Phrases” for both
subtasks A and B (Roth et al., 2022). Using
a pre-trained transformer as a backbone, the
model targeted the task of multi-task classifica-
tion and ranking in the context of finding the
best fillers for a cloze task related to instruc-
tional texts on the website Wikihow.

The system employed a combination of two
ordinal regression components to tackle
this task in a multi-task learning scenario.
According to the official leaderboard of the
shared task, this system was ranked 4th in both
classification and ranking subtasks out of 21
participating teams. With additional exper-
iments, the models have since been further
optimised. The code used in the experiments
is going to be freely available at https://
github.com/mohammadmahdinoori/
Nowruz-at-SemEval-2022-Task-7.

1 Introduction

Oxford dictionary defines cloze test as “a test of
readability or comprehension in which a person is
required to supply words which have been delib-
erately omitted from a passage” (Oxford Univer-
sity Press, 2022). In the context of NLP, a cloze
format task is one in which the context is one or
more sentences with masked spans and the model
is expected to predict a suitable filler for each span.
Cloze-format datasets have become popular in NLP
recently as they are relatively easy to create auto-
matically and provide high quality resources for
model training (Rogers et al., 2021).

0National Organization For Development of Exceptional
Talents

SemEval 2022 task 7 is framed as a cloze task in
which the goal is to rank or classify fillers within a
given context based on their suitability. The texts
are taken from actual articles on an instructional
website and the masked spans are placed at loca-
tions of edits made by users. We participated in
this shared task in both ranking and classification
parts and developed a transformer-based model that
utilises both classification and regression compo-
nents at the top layer. The code and the data used
in these experiments are publicly available.

2 Related Work

Cloze tasks have been a subject of interest in Natu-
ral Language Understanding (NLU) in recent years,
especially within the context of reading compre-
hension, story understanding, and summarisation
(Deutsch and Roth, 2019; Sharma et al., 2018;
Mostafazadeh et al., 2016). There is evidence that
cloze tasks can be used to effectively pretrain or
finetune language models in order to perform few
shot learning (Schick and Schütze, 2021; Liu et al.,
2021).

WikiHow is a community-edited open domain
repository that hosts how-to articles on a variety of
different subjects. It is possible to track edits made
by users and compare different versions. There
have been some recent computational works explor-
ing this resource, including modelling of revision
requirements (Bhat et al., 2020), and the effect of
edits on fluency (Anthonio and Roth, 2020) and
vagueness (Debnath and Roth, 2021).

2.1 Masked Language Modelling
Masked Language Modeling (MLM) is a pre-
training task which is widely used in transformer-
based models. This task forms a self-supervised
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cloze test by randomly removing some of the to-
kens of the sentence which will be further filled by
the model during training. Prominent transformers
including BERT (Devlin et al., 2019) , RoBERTa
(Liu et al., 2019), DeBERTa (He et al., 2020) and
T5 (Raffel et al., 2019) are trained using MLM
as an auxiliary objective. Given the successes of
transformers in most areas of machine learning and
NLP, it is standard practice to fine-tune them for
various down-stream tasks.

2.2 Ordinal Regression

Ordinal Regression (also known as Ordinal Classi-
fication) is a type of classification in which labels
have order with respect to each other. Examples
of ordinal regression tasks include age estimation
(Niu et al., 2016), assessment of damage (Ci et al.,
2019), and monocular depth estimation (Fu et al.,
2018). In ordinal regression, performance of the
model is sensitive to the order of the predictions
with regards to the labels. For instance, in the age
estimation task, the error of the model should be
higher when it incorrectly predicts the age of 30
as 10, as opposed to when it predicts the age of
30 as 20. Ordinal Regression is commonly done
by breaking the multi-class classification task into
several binary classification subtasks within a multi-
task learning scenario. The output of these binary
classification subtasks should be rank-consistent to
achieve good performance.

3 System Description

Figure 1 shows the overall architecture of our
model. A pre-trained transformer sits at the base of
the architecture. Different variations of this trans-
former are tried and reported in Sec 5. These in-
clude BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), DeBERTa (v1 & 3) (He et al., 2020,
2021), and T51 (Raffel et al., 2019) in different
configurations.

