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Abstract

This paper describes the DuluthNLP system
that participated in Task 7 of SemEval-2022
on Identifying Plausible Clarifications of Im-
plicit and Underspecified Phrases in Instruc-
tional Texts. Given an instructional text with an
omitted token, the task requires models to clas-
sify or rank the plausibility of potential fillers.
To solve the task, we fine–tuned the models
BERT, RoBERTa, and ELECTRA on training
data where potential fillers are rated for plausi-
bility. This is a challenging problem, as shown
by BERT-based models achieving accuracy less
than 45%. However, our ELECTRA model
with tuned class weights on CrossEntropyLoss
achieves an accuracy of 53.3% on the official
evaluation test data, which ranks 6 out of the 8
total submissions for Subtask A.

1 Introduction

Instructional texts (e.g., How To Guides) describe
how to accomplish a given goal and are integral to
our daily lives. One popular source is WikiHow1

which is an online platform that allows users to col-
laborate to create and maintain such guides. This
kind of documentation must be clear, and if it is not
then this is a key reason that prompts revisions of
underspecified instructions in WikiHow (Anthonio
et al., 2020a).

One important problem for NLP is to determine
if a given instructional text is in need of clarifica-
tion or revision. SemEval-2021 Task 7 (Roth et al.,
2022) extends this problem by requiring models to
score five possible fillers based on how well they
can plausibly fit a given context. Task 7 includes
two subtasks. Subtask A classifies the possible
fillers as IMPLAUSIBLE, NEURAL, and PLAUS-
BILE. Subtask B requires systems to rank the fillers
on a scale of 1 to 5, where a higher score means
more plausible. We only participated in Subtask A
and used a variety of BERT-based methods.

1https://www.wikihow.com

2 Task Data

The training, development and test data were sup-
plied by the organizers of SemEval–2022 Task 7
(Roth et al., 2022). The dataset is based on the Wik-
iHowToImprove Corpus (Anthonio et al., 2020b)
which consists of edits of 2.5 million sentences
from WikiHow. The authors show that edits are pri-
marily made to clarify instructional texts and that
the distinction between older and revised versions
of sentences can be modelled computationally.

Each instance in the data is divided into an Ar-
ticle title, a Section header, and a Sentence nested
between a Previous and Future context. Each in-
stance also includes five potential fillers, each of
which is annotated as IMPLAUSIBLE, NEUTRAL,
or PLAUSIBLE, which serves as the basis of Sub-
task A. There is a also a plausibility score of 1 to 5
which is the basis of Subtask B (which we did not
participate in).

Table 1 shows 3 training example templates
made up of the concatenation of the Previous con-
text, the Sentence with the blank to be filled, and
the Future context. Each template is filled with
each of the five possible fillers to generate the train-
ing examples (5 per template). We start with 3,995
training templates where the filler is not specified.
We create an instance for each of the five possible
fillers for each template, giving us a total of 19,975
training examples. We remove extraneous content
such as bullet points and numbers in order to make
the examples more readable. In a later approach,
we highlight each filler in the generated instance
with a special "[filler]" token, a step that yields
further performance gains on the development data
( Table 3) but achieves no corresponding gains on
the official test results.

3 Methodology

We experimented on three large pre–trained lan-
guage models for Subtask A, including BERT,

1062

https://www.wikihow.com


Previous context Sentence Followup context

State what you have contributed
to the company. By doing it this
way, it is going to show that you
have done your job and been
an asset, thus the raise is well-
deserved. *

P: If you believe your [...] of time work-
ing at this company warrants a raise or
promotion, say that as well. Fillers: A.
continuity B. window C. abundance D.
length E. appreciation

It is best to tell them all the reasons
you believe you deserve this increase.

