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Abstract

Recently introduced transformer-based article
encoders (TAEs) designed to produce similar
vector representations for mutually related sci-
entific articles have demonstrated strong per-
formance on benchmark datasets for scientific
article recommendation. However, the exist-
ing benchmark datasets are predominantly fo-
cused on single domains and, in some cases,
contain easy negatives in small candidate pools.
Evaluating representations on such benchmarks
might obscure the realistic performance of
TAEs in setups with thousands of articles in
candidate pools. In this work, we evaluate
TAEs on large benchmarks with more challeng-
ing candidate pools. We compare the perfor-
mance of TAEs with a lexical retrieval baseline
model BM25 on the task of citation recom-
mendation, where the model produces a list
of recommendations for citing in a given in-
put article. We find out that BM25 is still
very competitive with the state-of-the-art neu-
ral retrievers, a finding which is surprising
given the strong performance of TAEs on small
benchmarks. As a remedy for the limita-
tions of the existing benchmarks, we propose
a new benchmark dataset for evaluating sci-
entific article representations: Multi-Domain
Citation Recommendation dataset (MDCR),
which covers different scientific fields and con-
tains challenging candidate pools.

1 Introduction

The introduction of large pre-trained language mod-
els (LMs) (Devlin et al., 2019; Radford et al., 2019;
Lewis et al., 2020; Raffel et al., 2020) based on
the transformer architecture (Vaswani et al., 2017)
has improved performance on numerous NLP tasks.
The adaptation of LMs to scientific corpora (Belt-
agy et al., 2019; Luu et al., 2021; Gupta et al., 2022;
Lee et al., 2020) laid the foundation for applying
transformer-based LMs to various scholarly docu-
ment processing (SDP) tasks, such as named-entity
recognition (Naseem et al., 2020), article summa-

rization (Cai et al., 2022), scientific fact-checking
(Wadden et al., 2020), describing relationships be-
tween articles (Luu et al., 2021), and citation rec-
ommendation (CR) (Nogueira et al., 2020; Gu et al.,
2022), among others.

While some of the SDP tasks rely on word- or
sentence-level representations, others, such as CR
and article summarization, require document-level
representations. To obtain such representations, re-
cent work has proposed various transformer-based
article encoders (TAEs), i.e., LMs that are finetuned
using citation or co-citation information as a train-
ing signal, such as SPECTER (Cohan et al., 2020),
ASPIRE (Mysore et al., 2021a), and SciNCL (Os-
tendorff et al., 2022). Representations obtained
with these models can then be used in various
downstream recommendation tasks where a user
searches for articles that are in some way relevant
to a given query article.

To date, article representations obtained with
TAEs have been evaluated against recommenda-
tion benchmarks such as SCIDOCS (Cohan et al.,
2020), RELISH, (Brown et al., 2019) or TREC-
COVID (Voorhees et al., 2021). While SCIDOCS

focuses mainly on the field of computer science,
RELISH and TRECCOVID cover articles from the
biomedical field. These benchmarks contain a set
of query articles, where each query is paired with
a candidate pool consisting of both relevant and
irrelevant articles for that query. The difference be-
tween the benchmarks, apart from the domains they
cover, is how the candidate pools are constructed:
RELISH and TRECCOVID contain expert-annotated
relevance labels for each candidate in a pool, while
SCIDOCS uses random sampling of negative can-
didates for pool construction. However, they all
contain relatively small candidate pools (e.g., 25
in SCIDOCS). Such small and, in some cases, ran-
domly sampled candidate pools do not resemble
typical use-case scenarios in which query articles
are compared to millions of candidate articles from
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public databases. Thus, evaluating TAEs on such
benchmarks can lead to an overly optimistic per-
formance estimation as the candidate pool does not
constitute a representative sample of the population
of candidate articles in realistic use cases.

In this work, we turn to a more realistic evalua-
tion of TAEs and evaluate them on large (≥200k)
candidate pools and across different scientific fields.
Although emulating such a realistic setup has so far
been avoided due to the prohibitive computational
cost of nearest neighbor search on millions of em-
beddings, research on GPU-based nearest neighbor
(NN) search (Johnson et al., 2019) has given rise to
efficient techniques that enable embedding-based
search in large-scale setups. To make use of fast
NN search, we focus on the bi-encoder models
(Lin et al., 2021), that can be easily coupled with
fast GPU-based NN search. We evaluate TAEs
on the task of CR, in which a model outputs a
list of articles as recommendations for citing in a
given article. Alongside TAEs, we evaluate the tra-
ditional lexical retrieval model BM25 (Robertson
and Walker, 1994), which, in spite of its simplic-
ity, still stands as a hard-to-beat baseline in many
retrieval tasks. Our evaluation shows that BM25
performs on par with TAEs in this setup, especially
as candidate pools grow.

