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Abstract

We describe SemEval-2022 Task 7, a shared
task on rating the plausibility of clarifications
in English-language instructional texts. The
dataset for this task consists of manually clar-
ified how-to guides for which we generated
alternative clarifications and collected human
plausibility judgements.1 The task of partici-
pating systems was to automatically determine
the plausibility of a clarification in the respec-
tive context. In total, 21 participants took part
in this task, with the best system achieving an
accuracy of 68.9%. This report summarizes
the results and findings from 8 teams and their
system descriptions. Finally, we show in an ad-
ditional evaluation that predictions by the top
participating team make it possible to identify
contexts with multiple plausible clarifications
with an accuracy of 75.2%.

1 Introduction

Understanding texts in natural language requires
that both explicit text components as well as im-
plicit references and relationships are interpreted
correctly. This applies in particular to instructional
texts, which demand a clear understanding of in-
dividual instruction steps in order to reach the de-
sired goal. Possible uncertainties should therefore
already be clarified in the text. In principle, such
clarifications can also be generated automatically.
In that case, however, it will be necessary to inves-
tigate the circumstances under which a clarification
is plausible and unambiguous.

As a first step towards such an investigation, this
shared task evaluates the ability of NLP systems to
distinguish between plausible and implausible clar-
ifications of an instruction. Inspired by the success
of previous cloze-based evaluations (see Section 2),
we set up our task as a cloze task, in which clarifi-
cations are presented as fillers and systems have to

1The task data is available at https://github.com/
acidAnn/claire.

Choose a Hair Salon

(1) Check ratings of different salons.
(2) Visit the salon’s website.
(3) Call ∅ and ask questions.

✓ the salon ✗ a friend
✓ the number ✗ your stylist
✓ the owner

Table 1: Simplified example from a pilot study: the top
shows a sentence (3) and shortened version of its dis-
course context (1–2). In the clarified version of this sen-
tence, the phrase the salon was inserted. Other phrases
shown in the bottom part are automatically generated
fillers, annotated as plausible (✓) or implausible (✗).

identify which fillers plausibly fit in a given context
(see Table 1). Our focus in this task is on differ-
ent types of referring expressions that are either
underspecified or not realized explicitly at all, and
we consider possible clarifications in the form of
additional specification or explicitation.

Research in linguistics and psychology has
shown that individuals use language differently
(Pennebaker and King, 1999; Heylighen and De-
waele, 2002). In particular when it comes to im-
plicit and underspecified language, individual dif-
ferences can also lead to different interpretations
(Scholman and Demberg, 2017; Poesio et al., 2019).
As a result, worst case scenarios include medical
instructions being followed incorrectly or news be-
ing passed on inaccurately. In view of the fact that
language is inherently ambiguous, however, it is
neither sensible nor expedient to produce clarifi-
cations for all occurrences of underspecification.
Avoiding worst-case scenarios therefore goes be-
yond ranking individual clarifications by plausibil-
ity and must take into account whether multiple
(incompatible) clarifications are perceived as plau-
sible, thus reflecting possible misunderstandings.

We discuss our task and data in more detail in
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Sections 3 and 4, respectively. The participating
teams are summarized in Section 5 and their results
on the task and additional evaluations in Section 6.

2 Related Work

Cloze tasks have become a standard framework for
evaluating various discourse-level phenomena in
NLP. Some prominent examples include the narra-
tive cloze test (Chambers and Jurafsky, 2008), the
story cloze test (Mostafazadeh et al., 2016), and the
LAMBADA word prediction task (Paperno et al.,
2016). In these tasks, NLP systems are required to
make a prediction about the filler of a cloze that is
most likely to continue the discourse. However, it
is not always clear whether exactly one likely filler
exists. Evaluations typically circumvent this issue
by requiring systems only to distinguish between
a correct and an incorrect filler, or by evaluating
predictions only with a relative measure. Both of
these options ignore the more general challenge
that multiple fillers can be plausible. Our shared
task addresses this challenge explicitly, by requir-
ing systems to classify different clarifying fillers
as either plausible or implausible. This is a natural
extension of previous cloze tasks to discourse con-
texts in which multiple interpretations are plausible.
This extension makes it possible to evaluate in how
far NLP systems can reflect cases of underspecifi-
cation and uncertainty as well as possible sources
of misunderstanding.