An all weather strategy often
keeps you always afloat com-
pared to one planned for normal
market behavior. Planning for a
failure is always better than fail-
ing to plan

P: Uncertainties of [...] can be classified
into four levels Fillers: A. public opin-
ion B. future markets C. the future D.
this sort E. their futures

Level one gives a fairly clear view of
the future, and an inkling of what to
expect.

Since wikis are often volunteer-
driven projects, wikigifts can go
a long way in showing someone
how much you appreciate their
efforts. Find or create awards
specific to that wiki.

P: On wikiHow, for example, you can
Make Award Templates on [...] and post
them on people’s talk pages. Fillers: A.
books B. facebook C. graph D. wiki-
How E. earth

Publicize that you gave the wikigift.

Table 1: Training Example Templates for SemEval–2022 Task 7. Each possible replacement (filler) for the omitted
token [...] must be ranked as PLAUSIBLE (blue), NEUTRAL(orange), or IMPLAUSIBLE (RED).

RoBERTa and ELECTRA. BERT (Bidirectional
Encoder Representational from Transformers) (De-
vlin et al., 2018), is a Transformer-based language
model trained using Masked Language Modeling
(MLM) to predict the masked tokens based on the
surrounding context. In MLM, a given percent-
age of the tokens of an input sequence is masked,
and BERT is tasked to predict the orginal tokens.
With the MLM approach, BERT was able to pro-
duce good results when transferred to downstream
NLP tasks, becoming the new benchmark for other
pre–trained models. The authors of the ELECTRA
paper (Clark et al., 2020), however, note that the
MLM approach only learns from the masked tokens
(about 15%) of any given example, thus requiring
substantial compute resources to train a language
model using MLM.

The next model we used was RoBERTa, which is
essentially a replication of BERT (Liu et al., 2019)
which adjusts key hyperparameters and uses larger
amounts of data during pre–training. RoBERTa
improves upon BERT when trained longer, using
larger mini–batches over more data.

Similarly, we experimented with ELECTRA
(Clark et al., 2020), a pre–trained model that uses
Replaced Token Detection as a pre–training objec-
tive. This distinguishes real inputs from plausible
but synthetically generated ones coming from a
small masked language model. The authors ar-
gue that ELECTRA improves compute efficiency
during pre–training, and can match or exceed the
performance of BERT and its variants when fine–

tuned on downstream tasks.
The ELECTRA model includes two Transformer

models, a generator and a discriminator. The gener-
ator emulates a small Masked Language Model by
predicting the original token of a masked-out token.
Like the Masked Language Model in BERT, some
samples of the input sequence to the generator are
replaced with [MASK]. The predicted results of
the generator are fed as inputs to the discriminator.

For each token in the sequence, the discriminator
predicts whether it is the original or the generated
one. This means that the discriminator is able to
learn from all input tokens for any given example,
with the model loss calculated over all the tokens.
This is what sets ELECTRA apart from BERT, and
a major reason for ELECTRA’s greater compute
efficiency.

ELECTRA addresses a drawback of Masked
Language Models, which is that the masked to-
kens are only used during pre–training and are
omitted during fine–tuning. This pre–train fine-
tune mismatch contributes to a loss in performance.
Replaced Token Detection, in which ELECTRA
distinguishes between real tokens and their plausi-
ble fakes, is easily transferable to fine–tuning. This
is particularly true for Subtask A of SemEval-2022
Task 7, which requires a model to classify how
fillers will plausibly fit an omitted token.

4 System Description

This section introduces DuluthNLP’s approach
which relied on BERT, RoBERTa, and ELECTRA.
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Hyperparameter Value

Learning Rate 4e-5
Adam ϵ 1e-8
Optimizer AdamW
Learning rate decay Linear
Weight Decay 0
Batch Size 16
Train Epochs 10

Table 2: Hyperparameter Values for Fine-Tuning.

We discuss our fine–tuning process, and then how
class weights were tuned.

4.1 System Description

We first fine–tune BERT on Subtask A. Using our
pre–processed dataset as inputs, we build and train
a classifier on top of the BERT model to learn how
plausible each filler fits the blank in each sentence.