At the bottom of the network, there are two com-
ponents, one for regression and the other for classi-
fication. At training time, both of these are trained
in tandem using ordinal regression and a combined
loss. The loss function ensures that the ranks of
the labels are kept consistent across these task (Sec.
3.6).

1Since T5 is originally an encoder-decoder language
model, we only use its pre-trained encoder for our experi-
ments
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Figure 1: Overall architecture of the model. Note how a
pooled representation is produced using the last token
of the filler and the CLS token

3.1 Representing the Filler

To classify each filler, it is first placed in the lo-
cation of the blank in the text to form a full con-
text. The pre-trained transformer is equipped with
a word-piece tokeniser that breaks down the filler
to subword units and also uses a [CLS] token to
represent the entire context 2. To build a pooled
representation for the filler, the contextualised rep-
resentations for the last word piece and the entire
context (i.e. representation of [CLS]) are concate-
nated and passed on to the next layer.

3.2 Multi-task learning with Ordinal
Regression

Once a combined contextualised representation is
obtained from concatenation of [CLS] and the filler,
we address both subtasks of the shared task in a sin-
gle multi-task learning architecture. The objective
of this model is to predict both the class and the
suitability score for each provided filler. The con-
catenated representation is fed to a fully connected
feed-forward layer followed by a GELU activation
function (Hendrycks and Gimpel, 2016). This layer
projects the representation to a lower dimensional
space. Subsequently, the output is passed on to two
separate classification and regression heads.

3.3 Decomposing the Problem into Binary
Classification tasks

As mentioned in Sec. 3, our model uses a special
loss function named coral to perform ordinal regres-
sion. This loss function and the training procedure
it requires are explained in Cao et al. (2020). Coral
layers break a K-class classification problem into
K− 1 binary classification tasks as part of a multi-
task learning scenario. For a coral layer with K− 1

2T5 does not use CLS for context representation. In that
case we just classify the last word-piece with no additional
concatenation
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units 3, the value of loss is constructed from the
sum of K− 1 separate binary cross entropy losses
belonging to each unit.

To train a coral layer, it is necessary to first trans-
form the original labels to sets of binary labels.
This is the step where the notion of order is intro-
duced into the model. Given K classes, we convert
each label to a collection of binary labels as fol-
lows:

f(y, k) =

{
1 if k < y

0 if k ≥ y
(1)

Y
(i)
ordinal = {f(y(i), k)|k ∈ W ∧ k < K− 1}

where y(i) is the original label for the ith training
instance and 0 ≤ y(i) ≤ K− 1.

3.4 Classification and Regression Heads

At the top end of the architecture there are two com-
ponents for classification and regression. The clas-
sification head is a coral layer with two units which
is used to address the classification subtask where
we have three labels, namely, Implausible,
Neutral, and Plausible. Note that the la-
bels in the classification task have inherent order
and for the model to be trained effectively, it is
important that the training objective penalises mis-
classifications based on this underlying assump-
tion. For instance, the error of the model should
be more when it predicts an Implausible sam-
ple as Plausible compared to when it predicts
an Implausible sample as Neutral. This is
the motivation to use ordinal regression losses like
coral.

The other head is assigned to the regression sub-
task and rates each filler for suitability. We con-
verted continuous scores in the 1 − 5 range to la-
bels with discrete values in the 0 − 4 range by
either rounding or flooring the scores. For example,
the original scores of {1.333, 1.75, 2.5, 3.75, 4.25}
are mapped to {0, 1, 2, 3, 3} by rounding and
{0, 0, 1, 2, 3} by flooring. We can frame the regres-
sion task as ordinal classification with five labels by
binning the values. A 4-unit coral layer is used to
perform this classification. These heads are jointly
trained using a combined loss.

3A T-unit coral layer, is comprised of T binary classifi-
cation units which share the same weights but have different
biases.

3.5 Constructing Labels and Ranks from
Heads

Since coral layers differ from normal dense lay-
ers, their output can not be directly converted to
labels. Furthermore, the regression subtask is also
framed as an additional classification task in our
methodology. However, since the purpose is to re-
port continuous scores rather than discrete labels,
a unique conversion is necessary for the output of
the regression head.