Our task is based on manual text revisions that
can be traced through revision histories and by
which possible needs for clarification can be identi-
fied. Thus, the task follows a number of existing re-
search contributions that deal with text revisions. A
number of previous works examine reasons for and
types of revisions in, for example, Wikipedia (Bron-
ner and Monz, 2012; Daxenberger and Gurevych,
2012; Yang et al., 2017; Faruqui et al., 2018) and
the essay-based corpus ArgRewrite (Zhang and Lit-
man, 2015, 2016; Afrin and Litman, 2019; Kashefi
et al., 2022). In this work, we use revision histories
of instructional texts because clarifications seem
particularly relevant in this domain.

The starting point of our task is the data set wik-
iHowToImprove (Anthonio et al., 2020), which
comprises revision histories of more than 250,000
how-to guides from the online platform wikiHow.2

In our own previous work, we investigated the ex-
tent to which these histories are useful for exam-

2www.wikihow.org

ining textual improvements (Anthonio and Roth,
2020), predicting revision requirements (Bhat et al.,
2020), modeling cases of lexical vagueness (Deb-
nath and Roth, 2021), and resolving implicit refer-
ences (Anthonio and Roth, 2021). The last two
studies in particular have shown that wikiHow-
ToImprove is well suited as a resource for studying
clarifications of semantic phenomena. We describe
one of these studies and how we build upon it in
more detail in Section 3.

3 Task and Background

The general idea of the present shared task is to use
revisions of English-language instructional texts
as a basis to identify potential clarifications and to
rate them regarding their plausibility. We assume
that at least certain cases of clarifying revisions
follow patterns that can be recognized automati-
cally, by comparing the text before/after revision.
An example of such a pattern is the insertion of a
nominal phrase mentioned in context that makes an
implicit reference explicit (see Table 1). We con-
sider additional patterns as part of this shared task
(see Section 4), but only consider cases of insertion
for simplicity.

The focus on insertions allows us to consider
clarifications as solutions to a cloze test, since the
revision always fills in a text segment that previ-
ously was not present. Compared to previous cloze
tasks, we do not assume that the revision observed
is always unique and plausible. Instead, we also
consider alternative clarification options and obtain
plausibility judgments for all options.

As background, we first summarize findings
from a pilot study that we conducted before set-
ting up the present task (§3.1). Based on this, we
then describe the settings of the shared task (§3.2).

3.1 Pilot Study

In our pilot study (Anthonio and Roth, 2021), we
constructed a dataset of implicit references and
potential clarifications in three steps: (1) heuris-
tically identifying insertions of nominal phrases
mentioned in the previous context, (2) automati-
cally generating alternative clarifications using gen-
erative language modeling (GPT; Radford et al.,
2018), and (3) collecting human plausibility judge-
ments for each clarification option.

The first step of our pilot showed that it is pos-
sible to extract about 6,000 relevant clarifications
from the revisions in wikiHowToImprove. We fur-
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ther found that most noisy instances can be filtered
by the application of linguistic constraints and that
remaining cases can be identified during the man-
ual verification in the final step. In the second step,
we found GPT to produce completions for many
sentences that seem sensible on the surface level.
Using our best strategy, namely re-ranking based
on paragraph-level perplexity, the best sequence
generated by the model was identical to the human-
inserted clarification in over 56% of cases, and
the clarification appeared in the top-10 generated
sequences in 78% of cases.