Building on the results of our large-scale evalua-
tion of TAEs, we then construct a new benchmark
dataset for evaluating scientific article representa-
tions on the task of CR. Our Multi-Domain CR-
based benchmark dataset (MDCR), albeit compara-
ble in size to previous benchmarks, spans different
scientific fields and consists of challenging can-
didate pools. More precisely, candidate pools in
MDCR contain different candidate types, ranging
from those obtained from the large-scale evalua-
tion of state-of-the-art TAEs to candidates from the
citation graph neighborhood.

To summarize, the contribution of our work is
twofold: (1) we conduct a large-scale evaluation of
state-of-the-art TAEs on pools of varying sizes, and
(2) present a new and challenging multi-domain
benchmark dataset for evaluating scientific arti-
cle representations that contains challenging candi-
dates identified in the large-scale evaluation.1

The rest of the paper is organized as follows.
In Section 2, we describe the models we evaluate
and give an overview of the existing benchmarks

1Our code, the data splits and the new benchmark data are
publicly available at the following link: https://github.
com/zoranmedic/mdcr.

for scientific article recommendation. Section 3
presents the results of a large-scale evaluation of
TAEs and BM25 in two evaluation setups. In Sec-
tion 4 we describe the construction of a new and
more challenging multi-domain benchmark and
present the initial results for the models we consid-
ered. Section 5 concludes the paper and proposes
future work.

2 Models and Benchmarks

2.1 Transformer-based Article Encoders

As a baseline TAE, we consider SCIBERT (Belt-
agy et al., 2019), a variant of BERT (Devlin et al.,
2019), trained on a corpus of scientific articles with
masked language modeling objective. Next, we
include SPECTER (Cohan et al., 2020), a SCIB-
ERT-based TAE trained with a contrastive learning
objective that minimizes the L2 distance between
embeddings of citing-cited article pairs. Further,
we consider SCINCL (Ostendorff et al., 2022),
another SCIBERT-based TAE that uses citation
graph embeddings for a more informative selection
of negative examples with the same contrastive
learning objective as SPECTER. Finally, we also
evaluate ASPIRE (Mysore et al., 2021a), a TAE
that uses a co-citation signal to make sentence em-
beddings of co-cited articles similar.

Among these four TAEs, only SCIBERT is
trained without any inter-article (i.e., citation or
co-citation) training signal. We thus consider it as
a baseline to investigate how well LMs pre-trained
on domain’s corpora can be used in retrieval sce-
narios without any finetuning. On the other hand,
the rest of the TAEs differ both in the type of inter-
article training signal used (co-citation for ASPIRE

vs. citation for SPECTER and SCINCL) and in the
granularity of representation used for article match-
ing (sentence embeddings for ASPIRE vs. docu-
ment embeddings for SPECTER and SCINCL). All
the considered TAEs are bi-encoders (Lin et al.,
2021), i.e., they produce dense representations of a
single input article, which allows them to be easily
employed in large-scale setups when coupled with
fast nearest neighbor search methods. The alterna-
tive are the cross-encoders, which take two concate-
nated articles as the input and output the relevance
matching score. Although the cross-encoders often
outperform bi-encoders, we do not consider them
here as they are not compatible with nearest neigh-
bor search methods and therefore not suitable for

https://github.com/zoranmedic/mdcr
https://github.com/zoranmedic/mdcr
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large-scale retrieval. 2

All the considered TAEs produce scientific ar-
ticle representations using the article’s title and
abstract as input. Since the title and abstract serve
as a condensed overview of an article, it is clear
that not all possible relationships between a pair of
articles can be detected using such input only. How-
ever, we consider the title and abstract a reliable
proxy for otherwise complex and computationally
expensive processing of the whole article’s content.

2.2 Existing Benchmarks

Scientific article recommendation benchmarks that
TAEs were evaluated on so far were designed for
domain-specific retrieval evaluation across small-
sized and, in some cases, randomly sampled can-
didate pools. Each benchmark consists of a set of
queries, where each query (title and abstract or a
free-form text) is paired with a corresponding can-
didate pool, i.e., a set of query-relevant (positive)
and query-irrelevant (negative candidates) articles.
We review the most commonly used benchmarks
below.