Using the BERT-base uncased tokenizer on our
inputs, we then train our BERT model using the
Adam Optimizer with a linear scheduler with
warmup; a CrossEtropy Loss with adjusted class
weights; and a learning rate of 4e-5 for 10 epochs
(see Table 2). We train our model twice, once with-
out class weight tuning, and a second time with
tuned class weights.

We used these same hyperparameters for fine-
tuning RoBERTa (Liu et al., 2019) and ELECTRA
(Clark et al., 2020). As our experimental results
will show, the most accurate results were obtained
with ELECTRA.

We used the HuggingFace PyTorch implemen-
tations of the BERT, RoBERTa, and ELECTRA
(Wolf et al., 2019). We fine-tuned our models us-
ing 2 Nvidia Quadro RTX 8000 GPUs.

4.2 Class Weights

Class imbalances for classification tasks are of-
ten caused by imbalances in the dataset. How-
ever, for Subtask A the training data is reasonably
balanced and includes 7339 (36%) PLAUSIBLE
labels, 7162 (36%) NEUTRAL labels, and 5474
(27%) IMPLAUSIBLE labels.

While the task training data does not have signif-
icant imbalances, our model predictions on the de-
velopment set initially skewed towards NEUTRAL.
Over 52% of all the predictions were NEUTRAL,
as shown in Table 4.

Our model corrects these imbalances by apply-

Model Accuracy

ELECTRA with class weights 0.556
RoBERTa with class weights 0.552
BERT with class weights 0.522
ELECTRA 0.443
BERT 0.441
Logistic Regression 0.348
Random Guessing 0.267
RoBERTa 0.177

Table 3: Experimental Results on Development Data.

ing class weights that penalize NEUTRAL labels.
This helped to reduce predictions for NEUTRAL
labels to 28%, as shown in Table 5. This is at least
closer to the actual distribution of 18% NEUTRAL
in the development data and helps to improve accu-
racy.

The selection of optimal weights was based
on random search, which has been shown to be
more efficient for parameter optimization than grid
search (Bergstra and Bengio, 2012). To achieve
this, we initially defined a 3-tuple list of random
weights, and for each tuple, we set the class weights
for the CrossEntropy Loss function and trained our
model. From the list, we selected the class weights
with the best performance for further tuning.

5 Experimental Results

In this section we present the results of our models
on both the development data and the test data as
used in the official evaluation scored by the task
organizers.

We used the Logistic Regression model from
scikit-learn2 as a baseline method. It incorpo-
rates binarized Ngram counts (Wang and Manning,
2012).This obtained an accuracy of 34.8% on the
development data for Subtask A.

As shown in Table 3, accuracy on the develop-
ment data without class weights were lower. The
RoBERTa model, in particular, achieved accuracy
of 17.7%, the lowest among the three language
models, and even lower than random guessing.

However, with tuned class weights, all three of
the pre–trained models achieved accuracy above
50%. ELECTRA and RoBERTa obtained nearly
identical scores of 55.2% versus 55.6%. We de-
cided to use ELECTRA as our official evaluation

2https://scikit-learn.org/
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Predicted Total %
0 1 2

A
ct

ua
l 0 249 580 140 969 38%

1 53 255 135 443 18%

2 45 456 587 1088 44%

Total 347 1291 862 2500

14% 52% 34%

Table 4: Confusion Matrix with ELECTRA Before
Weight Tuning on Development Data. The labels (0,1,2)
refer to (IMPLAUSIBLE, NEUTRAL, PLAUSIBLE)
respectively. Accuracy is 42.4%.