A crucial finding in the third step was that the
annotator indicated a preference for the human-
inserted clarification in most cases (68%), but dif-
ferent, model-generated clarifications were judged
as equally good in many cases (24%). In some
cases, the annotator actually preferred a generated
clarification over the human-edited insertion (8%).

The framework for the shared task is strongly
motivated by the finding that alternative clarifica-
tions, generated by a computational model, can be
as good or even better than human-produced clari-
fications. In some cases, we simply found different
verbalizations of the same proposition. In other
cases, like examples (a) and (b) below, we found
plausible alternatives that are not fully compatible
semantically.

(a) Call the salon and ask questions.

(b) Call each salon and ask questions.

When multiple incompatible readings exist,
there is a risk that instructions will be misunder-
stood and not lead to the desired goal. To identify
potential occurrences of such cases, we consider
different fillers in the shared task and rate the plau-
sibility of each filler independently.

3.2 Shared Task Settings

The SemEval shared task is set up as follows: Sys-
tems are provided with a cloze sentence, surround-
ing sentences and a potential clarifying filler as in-
put, and are required to make a prediction regarding
the plausibility of the filler in the given context. For
evaluation, predicted labels are compared against
the manually collected plausibility judgements de-
scribed in Section 4. We define two subtasks with
different labels and evaluation measures.

Task 1: Classification. In the classification task,
systems need to distinguish between three labels

(IMPLAUSIBLE, NEUTRAL and PLAUSIBLE). We
use accuracy as the main evaluation measure, calcu-
lated as the proportion of correct predictions among
all predictions of a system.

Task 2: Ranking. In the ranking task, systems
need to predict a continuous plausibility score. We
evaluate the predictions based on their correlation
with human judgements, calculated as Spearman’s
rank correlation coefficient between all predictions
and all judgements.

We describe the selection of data and collection
of human judgements in the next section. In Sec-
tion 6, we discuss additional evaluations performed
to assess system performance with regard to the
presence of multiple plausible clarifications.

4 Data

We closely follow the three steps of our pilot study,
described in Section 3.1, to construct the data for
this shared task. Our starting point is the dataset
wikiHowToImprove (Anthonio et al., 2020), a re-
source of sentence-level revisions and their con-
texts based on wikiHow. In the first two steps, we
create relevant data from this resource automati-
cally; in the final step, we collect manual annota-
tions to form a gold standard. In step 1, we apply a
pattern-based approach to identify revisions that in-
volve insertions that serve specific clarifying func-
tions (§4.1). In step 2, we use transformer-based
language models to produce sets of alternate clarifi-
cations that may or may not be compatible with an
observed insertion (§4.2). In step 3, we collect hu-
man plausibility judgements on each clarification
independently (§4.3).

4.1 Data Extraction

We collect relevant revisions by identifying cases
in which a single contiguous insertion and no other
change was made within a sentence. We compute
differences and extract cases automatically based
on the Python library difflib3 and the following
preprocessing tools: spaCy4 for sentence splitting
and tokenization, the Berkeley Neural Parser (Ki-
taev and Klein, 2018) for constituency parsing and
Stanza (Qi et al., 2020) for POS tagging, depen-
dency parsing and co-reference resolution. For the
shared task, we focus on four types of phenomena,
which are summarized in Table 2.

3https://docs.python.org/3/library/
difflib.html

4https://github.com/explosion/spaCy
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Phenomenon Clarification pattern Example Potential filler

Implicit
Reference

∅ → [DET] NOUN

Lift your toes up while keeping
your leg straight. Hold ∅ for
a few seconds, then release.
Incorporate calf stretches into
your yoga routine.

✓ your pose
✓ the stretch
? a leg
? the chair
✗ your head

Fused head DET/JJ ∅ → DET/JJ NOUN

Traditionally, the groom waits
for the bride at the altar, the
bride tosses the bouquet and
(. . . ). Since this is your wedding,
feel free to change these ∅ .