SCIDOCS (Cohan et al., 2020): A collection of
datasets for the evaluation of classification and
retrieval tasks that use abstract-level article
representations. In retrieval tasks, each query
article is paired with a candidate pool of 5
positive and 25 randomly sampled negative
candidates.

RELISH (Brown et al., 2019): A collection of
query and candidate articles expert-annotated
for relevance. Query articles are from the field
of biomedicine, each paired with a set of 60
candidates.

TRECCOVID (Voorhees et al., 2021): A TREC-
style benchmark consisting of various queries
related to COVID-19. Each query is paired
with around 300 candidate articles annotated
for relevance by medical experts.

CSFCUBE (Mysore et al., 2021b): An expert-
annotated dataset of 50 computer science ar-
ticles annotated at sentence-level for aspect-
based relevance with candidate articles. The
average candidate pool size is 125.

2We thus only consider TS-ASPIRE model in our work and
leave out OT-ASPIRE, a variant that uses optimal transport
over sentence embeddings, whose computational complexity
prohibits its use in large-scale retrieval scenarios.

Three of these benchmarks (RELISH, TREC-
COVID, CSFCUBE) are single-domain by design,
while SCIDOCS is constructed with queries from
different scientific fields. However, the majority of
SCIDOCS queries (over 70%) come from a single
domain (computer science), making it a predomi-
nantly computer science-oriented benchmark.

Existing benchmarks also differ in how the can-
didate pools in each of them were constructed.
While RELISH, TRECCOVID, and CSFCUBE con-
tain expert-annotated candidate pools, meaning that
field experts annotated the relevance of each can-
didate to the query, candidate pools for retrieval
tasks in SCIDOCS are made of negative candidates
randomly sampled from a set of articles that are
not related to the query. For example, in the case
of the “Cite” task in SCIDOCS, each query article
is paired with a pool of 5 articles cited in the query,
and 25 negative candidates are randomly sampled
from a held-out set of articles not cited in the query
article. An obvious advantage of random candidate
pools over expert-annotated pools is that they are
less expensive to construct. However, a downside
is that random candidate pools might contain many
candidates that are entirely unrelated to the query
and lead to overly optimistic performance estimates
that are not representative of realistic large-scale
retrieval scenarios.

3 Large-Scale Evaluation

We performed the large-scale evaluation in two se-
tups: dataset- and field-level. Dataset-level evalua-
tion resembles a basic evaluation setup – a random
sampling of both queries and articles in the can-
didate pool. The field-level evaluation focuses on
specific scientific fields using queries and candidate
pools comprised of articles from specific fields.

In both setups, we evaluated the chosen mod-
els on the task of global CR, in which a model is
trained to produce a list of articles as recommenda-
tions for citing in a given query article. Although
CR is not the only task on which TAEs can be
evaluated, it is arguably the most accessible among
the article retrieving tasks. Whereas other tasks
(e.g., user activity tasks) might require data that
is typically not publicly available (e.g., search en-
gine logs), CR datasets are easily obtained through
parsing reference lists of publicly available articles.
Previous research on global CR has proposed many
features that could be used to represent the input
articles (Bhagavatula et al., 2018; Ali et al., 2021).
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However, in this work, we only use the article’s
title and abstract as input, as our focus is not on im-
proving the state-of-the-art in global CR but rather
on evaluating the TAE-produced article representa-
tions in a retrieval scenario. For a detailed overview
of the various tasks and methods in CR, we refer
the reader to (Medić and Šnajder, 2020).

For each TAE that we consider, the input was
constructed by concatenating the input article’s ti-
tle and abstract (separated with a [SEP] token).
For SCIBERT, SPECTER, and SCINCL, we used
the final layer’s [CLS] token embedding as input
article’s representation, while for ASPIRE we mean-
pooled token embeddings across all layers for each
sentence in the input. We used HuggingFace’s3 im-
plementations of TAEs, while for BM25 we used
Lucene’s implementation, i.e., its Python toolkit
pyserini.4 For nearest neighbor search across
article embeddings, we used Faiss (Johnson et al.,
2019).5

We used the S2ORC dataset (Lo et al., 2020)
in all our experiments. S2ORC is a recently re-
leased large dataset of 81.1M scientific articles cov-
ering dozens of scientific fields. Together with the
metadata and article’s title and abstract, the dataset
contains citation links between the articles. There-
fore, we consider it appropriate for the large-scale
evaluation, not just due to its size and coverage
but recency as well. We perform initial filtering of
articles and remove all those with (1) empty publi-
cation year field, (2) empty title field, (3) abstract
shorter than 30 characters, or (4) less than three
citations in S2ORC. This filtering leaves us with a
prefiltered set of around 16M articles that we use
for both sampling of queries and candidate pool
construction in both evaluation setups.

