Dartmouth at SemEval-2022 Task 6: Detection of Sarcasm

Rishik Lad, Weicheng Ma, Soroush Vosoughi
Department of Computer Science, Dartmouth College
{rishik.lad.23,weicheng.ma.gr, soroush.vosoughi}@dartmouth.edu

Abstract

This paper introduces the result of Team Dart-
mouth’s experiments on each of the five sub-
tasks for the detection of sarcasm in En-
glish and Arabic tweets. This detection
was framed as a classification problem, and
our contributions are threefold: we devel-
oped an English binary classifier system with
RoBERTagasg, an Arabic binary classifier with
XLM-RoBERTagasg, and an English multil-
abel classifier with BERTgasg. Preprocessing
steps are taken with labeled input data prior to
tokenization, such as extracting and appending
verbs/adjectives or representative/significant
keywords to the end of an input tweet to help
the models better understand and generalize
sarcasm detection. We also discuss the results
of simple data augmentation techniques to im-
prove the quality of the given training dataset
as well as an alternative approach to the ques-
tion of multilabel sequence classification. Ul-
timately, our systems place us in the top 14
participants for each of the five subtasks.

1 Introduction

Sarcasm is a form of irony that occurs when there
is a discrepancy between the literal and intended
meanings of a text or utterance. This discrepancy
typically manifests itself in the form of dislike,
contempt, or derogation. Furthermore, sarcasm can
be divided into multiple types: general sarcasm,
irony, satire, understatement, overstatement, and
rhetorical question.

This task concerns itself with the detection of
sarcasm in online tweets (Abu Farha et al., 2022).
This is an important issue to solve because the na-
ture of sarcasm can interfere with the effectiveness
of natural language processing models, particularly
when conducting sentiment analysis, opinion min-
ing, or other emotion-based tasks. Machine learn-
ing models deployed for such business use cases

can be negatively impacted when processing sar-
castic texts and provide inaccurate results, thereby
harming an organization’s bottom line. Therefore,
it is critical that machine learning models be devel-
oped that can understand how to detect, ingest, and
truly understand sarcasm.

This paper discusses how to identify sarcastic
tweets in binary and multi-label classification con-
texts for both English and Arabic, as directed by
SemEval-2022 Task 6 (Abu Farha et al., 2022).
There are five subtasks: general sarcasm detection
in standalone English and Arabic tweets (Task A),
identification of sarcastic category in an English
tweet (Task B), and identification of the sarcastic
tweet in an English/Arabic pair of tweets (Task C).

Our experiments show that pre-trained trans-
former models demonstrate a strong ability of solv-
ing most of the subtasks of this challenge. Specif-
ically, we fine-tune a RoOBERTagasg model to de-
tect the presence of sarcasm in tweets for the En-
glish components of Tasks A and C. For the Ara-
bic version of Tasks A and C, we apply an XLM-
RoBERTagasg model. For Task B, which is framed
as a multilabel sequence classification problem,
after experimenting with several ROBERTa and
BERT models, we report the performance of a
BERTgAsg model which is fine-tuned to detect the
categories of sarcasm in English tweets, if any.

While these models perform reasonably well in
the evaluations, the imbalanced distributions of la-
bels and poor annotation quality for some instances
introduce unexpected noise to the fine-tuning pro-
cess of these models and harm their performance
in the evaluations. Despite our effort to augment
unrepresented classes in the training data, simple
data augmentation approaches do not show clear
positive effects on the models’ performance. More
advanced data augmentation methods could be tried
to trigger notable performance improvements on
the challenge test dataset.

912

Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 912 - 918
July 14-15, 2022 ©2022 Association for Computational Linguistics

2 Approaches

As mentioned above, there are three systems de-
signed for the five subtasks. We discuss the model
architecture, input processing, and other key ele-
ments for each of the systems below.

2.1 RoBERTa for Binary Classification

The English component for Tasks A and C require
us to distinguish whether a tweet is sarcastic, either
as a standalone text (Task A) or in comparison to
another tweet (Task C). Both of these tasks were
framed as binary classification problems and our
solution leveraged the RoOBERTa model (Figure 1)
from Facebook Al to achieve this by producing rich
feature representations from the inputs.