✓ ideas
✓ plans
? symbols
? characters
✗ changes

Noun
compound

∅ NOUN → NOUN NOUN

Heating for cold water tanks
isn’t quite of an issue as for
tropicals. In fact, you can keep a
∅ tank without a heater.

✓ goldfish
✓ freshwater
✓ water
? fishing
✗ soup

Metonymy
NP ∅ → NP’s NP
∅ NP → NP of NP

Look at the ∅ of the teeth.
If you’re unsure of your dog’s
age, or want to determine if they
are already entering into the
senior territory, try the teeth.

✓ condition
✓ color
✓ thickness
? layout
? points

Table 2: Phenomena, extraction patterns and example clarifications (✓ plausible, ? neutral, ✗ implausible).

Implicit references. Instances with a non-
verbalized reference in the original sentence which
was clarified in the revised sentence through inser-
tion. We select the cases from Anthonio and Roth
(2021) with insertions containing a single noun or
a determiner followed by a noun.

Fused heads. Instances of noun phrases for
which the head noun was implicit in the origi-
nal sentence and clarified in the revised sentence
through insertion. We search for noun phrases with
a determiner or adjective head in the original sen-
tence and select those instances where a single
noun was inserted in the revision.

Noun compounds. Instances of underspecified
noun phrases, which were clarified in the revised
sentence through the insertion of a dependent noun
to form a more specific compound. We select in-
stances of single noun insertions in which the in-
serted noun is a compound dependent of another
noun that has already been present in the original
sentence.

Metonymy. Instances in which a revision adds
a noun y to a noun x to make explicit to which
component or aspect of x the text refers. For the

genitive pattern x’(s) y, we select insertions includ-
ing an apostrophe and a noun y that is in a depen-
dency relation nmod:poss with a noun x. For
the y of x pattern, we select insertions that consist
of a noun y and the token of added right in front of
a noun x, allowing for intervening determiners and
adjectives.

4.2 Constructing Clarifications

We produce a set of possible clarifications for each
instance as follows: First, we generate the top-
100 fillers in place of an observed insertion using
language modeling. Second, we select a subset of
potentially suitable clarifications by filtering and
clustering the top-100.

Filler generation. For the implicit references,
we take the top-100 generated clarifications
from Anthonio and Roth (2021). For the other
phenomena, we generate alternative clarifications
automatically using the same approach as An-
thonio and Roth (2021). That is, we feed the
original sentence s with the surrounding sentences
from the same paragraph to a language model.
We then compute the top-100 completions for
the token position(s) where an insertion was
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added in the revised sentence. We use BERT
(Devlin et al., 2019) instead of GPT (Radford
et al., 2018) to generate the clarifications, as the
required insertions consist of only one token
and BERT makes it possible to also consider
follow-up context directly. The BERT checkpoint
bert-base-uncasedbert-base-uncased5

in Transformers (Wolf et al., 2020) was used
without additional pre-training.

Filler selection. From the top-100 clarifications
provided by the language model, we select four
fillers with the goal of producing a semantically
diverse set of clarifications. First, we remove un-
suitable fillers from the top-100, including cases
that only consist of digits or non-alphanumerical
characters and fillers that do not have the right part
of speech based on Stanza (retaining only NOUN
for fused heads and metonymy and NN for noun
compounds to exclude plural nouns).

For all instances with ≥ 4 candidate fillers, we
select the observed insertion from the revised sen-
tence as one filler. To select semantically different
fillers as alternate candidates, we apply k-means
clustering with k = 4 to the remaining candi-
dates, using the algorithm by Elkan (2003) as im-
plemented in sklearn (Pedregosa et al., 2011).
We obtain vector representations for clustering
from BERT (bert-base-uncased) by averag-
ing over the last hidden state for all tokens in a filler.
After clustering, we select the fillers closest to the
four cluster centroids based on cosine similarity.