For both evaluation setups, we report the stan-
dard metrics used in prior work on scientific article
recommendation: MAP, NDCG, and R@30. We
set k in R@k to 30, since on average there are 29
positives (cited articles) for each query in the query
set. All metrics range from 0 to 1, where higher
is better. Although defined differently, all the met-
rics yield higher values when relevant articles are
positioned higher in the list of retrieved articles.

3https://github.com/huggingface/
transformers

4https://github.com/castorini/pyserini
5https://github.com/facebookresearch/

faiss

3.1 Dataset-level

We start by describing the dataset-level setup in
which we evaluated how TAEs perform when asked
to provide recommendations over a large candidate
pool for random queries from S2ORC.

First, we sampled a random set of 3800 query
articles6 from the prefiltered set of articles. We left
out the query articles used in the training sets of
SPECTER and SCINCL.7 Next, we sampled candi-
date pools of various sizes: 200k, 500k, 1M, and
2M. Each candidate pool contained all the articles
cited in the query articles, while the remaining
candidates were randomly sampled from the pre-
filtered set. To make the setup more realistic, we
considered the publication years of both query and
candidate articles: queries were sampled from the
articles published in 2019, while candidate articles’
year of publication was 2019 or earlier. Year-based
sampling ensures that no article published after
the query article can be recommended for citing
in that article. Although such year-based sampling
still allows for the articles published after the cit-
ing (later in 2019) to be included as candidates, it
reduces such possibility compared to other bench-
marks (e.g., SCIDOCS) that do not account for it.8

For each candidate pool size, we repeat the pool
sampling procedure three times and report the mean
values of the metrics.

Dataset-level results are given in Table 1. We
retrieved the top 500 ranked candidates for each
model and reported MAP, NDCG, and recall at 30
averaged over three runs for each pool size. For
ASPIRE, we used its “BioMed” variant, i.e., the one
trained on articles from the biomedicine field.9 We
optimized BM25’s parameters b and k1 on separate
validation sets constructed in the same way as test
sets. A detailed description of the BM25 formula
and the role of the two parameters is given in the
Appendix A.

We observe that the best performing model on
the pool sizes of 200k and 500k is SCINCL, with

6In field-level setup, we sampled 200 queries for each of
the 19 MAG fields. To keep the total number of queries the
same over both setups, we sampled 3800 total queries in the
dataset-level setup as well.

7At the time of writing, ASPIRE’s training set was not
publicly available, so we did not account for that overlap.

8Since S2ORC only provides publication years (and not
the dates) for articles it contains, filtering can at most be
year-based. Additionally, excluding from the candidate pools
articles that were published in the same year as the citing
would considerably reduce the pool size in some fields.

9The other available ASPIRE model, trained on computer
science articles, obtained worse results.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/castorini/pyserini
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
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Pool sizes → 200k 500k 1M 2M

Models ↓ MAP NDCG R@30 MAP NDCG R@30 MAP NDCG R@30 MAP NDCG R@30

BM25 40.4 73.8 43.0 32.8 68.9 36.4 27.4 64.9 31.6 22.5 60.8 26.9
SCIBERT 5.5 40.3 5.6 4.6 38.5 3.9 4.1 37.3 3.0 3.8 36.5 2.2
SPECTER 37.4 72.0 40.9 29.5 66.5 33.9 24.1 62.1 28.7 19.2 57.8 23.8
SCINCL 42.5 75.2 45.2 33.4 69.3 37.6 27.1 64.6 31.9 21.6 60.0 26.5
ASPIRE-BM 41.4 74.7 43.3 32.6 68.9 35.9 25.7 63.5 30.5 20.4 59.0 25.2

Table 1: Results on different pool sizes in the dataset-level setup for BM25 and three considered TAEs. Values in
bold indicate the best-performing model for a combination of pool size and metric.

ASPIRE and BM25 not far behind. However, with
larger pool sizes of 1M and 2M, BM25 performs
better than TAEs for most metrics (except R@30 in
the 1M pool, where SCINCL outperforms BM25).
Given the slight difference in performance between
BM25 and SCINCL, our results demonstrate that
traditional lexical retrieval is still very competitive
in large-scale retrieval scenarios. These results are
in line with those of (Reimers and Gurevych, 2021),
who also compared the performance of sparse and
dense retrieval models on varying pool sizes and
found that the performance of the dense retrieval
models decreases quicker for the increasing pool
sizes compared to sparse methods. Looking at dif-
ferences between TAEs, the results show clear ben-
efits of finetuning TAEs with inter-article training
signal – both SPECTER and SCINCL outperform
SCIBERT.