In particular, RoOBERTa builds upon the Bidirec-
tional Encoder Representations from Transform-
ers (BERT) by modifying some key hyperparame-
ters, training with much larger learning rates and
batches, and removing BERT’s next-sentence pre-
training objective (Liu et al., 2019). Critically, this
allows RoBERTa to improve on the masked lan-
guage modeling objective and allows for better
task performance down the road. The RoBERTa
base is composed of 12-layers, 768-hidden, 12 self-
attention heads, and 125M parameters.

Processing each input tweet first began with
changing sarcasm labels from 1 (sarcastic) to 0.8
and 0 (non-sarcastic) to 0.2, although the 0.2 was
eventually changed back to 0. This was to account
for random noise in the dataset and for training
examples that were of lesser quality than others.

The next step was tweet normalization: among
other things, this included replacing hyperlinks,
user tags, and emojis with a standardized token
("@QURL" for hyperlinks and "@QUSER" for user
tags, for example). Furthermore, contracted words
were separated out to extract the key token. This
was to ensure the model did not learn from random,
irrelevant noise found in hyperlinks or user tags.

Before passing each normalized tweet into the
tokenizer, however, we first extracted all verbs and
adjectives from the original tweet (Sequence A)
and strung them together with whitespace to create
a new string (Sequence B). In turn, those verbs and
adjectives were replaced with the <mask> token
in the original tweet. This was executed in an at-
tempt to help the model better learn the relationship
between a tweet’s sarcastic presence and any avail-
able verbs or adjectives in it. These two sequences
were then joined together with separator tag </ s>

913

and fed into the tokenizer as a single sequence.

Padding tokens were added to make each in-
put the same length for the ROBERTa model. The
maximum length used for this system was 256. Al-
though the longest string of tokens from the avail-
able training dataset was 111, we set it to 256 for
the sake of safety. This ensured that all tensor
inputs were set to equal the maximum sequence
length used for batched parallelized training. This
meant the ultimate input passed into the tokenizer
looked like Table 1, where <s> is the classifier
token, </ s> is the separator token, <pad> is the
padding token, Seg—A contains <mask> tokens
where its adjectives and verbs originally were, and
Seqg-B is a string of all verbs and adjectives from
the original tweet.

Input <s>Seg-A</s>Seg-B<pad><pad>

Table 1: A sample input for encoding.

A sequence classification head containing a lin-
ear layer was applied on top of the final hidden-
states output, with a label prediction of 1 denoting
a sarcastic tweet and O denoting a non-sarcastic
tweet. For standalone tweets (Task A), the thresh-
old to pass a tweet as sarcastic was set to 0.40,
where tweets with a score higher than that were
marked as sarcastic while those underneath this
threshold were not. For determining which of two
tweets is sarcastic (Task C), the tweet with the
highest absolute score, regardless of its relation to
a threshold, was marked as sarcastic.

Class
Label

RoBERTa
‘Em‘ E | | En ‘ Eisery ‘ E, ‘ ‘ Ew
B e S 1 e O e O S
foLs T1ok Tok [SEP] T:k T’ak
Sentence 1 Sentence 2

Figure 1: The RoBERTa model architecture.

2.2 XLM-RoBERTa for Binary Classification

The Arabic subtask for Tasks A and C require us
to distinguish whether a tweet is sarcastic, either
as a standalone text (Task A) or in comparison to
another tweet (Task C). We framed these as binary
classification problems and leveraged the XLM-
RoBERTagasg model, which is a multi-lingual ver-
sion of the ROBERTa model and is pre-trained on
2.5TB of filtered CommonCrawl data containing
100 languages (Conneau et al., 2019). It is com-
posed of 12-layers, 768 hidden, 8 self-attention
heads, and 125M parameters.

In preprocessing each input Arabic tweet, we
began by changing the sarcasm confidence labels
from 1 to 0.8. This was again executed to account
for random noise as well as subpar training data ex-
amples that did not encapsulate sarcastic qualities
nearly as well as others.