4.3 Plausibility Annotation

Task. After selecting fillers for each sentence,
we collect plausibility judgements on Amazon Me-
chanical Turk for our train set (19,975 instances,
i.e. 3995 sentences with 1 human and 4 generated
fillers each6), development and test sets (2,500 in-
stances each, i.e., 125 sentences per phenomenon
with 5 fillers per sentence). Each clarification in the
training set is annotated by 2 crowdworkers. For
the development and test set, we collected annota-
tions from 4 crowdworkers to ensure a consistently
high quality. In each annotation task, we ask par-
ticipants to indicate on a scale from 1 to 5 whether
the clarification made sense in the given how-to-
guide. A screenshot of the interface for our Human

5We also tried bert-base-cased in preliminary ex-
periments but observed no improvements.

61000 each for noun compounds and metonymy, 996 for
implicit references and 999 for fused heads.

Train Dev Test

IMPLAUSIBLE 5,474 (27%) 982 (39%) 858 (34%)
NEUTRAL 7,162 (36%) 602 (24%) 672 (27%)
PLAUSIBLE 7,339 (37%) 916 (37%) 970 (39%)

Total 19,975 2,500 2,500

Table 3: Distribution of class labels in our training,
development and test sets.

Intelligence Task (HIT) is provided in Appendix A.

Qualifications. We use several qualifications to
increase the annotation quality. First, we require
participants to be located in the United States or in
the United Kingdom, to increase the chance that
the participants are native speakers of English. Sec-
ondly, participants need to have a HIT approval
rate ≥ 95% and their number of approved HITS
has to be ≥ 1000. Finally, annotators are required
to pass a qualification test in which they are asked
to judge a list of clearly plausible and implausible
cases that were pre-selected unanimously by the
authors.

Class labels. For Task 1 (classification), we aver-
age over the real-valued judgements collected for
a clarification and map this plausibility score to
one of the three classes labels. Specifically, we
label clarifications with an average score ≤ 2.5 as
IMPLAUSIBLE, clarifications with a score ≥ 4.0 as
PLAUSIBLE, and all clarifications between these
thresholds as NEUTRAL. The thresholds have been
selected based on manual inspection of the data
and mathematical considerations: in particular, the
threshold for PLAUSIBLE requires scores to be
substantially above average (in case of two judge-
ments, ≥3&5 or ≥4&4), whereas the IMPLAUSI-
BLE threshold allows for a slightly wider range of
judgements. The NEUTRAL label covers cases that
received inconclusive individual scores as well as
cases of disagreement (e.g. 3&3 as well as 2&5).

Statistics. We show the frequency distribution of
the labels in the train, development and test set in
Table 3. It is noteworthy that development and test
set proportionally includes fewer NEUTRAL and
more IMPLAUSIBLE clarifications than the training
set. Presumably, this is because we increased the
number of qualification questions from 4 to 6 after
collecting the training data to ensure the quality of
the evaluation data.

Since we are particularly interested in cases with
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Team Model type Pre-trained model components Additional comments

X-PuDu ensemble DeBERTa, ERNIE, XLM-R pattern-aware, multi-loss
HW-TSC ensemble DeBERTa, RoBERTa, S-BERT incl. unsupervised model

PALI ensemble DeBERTa, RoBERTa, XLM-R pattern-aware, multi-loss
Nowruz Transformer T5 ordinal regression, multi-loss

JBNU-CCLab ensemble DeBERTa −
DuluthNLP Transformer ELECTRA class weighting

Stanford MLab Transformer ELECTRA −
niksss Transformer BERT −

Table 4: Summary of the best models on the test set according to the submitted system descriptions.

multiple plausible clarifications, we also compute
the average number of PLAUSIBLE clarifications
per sentence s, which we found to be 1.84, 1.87
and 1.84 in the training, development and test set,
respectively. This means that, on average, each an-
notated sentence in the dataset has between 1 and 2
clarifications that the annotators rated as plausible.