We also observed a significant drop in perfor-
mance for all the evaluated TAEs compared to their
performance on the “Cite” task in SCIDOCS (re-
sults on SCIDOCS are given in Appendix A). For
example, MAP for SCIBERT in the “Cite” task of
SCIDOCS was 48.3 (Cohan et al., 2020), while in
a large-scale setup, it ranges from 5.5 in the case
of 200k pool size to 3.8 with a 2M pool size. This
difference supports our hypothesis that small-scale
evaluation is not indicative of the performance of
a model in a realistic, large-scale setup. However,
our large-scale evaluation results are consistent
with some other findings from the evaluation on
SCIDOCS, as reported in (Ostendorff et al., 2022):
SCINCL’s careful sampling of negatives for the
training set leads to a clear improvement in re-
trieval performance, with SCINCL outperforming
SPECTER for all candidate pool sizes.

3.2 Field-level

In the field-level evaluation, we evaluate TAEs on
a set of queries and candidate pools from specific
scientific fields. Such an evaluation setup resem-

bles a more realistic and also more challenging
large-scale retrieval scenario: in a real-world ap-
plication, given a query article as input, a retrieval
model is expected to detect the query article’s field
and narrow the candidate pool to articles from that
field.

To determine the article’s field, we used Mi-
crosoft Academic Graph (MAG) labels provided in
S2ORC. We sampled 200 query articles for each
of the 19 distinct MAG fields from S2ORC. As in
the dataset-level setup, we used year-based splits
and sample query articles published in 2019. Next,
for each scientific field, we constructed a candidate
pool of size 100k that contains all the articles cited
in the query articles alongside field-specific nega-
tive candidates. To obtain field-specific negative
candidates, we randomly sampled the remaining
pool articles (up to 100k) from a set of field-cited
articles, i.e., a set of articles cited in all S2ORC
articles labeled with a specific MAG field. For ex-
ample, when sampling negative candidates for the
Medicine field, we first filtered all articles labeled
with Medicine in their S2ORC’s MAG field. We
then went through all the articles that they cite and
included those in the newly created set of field-cited
articles, from which we then sampled negative can-
didates. As in dataset-level evaluation, we repeat
the candidate sampling procedure three times for all
the fields where the field-cited article set is larger
than 100k (all except Art, History, and Philosophy)
and report the mean values of the metrics.

Field-level results in terms of MAP are shown in
Table 2 (the NDCG and R@30 results are included
in Appendix A; the best performing models are
the same in all cases except R@30 for the Bio
field). As with dataset-level evaluation, we retrieve
the top 500 candidates and report results on these
sets. In this setup, we also include ASPIRE-CS,
i.e., ASPIRE variant trained on computer science
articles.

BM25 achieves the highest mean MAP across
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Art Bio Bus Ch CS Eco Eng ES Geog Geol His MS Mat Med Phi Phy PS Psy Soc AVG

BM25 36.1 44.3 21.2 42.6 35.6 26.4 34.2 27.5 29.2 32.1 32.8 34.9 35.6 46.3 25.0 35.8 21.2 31.9 17.7 32.1
SCIBERT 6.2 6.7 3.2 6.7 4.2 4.7 4.6 4.8 4.8 4.7 5.3 4.4 4.9 5.4 3.5 5.5 2.8 5.0 3.0 4.8
SPECTER 25.1 37.0 18.0 35.4 33.7 22.6 28.5 22.6 20.1 20.3 17.4 29.0 31.5 48.6 16.2 27.5 14.4 32.0 14.3 26.0
SCINCL 26.9 42.2 18.7 39.6 37.8 23.4 31.5 25.5 23.7 22.7 20.7 30.9 33.5 52.4 18.7 31.4 16.5 34.1 15.7 28.7
ASPIRE-BM 26.8 44.7 19.3 39.9 35.3 24.3 29.7 24.5 23.3 22.9 20.1 29.8 33.1 52.1 17.2 30.0 15.9 33.1 14.3 28.2
ASPIRE-CS 25.8 37.1 20.0 34.9 35.8 23.5 30.2 21.9 21.7 20.1 18.4 27.5 34.2 46.5 17.1 29.0 15.3 32.7 15.7 26.7

Table 2: Results in terms of MAP in the “field-level” evaluation setup. Values in bold indicate the best performing
model per field. Table with field-abbreviation mapping is given in Table 5 in Appendix A.