Regular tweet normalization does not apply to
Arabic. Certain qualities in the written form of
Arabic, such as diacritization, further complicate
this matter. The same word in two different dia-
critizations can have meanings that are seemingly
completely unrelated (Alkhatib, 2017). This in-
troduces difficulty in extracting the true semantic
meaning of a text in Arabic.

We therefore relied on CAMeL Tools, a Python
library designed for the Arabic language to execute
dediacritization and remove any non-essential com-
ponents from the input texts (Obeid et al., 2020).
Further normalization was also conducted with
functions from this specialized library, such as re-
moving orthographic ambiguity.

After processing input tweets, the technique of
extracting verbs and adjectives to form a secondary
sequence was utilized. As in the first approach,
the extracted verbs and adjectives were replaced
with <mask> tokens in the original input tweet,
and this was prepended to the secondary sequence
of verbs and adjectives using a </ s> separator to-
ken. This combined sequence was then fed into the
XLM-RoBERTz2’s tokenizer to be encoded. In this
particular case, a specialized part-of-speech tagger
was used from CAMeL Tools to identify and ex-
tract each input tweet’s set of verbs and adjectives.

During tokenization, padding tokens were added
to the right to make all the tensor inputs of uniform
length. Although the longest examined length of
any tweet was 143, we utilized 256 to account for
any unexpected inputs.

The final element of this system was a sequence

classification head containing a linear layer that
was applied on top of the final hidden-states output
with a label of 1 predicting sarcasm and a label of
0 predicting otherwise. For detection of sarcasm
in standalone Arabic tweets (Task A), those with
a score that exceeded our threshold of 0.40 were
marked as sarcastic while others were not. For de-
termining the sarcastic tweet in a pair of tweets
(Task C), the tweet with the highest absolute score,
regardless of whether it exceeded Task A’s thresh-
old of 0.40, was marked as sarcastic, while the
other tweet was not.

2.3 BERT Base for Multilabel Classification

Task B required us to distinguish which category
of sarcasm an English tweet belonged to, of which
there are six: general sarcasm, irony, satire, un-
derstatement, overstatement, and rhetorical ques-
tion. A tweet can belong to none, one, or multiple
categories. We framed this task as a multilabel
sequence classification problem and we leveraged
the BERTgasg model (see Figure 2 for a high-level
architecture visual). It is composed of 12-layers,
768-hidden, 12 self-attention heads, and 110M pa-
rameters (Devlin et al., 2018).

Multi Label _
Output => {

—

sarcasm, irony, satire, understatement,
overstatement, rhetorical question

(e [) - ()

BERT
'ﬁ_‘t/_\r . LB

G—

Sentence 1 Sentence 2

Figure 2: The BERT model architecture modified to
reflect multilabel output.

Each tweet was first normalized following the
steps outlined in the first approach. This included
”demojifying” any present emojis and standard-
izing any present hyperlinks and user tags with
"@URL" and "QUSER". Before feeding the tweet
into the tokenizer, however, we utilized an ap-
proach to improve the model’s understanding of
the keywords that might point towards a particular

914

Data Augmented Results Scores
Weighted Recall Weighted Precision Macro-F1 Score
Baseline (No Augmentation) 0.549 0.091 0.156
Category Duplication 0.642 0.089 0.156
Manual Sentence Generation 0.561 0.093 0.159
GPT-3 Sentence Generation 0.552 0.082 0.151

Table 2: A summary of the performance of data-augmented systems for multilabel classification. The highest
performing technique is bolded for weighted recall, weighted precision, and macro F1 score.