For the classification head, the goal is to output
discrete labels in range of 0− 2. Given the output
of the classification head for one sample Ĉ, the
conversion to the label is defined as follows:

f(y) =

{
1 if y > 0.5

0 if y ≤ 0.5
(2)

c =

2∑

k=1

f(σ(Ĉk))

where c is the final label and σ is the sigmoid
function.

For the regression head, the goal is to out-
put continuous scores in range of 1− 5. Given the
output of the regression head for one sample R̂,
the conversion to the continuous scores in range of
1− 5 is defined as follows:

r = (
4∑

k=1

σ(R̂k)) + 1 (3)

3.6 Computation of Loss
Since we have three labels for the classification
task, ordinal labels would be sets of binary values
with the length of two. Given C(i) as the converted
classification label for the ith training sample and
the Ĉ(i) as the output of the classification head for
the ith training sample, we can define the classifi-
cation loss as:

l(i)c =
2∑

k=1

−C
(i)
k log(σ(Ĉ

(i)
k )) (4)

−(1− C
(i)
k ) log(1− σ(Ĉ

(i)
k ))

For the regression task there are 5 different la-
bels, and accordingly, ordinal labels would be sets
of binary values with the length of four. Given R(i)

as the converted regression label for the ith training
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sample and the R̂(i) as the output of the regression
head for the ith training sample we can define the
regression loss in a similar way:

l(i)r =
4∑

k=1

−R
(i)
k log(σ(R̂

(i)
k )) (5)

−(1−R
(i)
k ) log(1− σ(R̂

(i)
k ))

Since we are aiming to perform both classifica-
tion and regression, a joint loss is needed to com-
bine losses from the two heads. For a given training
batch of size n:

Ltotal =
1

n

n∑

i=1

λcl
(i)
c + λrl

(i)
r (6)

where λc is the weight associated with the classifi-
cation loss and the λr is associated with regression.

4 Dataset and Experimental Setup

The shared task is based on Anthonio et al. (2020),
where instructional texts from the website Wiki-
how 4 are used to create training instances for a
cloze task. The deletions in the dataset are based
on actual edits made by online users and they are
assumed to represent certain types of clarifications
to make a point more clear or disambiguate a sen-
tence. Based on the actual edits, alternative fillers
are automatically extracted and added to build a
number of possible fillers. These texts along with
the fillers were later annotated by humans and given
plausibility scores from 1 to 5. There is also a sep-
arate type of annotation available in which there
are 3 labels with discrete plausibility values. The
shared task was organised in two separate tracks
of classification and regression, depending on what
kind of annotation was used for modelling the task.
Table 2 & 3 show the basic statistics of the dataset
in the shared task.

The dataset for this task consists of six
features, named Resolved Pattern, Article ti-
tle, Section header, Previous context, Sentence,
and Follow-up context along with five differ-
ent fillers for each sample. Resolved Pat-
tern is one of the four following categories:
IMPLICIT REFERENCE, ADDED COMPOUND,
METONYMIC REFERENCE, and FUSED HEAD
which indicates the relationship of the fillers with
the context. Article title is the name of the arti-
cle from which the paragraph is selected. Section

4A wiki-style online collection of how-to articles accessi-
ble at https://www.wikihow.com

header is the section from which the article is se-
lected. Previous context is a few sentences before
the sentence that contains the filler. Sentence is the
sentence that contains the filler.

We obtained our best results when we used a
custom formatting using which we can feed all
the features to the model as textual input. Table 1
is an example of how we represent each training
instance. Note how the ‘Text’ feature is constructed
by concatenating previous and follow-up contexts
with the target sentence.

Example input while using all features

Resolved pattern: ADDED COMPOUND
Section header: Following a Basic Routine
Article title: How to Get Rid of Peeling Skin
Text: (...) 6. Never tear away loose skin. (...) 7. Protect
your skin from sunlight. Exposure to direct sunlight can
weaken your skin further and complicate the [Filler] prob-
lem. This is true regardless of whether your skin is peeling
due to a sunburn or due to dryness.