5 Participants

A total of 21 users participated in the CodaLab
competition set up for the shared task and 8 teams
submitted system description papers. An overview
of the best model by each team is shown in Ta-
ble 4.7 We observe that all systems are based on
Transformer architectures, using one or more of
the following pre-trained models: BERT (Devlin
et al., 2019), DeBERTa (He et al., 2020), ELEC-
TRA (Clark et al., 2019), ERNIE (Sun et al., 2019),
RoBERTa (Liu et al., 2019), S-BERT (Reimers and
Gurevych, 2019), T5 (Raffel et al., 2020), XLM-R
(Conneau et al., 2020).

In addition to fine-tuning a single or multiple
Transformer models in an ensemble, some teams
have taken additional steps to adapt their system to
the task. We summarize some of these steps below.

Consideration of phenomena. At least two
teams took into account that the data set consists
of four phenomena that were identified using dif-
ferent patterns (pattern-aware): PALI used the phe-
nomenon description that applies to a classification
instance as additional model input; X-PuDu de-
veloped an ensemble architecture that consists of
different individual models and hyperparamters for
each phenomenon.

7A table with the official results of the CodaLab com-
petition, including participants who did not submit system
descriptions, is shown in Appendix B.

Adapted loss functions. Several teams adapted
the loss functions of their models to better account
for various properties of the task. This includes the
use of classification and regression based loss func-
tions in a multi-task learning set-up (multi-loss)
as well as the use of specific loss functions that
consider the ordinal nature of labels (ordinal re-
gression) or differences in label distributions (class
weighting) in the classification task.

Unsupervised components. Given the similarity
of our task to general cloze tasks, several teams
experimented with models that were merely self-
supervised and not fine-tuned on task-specific train-
ing data. In case of one team, HW-TSC, such an
unsupervised component is also part of the ensem-
ble model that produced the best results.

6 Results and Discussion

The results for Task 1 and 2 are shown in Table 5
and 6, respectively. We focus our discussion on
Task 1: Classification, as the participants of Task 2
form only a subset of the Task 1 participants and
the system results rank, with exception of the last
two teams, in the same order. In addition to show-
ing results by participants, we also provide a hu-
man upper bound as well as results by our own
BERT-based baseline model. The upper bound was
computed as the accuracy over all individual anno-
tations when compared against the (averaged) class
label of each test instance.

The human upper bound has an accuracy of
79.4%, indicating that the task is challenging and
potentially involves a number of disagreements.
The winning team of the competition, X-PuDu,
achieves an accuracy of 68.9%, only 10.5 percent-
age points below the human upper bound. The
results of all teams lies substantially above a naive
majority class baseline of 39%. All teams but one
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Rank Team Accuracy

− Human (upper bound) 79.4%

1 X-PuDu 68.9%
2 HW-TSC 66.1%
3 PALI 65.4%
4 Nowruz 62.4%
5 JBNU-CCLab 61.4%
6 DuluthNLP 53.3%
7 Stanford MLab 46.6%
8 niksss 44.2%

− BERT (baseline) 45.7%

Table 5: Results for Task 1 (classification).

Rank Team Spearman’s ρ

1 X-PuDu 0.807
2 PALI 0.785
3 HW-TSC 0.774
4 Nowruz 0.707
5 niksss 0.252
6 Stanford MLab 0.194

Table 6: Results for Task 2 (ranking).

also outperform our BERT-based baseline, which
is a linear classification model based on the check-
point provided by the Transformer library (Wolf
et al., 2020) and fine-tuned on our training data.

6.1 Findings by Participants
In the following, we briefly summarize a couple of
findings by task participants. More details can be
found in the individual task description papers.

Different phenomena. The winning team, X-
PuDu, found that different hyperparameters worked
best depending on the phenomenon/extraction pat-
tern. Based on this finding, different individual
models were trained and combined in an ensemble.