Predicted Total %
0 1 2

A
ct

ua
l 0 332 340 297 969 38%

1 70 128 245 443 18%

2 60 221 807 1088 44%

Total 462 689 1345 2500

18% 28% 54%

Table 5: Confusion Matrix with ELECTRA After
Weight Tuning on Development Data. Accuracy is
50.7%.

method because of its very consistent performance
with the class weights adjustment and its somewhat
lower energy consumption as compared to other
large language models.

Our official results on the Subtask A evaluation
data for Task 7 Subtask A were 53.3% with our
ELECTRA model with class weights. The top
ranked system in the task obtained accuracy of
68%. DuluthNLP ranked 6 among 8 systems.

6 Error Analysis

The classes predicted by our model on the devel-
opment data prior to the official evaluation were
skewed to NEUTRAL, as discussed earlier. We ob-
served this with various different pre–trained mod-
els including BERT, RoBERTa, and ELECTRA
with various different hyperparameter settings. De-
spite our best efforts the DuluthNLP system never
reached accuracy above 45%.

We addressed this by adding class weights to
CrossEntropyLoss function used in our models.
When we assigned class weights of [1.5, 0.03, 0.7]

for the IMPLAUSIBLE, NEUTRAL, and PLAU-
SIBLE labels, the wrongly predicted scores for the
NEUTRAL label reduced to 28%, as shown in Ta-
ble 5.

What is curious, though, is the difficulty in cor-
rectly classifying the IMPLAUSIBLE label. This
represents 38% of the actual labels but is 14% of
the predicted labels. Even after class weights are
set as described above, only 18% of the labels are
predicted to be IMPLAUSIBLE, which is still a
difference of 20% from the actual IMPLAUSIBLE
labels.

We achieved further performance gains on the
devset across all the models by highlighting the
filler in each data instance with a special "[]" sym-
bol, and this forms the basis for our results in Table
3. This approach did not distribute well over the
test data, however.

7 Ethical Considerations

The training of large language models has a dark
side: demands for large amounts of compute power
and the corresponding energy consumption. Train-
ing BERT with the Masked Language Model re-
quires a lot of computational resources.This raises
concerns over the accessibility, cost, and environ-
mental impact of such methods (Bender et al.,
2021). Whilst we experimented with three BERT-
variants, we sought to limit model fine–tuning to
the base models (Bert-base, RoBERTa-base, and
ELECTRA-base), which require less compute re-
sources than their larger versions. The ELECTRA
model, which we used for our official evaluation
test results, is computationally efficient, which
partly informed our choosing it over the other mod-
els for use as our official method during the evalua-
tion stage.

The accuracy of our models are, at best, a little
above 50%. This means that roughly half of any of
these predictions may be wrong. This is clearly not
accurate enough to deploy in a real setting without
potentially causing harm. It is easy to imagine the
negative impacts of automatically clarified instruc-
tions that prove to be inaccurate.

Similarly, the test data and the training set are
from the same sample distribution, and we cannot
guarantee that our model will achieve similar re-
sults for any out-of-distribution test data. In other
words, our model, reliant as it is on the contextual
representations provided by the pre–trained mod-
els, cannot perform well on a completely new task
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or distribution.
We relied on large language models which were

trained on very large corpora. Such text may in-
clude stereotypes and biases which are then carried
over into the resulting model (Bender et al., 2021).
This locks the model to older, less–inclusive under-
standings that may not reflect more modern views
of gender, race, or other questions of identify. To
minimize the potential harms of such misrepresen-
tations it would be best if candidate predictions
were verified by a human editor.

However, if models like these were deployed
and used to auto–suggest revisions to WikiHow,
they may constrain the choices of human editors
(Miller and Record, 2017). This could create a
mindset that uncritically accepts the framed options
of the model as legitimate (Alfano et al., 2018). The
reviewer may then abandon their own edits because
the auto–suggestion seems to provide an answer.
One way to minimize such risk is the deployment
of Reflection Machines (Cornelissen et al., 2022),
a decision support system that will compel users to
give reasons for accepting or rejecting suggestions
from the model.
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