category of sarcasm. A TF-IDF vectorizer was used
to extract the 15 most significant and representative
keywords across sentences of each category. Then,
for each input training tweet, all the keywords as-
sociated with the categories of sarcasm the tweet
belonged to were strung together to create a sec-
ondary sequence (Sequence B) that was appended
to the original input tweet (Sequence A) and sep-
arated with a separator token (</s>). This com-
bined sequence was then fed into the BERTgasg
tokenizer as a whole. This was done in an attempt
to help the model be able to better seek out key
phrases and words that might indicate a tweet’s
categorization as sarcastic, ironic, satirical, etc.
After training the multilabel classifier and gener-
ating six predictions for a tweet’s likelihood of cat-
egorization in each of the six sarcastic categories,
the tweet would be marked as valid for a category
if its score was greater than 0.30. This was a rela-
tively low threshold that we felt was necessary to
account for the similarities across tweets belonging
to different categories of satire. Furthermore, we
needed to compensate for the lack of training data
in categories like satire, understatement, and over-
statement, which had 25, 10, and 40 training ex-
amples, respectively. By setting a lower threshold,
we are able to ensure that we are not prohibitively
preventing classifying any tweets as satire, under-
statement, overstatement, or any other category.

2.3.1 Data Augmentation

To support our efforts for multilabel classification,
we explored three data augmentation techniques.

Our first technique was simply duplicating the
satire, understatement, and overstatement cate-
gories to double the quantity of sentences in each of
those categories. This involved copying and pasting
each sentence back into the category to hopefully
strengthen the model’s understanding of sarcastic
keywords, phrases, and qualities. We observed no
meaningful improvement in results.

915

The second technique involved the manual gen-
eration of sentences to expand the dataset. As
mentioned before, a TF-IDF vectorizer was used
to extract the 15 most relevant and representative
keywords for sentences across each category. See
Figure 2 for some example keywords extracted
through this technique. Using basic sentence tem-
plates, new training data examples were created
with keywords for each satirical category being
substituted into various parts of each new train-
ing datapoint. 30-40 new training examples were
created for each of the satire, understatement, and
overstatement categories. However, this effort did
not yield meaningful or significant improvement in
results.

Sarcasm “just”, “like”, “really”
Understatement “good”, “’like”, ’sorta”
Overstatement “hate”, "’love”, "worst”

Table 3: A subset of keywords observed as the most
representative for sarcasm and under/over-statements
through a TF-IDF vectorizer.

A final technique involved utilizing GPT-3 for
generating new sentences. A prompt like ”Gener-
ate 10 sarcastic sentences” or “Create 15 rhetorical
questions” was provided to the model, however it
was observed that the produced sentences were par-
ticularly repetitive with little variance in structure
or style. The difference between most sentences
produced by the model was a simple substitution
in topic, object, or subject, especially as we asked
the model to produce an increasing number of new
sentences. A lack of training data to properly fine-
tune the GPT-3 model was likely an issue here, and
this technique was eventually dropped.

Results for each of these techniques are provided
in Table 2, with the highest performing technique
bolded for each metric. As observed, while most
techniques seemed to perform better than the base-

line, the improvements are marginal and unreliable.

2.3.2 Additional Techniques

It is worth noting that another system was explored
to conduct multilabel classification. Specifically,
we attempted to create 6 binary classifiers (one for
each category of sarcasm) with the intent of aggre-
gating results across all binary classifiers to mimic
a multilabel classifier’s output. This, however, was
complicated by the severe lack of training exam-
ples for some categories as well as issues with com-
putational capacity and consumption on Google
Colab Pro. This system was eventually dropped
in favor of a single multilabel classifier built with
BERTgAsE, as described earlier.

3 Experimental Setup

3.1 Dataset

The task provided two training data files, one for
English and another for Arabic. In each case, the
task organizers provided the sarcasm labels for
each tweet themselves. This avoided the need to
rely on existing proxies like predefined tags or third-
party labelers (Abu Farha et al., 2022).

Within the English training file, there are nine
pieces of information: the tweet, a 0/1 value for
the presence of sarcasm, a non-sarcastic rephrase of
that tweet, and a 0/ 1 value for each of the various
sarcasm subtypes (general sarcasm, irony, satire,
understatement, overstatement, and rhetorical ques-
tion). This dataset contained 3466 training exam-
ples, of which 866 were sarcastic and the remain-
ing 2600 were not. These 866 examples are further
split into multiple labels as follows: 713 for sar-
casm, 155 for irony, 25 for satire, 10 for understate-
ment, 40 for overstatement, and 101 for rhetorical
question. The underresourced nature of categories
like satire, understatement, and overstatement in-
troduced challenges for our multilabel classifier
system in extracting and understanding the key
characteristics belonging to those categories. It
is worth noting that data quality is, at times, ques-
tionable, with training examples such as "whoop
diddy scoop poop” adding random noise into an
already scarce dataset.