all fields, again demonstrating the robust perfor-
mance of lexical retrieval. SCINCL performs
close to BM25, performing best on CS, Med, and
Psy fields. While SCINCL’s strong performance
in CS and Med fields could be explained by a
high percentage of SCINCL training queries from
those fields (∼16% and ∼25.3% of SCINCL train
queries come from Med and CS fields, respec-
tively), a high MAP value in Psy field is unex-
pected given the small percentage of Psy queries
in SCINCL’s train set (∼4.1%). Analyzing per-
formance across fields, models perform quite well
in some fields (e.g., Med and Bio) and worse in
others (e.g., Soc, Bus, PS). Regarding these dif-
ferences, we note that training sets of most of the
TAEs (SPECTER, SCINCL, ASPIRE-BM) have a
highly skewed distribution toward Med, Bio, and
CS fields. However, another possible explanation
might be the different levels of interdisciplinarity
in particular fields, which could lead to a richer
vocabulary than in mono-disciplinary fields. We
leave the investigation of the performance across
fields for future work.

Comparing TAEs between each other sup-
ports our dataset-level results: SCINCL performs
slightly better than ASPIRE (BM), but both outper-
form SPECTER, which in turn surpasses SCIBERT.
Just as in dataset-level evaluation, this ordering
is expected given the differences in the training
objectives and the training signal used. When com-
paring different TAEs across fields, we observe that
ASPIRE performs especially well in the fields on
which it was originally trained: ASPIRE-BM out-
performed other TAEs in Bio and Ch fields, which
shows that field-specific sentence-level encoders
might be more successful than other TAEs for other
fields as well. Field-level evaluation results also
confirm the need for large-scale evaluation of TAEs
– their performance is again much worse than in
small-scale benchmark evaluation scenarios, such
as SCIDOCS.

To sum up, both of our setups demonstrated (1)
a strong performance of a lexical retrieval model
BM25, which either surpassed (field-level) or per-
formed competitively to TAEs (dataset-level) in
large-scale evaluation scenarios, and (2) a large de-
crease in performance of all the evaluated TAEs
compared to previous small-scale benchmark se-
tups (SCIDOCS). Although we argue that large-
scale evaluation is mandatory for more realistic per-
formance estimates, we also recognize the benefits
of standardized evaluation benchmarks as they en-
able the research community to track the improve-
ment on a task easily. However, even when evalua-
tion is not performed on a large scale, we argue that
to keep the benchmark-obtained performance esti-
mation as realistic as possible, small benchmarks
should contain realistic candidate pools with chal-
lenging negatives. With this in mind, in the next
section, we describe the construction of a small
but more realistic benchmark for evaluating article
representations.

4 Multi-Domain Citation
Recommendation Benchmark

We now present our newly constructed Multi-
Domain Citation Recommendation benchmark –
MDCR. As queries in MDCR, we use the same
200 queries per field as in the field-level evaluation
setup (§3.2). For the candidate pools, we start with
a random sampling of 5 articles cited in the query
article and then select negative candidates.

4.1 Benchmark Construction

To construct challenging candidate pools, we used
four different candidate selection strategies: (1)
model-based, (2) graph neighbors-based, (3) cita-
tion count-based, and (4) random selection. Each
candidate strategy produces different candidate
types that can be used for a more detailed eval-
uation of the model’s performance. We outline the
selection strategies below.
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Model-based selection. This strategy aims to
capture difficult candidates for the models eval-
uated in the large-scale setup. As these candi-
dates are difficult for current models, we expect
at least some of these candidates to be challeng-
ing for some of the future models. Brown et al.
(2019) used a similar method for candidate pool
construction in RELISH, where candidates were se-
lected using three different retrieval models and
then annotated for relevance by the field experts.
In MDCR, we do not provide expert-level annota-
tions for candidates but instead, rely on citations as
proxy signals for relevance.

We started with compiling lists of the top 200
candidates per query obtained with each model on
the candidate pool from the field-level setup. As
we evaluate models that are both trained and used
differently, it is reasonable to expect each model to
have difficulties with different negative candidates.
With this in mind, we intended to select those can-
didates that are difficult for different models. To
determine the degree to which the models’ top can-
didates overlap, we calculated the average Jaccard
index between the highest-ranked negative candi-
dates of different model pairs. The models that
obtained a low average Jaccard index tend to make
different mistakes (i.e., rank different negative can-
didates highly) than other models. We chose the
three models with the lowest average Jaccard index
for selecting negative candidates in this strategy:
BM25, SCINCL, and SPECTER. For each query
and each of the three selected models, we randomly
sampled ten negative candidates from the top 200
highest ranked candidates by the model and added
them to the query’s candidate pool. We call these
candidate types BM25, SPECTER, and SciNCL
for candidates obtained from the respective mod-
els.