Table 1: An example of how each input is formatted for
training and inference. Each identifier followed by ":"
represents a feature of the dataset represented in textual
format.

Variation implausible neutral plausible total

train 5474 7162 7339 19975
(27.40%) (35.85%) (36.75%) (100%)

dev 982 602 916 2500
(39.28%) (24.08%) (36.64%) (100%)

Table 2: Statistics of the data for subtask A

Variation 1 2 3 4 5 total

train F 2254 4123 6259 5321 2018 19975
train R 1053 4421 4034 8441 2026 19975
dev F 645 458 481 596 320 2500
dev R 386 596 376 639 503 2500

Table 3: Statistics of the data for subtask B. R and F
represent rounded and floored scores, respectively

5 Results and Discussion

The official test results for both subtasks are pre-
sented in Table 5. These are the best results that
we have obtained on the test set prior to the end of
the competition. On the official leaderboard of the
shared task, our system was ranked 4th in both the
ranking and classification tasks.

We have since performed extensive analyses on
the effect of hyperparameters on different varia-
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tions of our models, and since we do not have ac-
cess to the true labels in the test set, we report
our best results on the dev set. As can be seen in
Table 4, we have produced our best results using
DeBERTa-V3large. We have noticed two important
factors that influence the final performance of the
models. The first factor is batch size. Our best
results were obtained on lower batch sizes of 8 and
16. The choice of rounded or floored numbers for
subtask B is also a significant factor. The reason
for this is that the distribution of labels changes
depending on the normalisation method used.

6 Conclusion

In this work we developed a set of transformer-
based models powered with ordinal regression to
tackle an NLP cloze task as part of the SemEval
2022 shared task 7. The goal was to assign suit-
ability scores or labels to several different provided
fillers given each context and masked span.

Using a combined architecture based on ordi-
nal regression that used training labels from both
subtasks, we developed and trained models with a
multi-task learning objective. The proposed system
was ranked 4th out of 21 teams in both tracks of the
shared task. In the subsequent analyses in the post
evaluation phase, we have showed the effective-
ness of this architecture in addressing this task. We
compared different variations of our models and
explored the effects of hyperparameters on model
performance. The code and analyses are going to
be publicly available.
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Backbone
Transformer

Model Batch
Size

Scores Accuracy
(subtask A)

Spearman’s rank
(subtask B)
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RoBERTa RoBERTabase 16 F 59.44% 0.6695
RoBERTalarge 8 R 58.68% 0.6799
RoBERTalarge 8 F 60.20% 0.6928
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Table 4: Results on dev set for both subtasks, R and F represent rounded and floored scores respectively (as
mentioned in Sec. 3.4)
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A Appendix

In this section, we are going to share the details of
the hyperparameters used for the fine-tuning of our
models and the final training procedure used for
the submission.

A.1 Hyperparameters
We fine-tuned all models for 5 epochs while keep-
ing the embedding layers of all models frozen. We
used the AdamW as our optimizer with a cosine
learning rate schedular from the Hugging Face li-
brary and a weight decay of 0.00123974 and an
initial learning rate of 1.90323e− 05. Also, the λl

and λr (as mentioned in 3.6) are set to 0.5 in all of
the reported experiments as shown in Table 6.

A.2 Training Procedure for Submission
Once we found the best hyperparameters and mod-
els using Dev dataset, We used a combination of
Training and Dev data to train our final models for
submission. With this approach, we have been able
to achieve a 3% improvement on accuracy and up
to 0.05 improvement on Spearman’s rank correla-
tion. Additionally, we found that combining Train
and Dev data is noticeably less effective in the
smaller models such as Bertbase or RoBERTabase,
however, this is a better strategy when it comes

Hyperparamters

Epochs 5
Optimizer AdamW
Learaning Rate Scheduler Cosine
Initial Learning Rate 1.90323e-05
Weight Decay 0.00123974
λl 0.5
λr 0.5

Table 6: Details of the Hyperparamters used for fine-
tuning

to larger models such as RoBERTalarge or T5large.
Based on this, we suppose that with further tun-
ing. DeBERTa-V3large can potentially surpass the
state-of-the-art if it has access to the combination
of Train and Dev data.
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