Within the Arabic training file, there are four
pieces of information: the tweet, a 0/1 value for
the presence of sarcasm, a non-sarcastic rephrase
of the tweet, and a dialect label for that particular
tweet (e.g. Nile, Maghreb). This training file con-
tained 3102 training examples, of which 745 were

sarcastic and the remaining 2357 were not.

3.2 Evaluation Metric

For both the English and Arabic binary classifi-
cation approaches, a confusion matrix was pro-
duced to determine accuracy, precision, recall, and
F-1 scores. For the multilabel classification task,
weighted precision/recall for each category as well
as macro F-1 scores were utilized.

3.3 Implementation Details

All three systems were developed with the PyTorch
framework, HuggingFace’s transformers library for
the BERT, RoBERTa, and XLLM-RoBERTa mod-
els, and Google Colab Pro using a single Tesla
P100-PCIE-16GB GPU. For Tasks A and C, the
English and Arabic binary classifiers trained for
those problems shared the same hyperparameters:
training and validation batch sizes of 16, a max-
imum sequence length of 256, 6 training epochs,
and an AdamW optimizer with a learning rate of
3e-5 and epsilon value of 1e-8. For Task B, the En-
glish multilabel classifier’s training policy utilized
the following hyperparameter values: training and
validation batch sizes of 16, a maximum sequence
length of 256, 4 training epochs, and an AdamW
optimizer with a learning rate of 1e-05 and epsilon
value of 1e-12. All other hyperparameter values
were set to their defaults according to the Hugging-
Face implementation. It should also be noted that
for all systems, a random seed was set for the sake
of reproducibility.

4 Experimental Results
Team Dartmouth received the following ranks:

» Task A (English): 13th place

Task A (Arabic): 9th place

Task B: 14th place

Task C (English): 12th place
* Task C (Arabic): 10th place

Table 4 on the following page displays a tabular
summary of all official scores received on each of
the five subtasks, which vary from accuracy and
precision to recall and macro F1 scores. As ob-
served, our best performing system for binary clas-
sification was the English classifier developed for
Task A, whereas our worst performing for binary

916

Binary Classification Tasks

Scores

F-1 Sarcastic F1-Score Precision Recall Accuracy
Task A (English) 0.386 0.635 0.625 0.648 0.804
Task A (Arabic) 0.350 0.529 0.581 0.665 0.597
Task C (English) - 0.659 - - 0.660
Task C (Arabic) - 0.679 - - 0.680
Multilabel Scores
Macro F1 F1-Sarcasm Fl-Irony F1-Satire FI1-Under F1-Over FI1-Rhet-Q
Task B 0.0590 0.2293 0.0202 0.0824 0.0000 0.0077 0.0143

Table 4: A tabular summarization of the performance of all three systems across all five subtasks, reporting various
metrics including accuracy, precision, recall, and regular/macro F-1 scores. Experiments revealed that further data

augmentation did not improve the scores of any system.

Confusion Matrix for
English Binary Classifier

-0.6

17.32%

False

-0.5

-0.4

-03

Predicted Values

7.07%

Tue

-0.2

-01
False

Actual Values

Figure 3: A confusion matrix of the English binary
classifier developed for Tasks A and C.

Confusion Matrix for
Arabic Binary Classifier

-0.7

-0.6
B.23%

False

-0.5

-0.4

-03

Predicted Values

387%

15.81% 02

Tue

-01

False

Actual Values

Figure 4: A confusion matrix of the Arabic binary clas-
sifier developed for Tasks A and C.

classification was the Arabic classifier also devel-
oped for Task A. For the multilabel classification
task, macro F-1 as well as weighted categorical
scores are provided.

Confusion matrices displaying our best develop-
ment metrics are provided in Figures 3 and 4. This
reveals insights into the relatively imbalanced split
of the training dataset, creating issues which were
further compounded by the overall small number
of training examples.