Label distribution. Some teams, including Du-
luthNLP, noticed performance issues related to the
distribution of labels in the development data. As
a dedicated solution, DuluthNLP uses a decreased
weight for the NEUTRAL label in the loss function.

NEUTRAL label. Team JBNU-CCLab reported
that the NEUTRAL label is generally difficult to dis-
tinguish from other labels by different models. An
underlying problem could be that the label repre-
sents instances that are seen as somewhat plausible

Rank Team F1 (all) F1 (w/o N)

1 X-PuDu 0.689 0.773
2 HW-TSC 0.661 0.749
3 PALI 0.654 0.749
4 Nowruz 0.624 0.714
5 JBNU-CCLab 0.551 0.627
6 DuluthNLP 0.533 0.608
7 Stanford MLab 0.466 0.514
8 niksss 0.442 0.494

Table 7: Classification results with/without NEUTRAL.

Rank Team Accuracy (#P≥2)

1 X-PuDu 75.2%
2 HW-TSC 73.2%
3 PALI 72.6%
4 Nowruz 71.6%
5 JBNU-CCLab 63.6%
6 DuluthNLP 62.6%
7 Stanford MLab 54.8%
8 niksss 60.0%

Table 8: Results for identifying contexts with multiple
plausible fillers, based on individual model predictions.

by multiple annotators as well as instances that are
seen as plausible by some annotators and implausi-
ble by others (see Section 4).

Noisy data. Team HW-TSC found that isolated
training instances have the label NEUTRAL rather
than PLAUSIBLE, even though the respective filler
represents a human insertion (i.e., the filler can be
found in the final version of the text in wikiHow).
As the results of our human upper bound in Table 5
show, this is partly because the right label is some-
times not clear cut even for humans. We discuss
this aspect in more detail in the next section.

6.2 Additional Evaluations

We perform two additional evaluations to assess
the impact of the NEUTRAL label on system perfor-
mance and to investigate the possibility of identify-
ing whether multiple plausible clarifications exist
by aggregating the predictions regarding individual
clarifications.

Excluding NEUTRAL. For the evaluation without
the NEUTRAL label, we calculate micro-averaged
precision, recall and F1-scores for the two labels
PLAUSIBLE and IMPLAUSIBLE. The results in
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Correct #P≥2 Text Fillers

8 (all)

✓

Galette des rois—or “King Cake” in English—is traditionally
made to celebrate the ∅ of Epiphany. Especially popular in
France during the Christmas season, it is enjoyed elsewhere too.

✓ holidays ✓ Feast
? hours ? celebration
? proclamation

✗

Let the ∅ of shoes air dry. You can put them in front of a
dehumidifier, a fan, or an open window, but avoid putting them
in front of any type of heat source.

✓ pair ? pile
✗ shoes ✗ color
✗ end

0 (none)

✓

If you want a smoother surface, try a ∅ of paper with a
higher amount of grains, if you want a faster job but a rougher
surface try a paper with a lower amount of grains.

✓ thickness ✓ piece
? fabric ? product
✗ pile

✗

Your cucumber plant will also grow thin, light green shoots that
help the plant grasp onto a surface and grow vertically. These
∅ grow immediately next to the suckers.

✓ shoots ? fibers
? tendrils ? foliage
✗ bushes

Table 9: Examples of difficult and easy instances, selected based on how many systems classified them correctly.

terms of F1-score are shown in Table 7. The results
indicate that all systems perform substantially bet-
ter in the evaluation setting that ignores NEUTRAL

labels. The ranking is identical to the ranking in the
evaluation including all labels. Considering only
the PLAUSIBLE and IMPLAUSIBLE, Team X-PuDu
achieves the highest micro-averaged F1-score of
0.773. In the cases where their system predicts
a non-NEUTRAL label, it is correct in 72.7% of
cases (precision), and 82.5% of all non-NEUTRAL

instances in the data received the correct prediction
(recall).