Graph neighbors-based selection. Research on
citation-seeking behavior states that scientists of-
ten traverse citation graphs to find articles rele-
vant to their needs (Belter, 2016; Hinde and Spack-
man, 2015). This suggests that challenging articles
should be sampled from the same source, i.e., from
a set of articles that either cite or are cited in the
articles relevant to the query.

To include such candidates in our pools, we
employed the following procedure over the cita-
tion graph. Let q be a query article and OCq =
{c1, ..., cn} a set of articles that are cited in q
(i.e., outgoing citations). For each ci ∈ OCq ,

we constructed corresponding OCci and ICci =
{i1, ..., im} sets, where ij represents an article that
cites ci (i.e., incoming citations). Using such sets,
we calculated the overlap similarity as Oq,ci =
|OCq ∩ (OCci ∪ ICci )|/|OCq |, which represents
the similarity between q’s outgoing citations and
ci’s incoming and outgoing citations. The high
Oq,ci value suggests a considerable overlap in ci-
tation links between q and ci, which indicates that
these articles are highly topically related.

We calculated Oq,ci for all the query articles and
their cited articles. We then sorted the cited arti-
cles by their Oq,ci values, starting from the highest
(highly topically relevant) to the lowest (slightly
topically related). Since we wanted to make our
candidate pool challenging, we started with the
ci that has the highest Oq,ci value and added to
the query’s candidate pool all the articles from its
OCci ∪ ICci set that are not in OCq (i.e., cited in
the query article). We repeated this procedure until
ten negative candidates were added to the pool. We
call this candidate type Graph.

Citation count-based selection. In this selection
strategy, we created a list of the top 200 most cited
articles in each scientific field. We used S2ORC’s
MAG field to detect articles from each field and
sorted them by the citation counts in descending
order. We then randomly sampled ten candidate
articles for each query article based on the query
article’s MAG field and added these articles to the
candidate pool. This type of candidates is called
Most cited.

Random selection. Finally, as a less challenging
and baseline candidate set, we settled for a random
selection strategy, where we randomly sampled
ten candidates from the prefiltered set of S2ORC
articles. We call this candidate type Random.

4.2 Benchmark Size
Overall, MDCR contains 200 queries per each of
the 19 MAG fields, where each query is paired
with a set of 60 negative candidates and five cited
articles, totalling 247,000 query-candidate pairs
that need to be evaluated. Compared to SCIDOCS,
where 1,000 queries are paired with candidate pools
of size 25 (a total of 25,000 query-candidate pairs),
MDCR is almost ten times bigger. While this
growth in size increases the computational com-
plexity when using MDCR compared to other
smaller benchmarks, it arguably makes the results
more realistic. In addition, we also note that since
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MDCR is split across different scientific fields,
models can be evaluated on specific fields only,
which reduces the number of query-candidate pairs
to be evaluated.

4.3 Results
Results of evaluation on MDCR are given in Ta-
ble 3. We report MAP and R@5 (each query is cou-
pled with five positive candidates) across all pairs
of the scientific fields and evaluated the model. We
evaluate the same set of models as in the field-level
large-scale evaluation.

Results demonstrate, yet again, a strong perfor-
mance from BM25, which outperformed all other
models in terms of average metric scores across all
fields. Interestingly, when evaluated on MDCR’s
small-sized pools, the difference in performance be-
tween SCIBERT and other TAEs (e.g., SCINCL)
is smaller than in large-scale evaluation (11.7 in
MAP on MDCR vs. 37 in MAP on dataset-level,
200k pool size). Such a difference in results con-
firms the benefits of evaluating TAEs on larger
pools to obtain more realistic results. Another ob-
servation is a similar average performance between
SCINCL and ASPIRE, despite ASPIRE variants be-
ing trained only on the articles from specific fields
(biomedicine and computer science). As in the
field-level evaluation, competitive results from AS-
PIRE indicate that sentence-level representations
might be able to capture a more informative signal
between related articles than document-level ones.