4.1 Case Study: Task A (English)

It’s worth exploring Task A (English) in greater
detail to understand the elements that factored into
our model’s scores. To begin, it should be noted
that certain inputs in the test dataset for this subtask
were sometimes single tweets like “Followed” or
”Pinball!”, while other tweets were random noise,
such as the following:

”20:00 GMT:

Temp: 13.7°C,

Wind: SSW, 3 mph (ave), 8 mph (gust),
Humidity: 92

Rain (hourly) 0.0 mm,

Pressure: 1017 hPa, rising slowly.”

The prevalence of random noise such as the
above in the test set can make it somewhat chal-
lenging for the model at hand to be able to relate
the test input to what it has learned. There’s very
little context to learn from in one-word tweets like
the ones mentioned, and this may bias the model to-
wards marking such tweets as non-sarcastic, when
in reality they may be sarcastic (e.g. perhaps the
one-word tweet was a sarcastic remark towards an-
other tweet). Granted, this is the nature of text in

917

short-form online social forums like Twitter, but
it does contribute to a concrete decrease in model
performance.

Furthermore, our technique of masking verbs
and adjectives in the original tweet while simul-
taneously stringing those verbs and adjectives to-
gether into a second sequence to be fed into the
tokenizer alongside the tweet input may have over-
fit the model towards certain words and phrases
from the training dataset. While this may have
been helpful in identifying sarcastic tweets which
did include those words, it may also have caused
the model to overlook other sarcastic sentences that
did not include them in the test dataset.

As such, random noise, poor quality, and cer-
tain learning techniques may have been factors in
contributing to the scores received by our binary
and multilabel classification systems. The same
observations apply to Tasks A and C in Arabic as
well as Task B. In particular, our technique of ex-
tracting and appending the top 15 words for each
category a tweet belongs to may have inadvertently
overfit the model to overlook other textual signals
that indicate a tweet’s sarcastic categorization in
preference for certain words and phrases.

5 Conclusion and Future Work

In this paper, we have described three binary and
multilabel sequence classification systems using
the BERT, RoBERTa, and XLM-RoBERTa ar-
chitectures from HuggingFace for the detection
of sarcasm in English and Arabic tweets. We
found that additional work to augment the train-
ing data with duplication of sentences and manu-
ally/automatically synthesizing new sarcastic sen-
tences did not improve the results of the model.
Furthermore, challenges were observed with the
multilabel classifier in learning to extract the key
characteristics that categorize a tweet as a distinct
example of satire, understatement, or overstatement
— categories which were generally underresourced
in the training dataset.

Further investigation could include implement-
ing six binary classifiers instead of a single multil-
abel sequence classifier for Task B. Given enough
training time, data, and resources, it could certainly
be the case that aggregating results across special-
ized binary classifiers provide more concrete re-
sults than what has been produced. In particular,
this may allow each of the binary classifiers to more
deeply learn the unique characteristics, keywords,

918

and structure of the sarcastic sentences it ingests.

It would also be interesting to see how the re-
sults across all three systems change with sufficient
training data, with perhaps tens of thousands of
more valid examples that can allow the models to
truly capture the essence of sarcasm across a wide
and varied set of training examples.

6 Acknowledgements

Rishik Lad is grateful to be supported by the James
O. Freedman Presidential Scholars program at Dart-
mouth College.

References

Ibrahim Abu Farha, Silviu Oprea, Steven Wilson, and
Walid Magdy. 2022. SemEval-2022 Task 6: iSar-
casmEval, Intended Sarcasm Detection in English
and Arabic. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Manar Alkhatib. 2017. Challenges in Arabic Natural
Language Processing.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
CAMeL tools: An open source python toolkit for Ara-
bic natural language processing. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 7022-7032, Marseille, France. European
Language Resources Association.

(Liu et al.,, 2019) (Conneau et al., 2019)
(Abu Farha et al., 2022) (Obeid et al., 2020)
(Alkhatib, 2017) (Devlin et al., 2018)

http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/2020.lrec-1.868
https://www.aclweb.org/anthology/2020.lrec-1.868