Multiple clarifications. In our final evaluation,
we examine whether system predictions can also
be used to determine whether multiple plausible
clarifications for a given context exist. For this, we
consider the labels of each individual clarification
and compare system outputs and annotations in
terms of whether two or more clarifications for a
cloze and its context received the label PLAUSIBLE.
We show the result of this evaluation in terms of
accuracy for each team in Table 8. Apart from the
last two places, the teams rank in the same order
as in the other evaluations. The best performing
team, X-PuDu, correctly predicts whether two or
more plausible clarifications exist for 75.2% of all
cases. Table 9 shows examples that were correctly
classified by all or none of the systems.

7 Conclusion

In this paper, we presented the task, data, partici-
pating systems, and results of the shared task on
clarifying implicit and underspecified phrases in

instructional texts. Our motivation for this task was
to explore the possibility of testing different clarifi-
cations for plausibility. In particular, we were con-
cerned with the question of whether two or more
clarifications can be plausible and whether such
cases can be detected automatically. To create a
suitable dataset, we worked with and identified a
set of revisions with manual clarifications, auto-
matically generated possible alternatives, and then
collected human plausibility ratings.

In total, 21 users participated in our shared task.
We summarized the systems and results of 8 teams
that submitted descriptions of their systems. The
best systems from each group have in common
that they are based on Transformer architectures
or combine them in an ensemble. The best system
achieved 68.9% accuracy, only 10.5 percentage
points below a human upper bound. In additional
evaluations, we have shown that an accuracy of up
to 75.2% is achieved with respect to the detection
of multiple plausible clarifications.

The results show that the presented task is a
difficult one, but that many cases can already be
modeled well by current state-of-the-art methods.
There is further room for improvement with re-
spect to both the data set and models: with respect
to the data, it should be noted that the training set
with less than 20k instances is relatively small and
that there are many instances with a underspeci-
fied NEUTRAL label (36%). On the model side, we
found that the participating teams make comple-
mentary contributions that may allow for additional
improvements in combination.
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One shortcoming of the task as presented and
performed is that we only considered four forms
of clarifications related to referring expressions. In
addition, clarifications were assessed individually
and judgements by different annotators were aggre-
gated. In the long term, we believe that more forms
of clarifications as well as individual differences
regarding their plausibility need to be considered.
Finally, future work will have to investigate under
which circumstances multiple different clarifica-
tions are actually incompatible and can thus reveal
potential sources of misunderstanding.
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A Annotation Interface

The annotation interface for our crowdsourcing task
is depicted in Figure 1. Annotators see and have to
rate a single underlined clarification in its context.

Figure 1: Interface for collecting annotations.

B CodaLab Leaderboard

In the main part of the paper, we only list results
of participants who provided a description of their
system(s) for the shared task. Table 10 shows a
complete set of user names and results of the partic-
ipants in the CodaLab competition, including users
who did not submit a system description.

Team name User name acc. ρ

X-PuDu tt123 0.689 0.807
HW-TSC Yinglu_Li 0.661 0.774
− tiantaijian 0.661 0.763
− fanxiaoxing 0.656 −
PALI stce 0.654 0.785
− hudou 0.641 −
− huangwkk 0.631 0.774
Nowruz mohammadmahdinoori 0.624 0.707
JBNU-CCLab OrangeAvocado 0.614 −
− CitizenTano 0.595 −
− huawei_zhangmin 0.589 0.640
− parkwonjae 0.554 −
− lith 0.537 0.600
− ywzhang_cr 0.537 0.600
DuluthNLP Sakrah 0.533 −
Stanford MLab patrickliu2011 0.466 0.194
− Autism_PAFC 0.461 −
− SelinaIW 0.456 −
niksss niksss 0.442 0.252
− andrei.manea 0.418 -0.109
− tanigaki 0.395 0.415

Table 10: Oveview of results, including user submis-
sions without a shared task system description.
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