Although BM25 outperforms other models in
most fields, TAEs obtain the best scores in some
cases when looking at performance in specific
fields. Specifically, ASPIRE-BM is the top-
performing model in the Bio, Med, and Soc fields
(and Psy in MAP value), which is not surprising as
it was trained on articles from the biomedicine field.
Similar goes for ASPIRE-CS and its performance
in the Mat field, although it does not yield the best
results in the field it was trained on (CS). However,
when analyzing ASPIRE’s performance, it is worth
noting that we did not account for the overlap of
ASPIRE training queries with our new benchmark
since ASPIRE’s training set was not publicly avail-
able at the time of writing. For this reason, the
results of both ASPIRE variants might be too opti-
mistic if the train-test overlap is significant.

4.4 Performance across Candidate Types
To analyze the difficulty of candidate types that
we introduced in §4.1, we evaluate the models on

subsets of candidate pools consisting of 5 cited
articles and all negative candidates from specific
candidate type. Evaluation across candidate types
allows us to analyze how difficult each candidate
type is for each model. As the candidates obtained
via model-based selection are chosen precisely be-
cause they were difficult for the particular models,
we do expect these models to not perform well on
such candidates. However, such evaluation can re-
veal interesting insights into the differences across
the evaluated models, e.g., whether the same candi-
date types are difficult for all neural-based models.

Results of this evaluation are presented in Ta-
ble 4. Unsurprisingly, Random candidates are the
easiest candidate type for all the evaluated mod-
els. Candidates from the Most cited type are
also relatively easy for the models, with on average
>90 score in MAP. On average, the most chal-
lenging candidate type is the Graph candidates
subset, with an average MAP score of 55.9. Inter-
estingly, the best-performing model on the Graph
candidates subset is SCINCL, which explicitly uses
citation graph embeddings in selecting training ex-
amples. Such a training strategy seems to help the
model distinguish between relevant and irrelevant
graph neighbors.

The performance on the candidate types obtained
with the model-based selection strategy differs be-
tween TAEs and BM25, which is somewhat ex-
pected given the difference between neural (TAEs)
and non-neural (BM25) models. As expected,
negative candidates from the BM25 type are the
most difficult for BM25 itself since those were
sampled from a set of top candidates provided by
BM25. On the other hand, TAEs (SCIBERT ex-
cluded) all perform similarly well on the BM25
candidate type. Likewise, SPECTER and SciNCL
candidates are the most difficult for SPECTER and
SCINCL, respectively, while BM25 performs bet-
ter than TAEs on these candidate types. It is in-
teresting to note the difference in the performance
of SCINCL on SPECTER candidates compared to
the performance of SPECTER on SciNCL candi-
dates. While SCINCL outperforms SPECTER on
SPECTER candidates with more the 10 points in
the absolute value (for both metrics), SPECTER

improves over SCINCL on SciNCL candidates
with only 3.7 absolute points. These results again
confirm that the way in which negative candidates
are sampled when training the models with the
contrastive learning objective is important. As for
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Models → BM25 SCIBERT SPECTER SCINCL ASPIRE-BM ASPIRE-CS

Fields ↓ MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5

Art 38.2 32.3 22.4 16.6 34.1 28.8 34.7 29.2 34.0 27.7 34.1 28.0
Bio 38.3 33.6 20.4 14.0 34.6 30.0 36.8 32.3 38.7 33.7 35.7 29.9
Bus 28.1 22.5 19.1 13.1 27.5 21.8 28.5 24.6 28.5 23.4 29.6 23.1
Ch 38.0 32.6 20.0 13.7 33.7 29.3 36.5 31.5 36.5 31.0 34.1 28.3
CS 34.8 30.5 19.5 12.7 35.6 30.4 37.2 32.2 35.4 30.4 35.4 30.1
Eco 30.5 26.0 21.4 15.4 27.3 21.9 28.3 23.2 29.3 24.3 28.0 22.7
Eng 34.6 29.3 20.5 13.9 31.3 27.3 34.2 28.0 32.7 27.7 33.4 28.1
ES 31.6 26.2 21.3 15.1 30.1 24.2 31.5 25.5 30.8 24.7 29.9 23.7
Geog 31.8 27.8 21.9 16.7 26.4 22.2 29.5 23.8 30.3 26.0 28.4 22.2
Geol 33.1 28.0 19.5 13.9 24.8 20.1 25.7 19.9 28.5 23.5 25.8 21.4
His 38.1 32.9 20.8 15.2 27.1 20.6 30.9 23.9 31.0 24.2 28.5 22.1
MS 36.1 30.7 22.1 15.5 34.1 28.2 35.8 29.6 35.8 29.8 34.0 29.2
Mat 35.3 28.3 22.8 18.3 34.2 28.9 34.9 30.1 36.2 31.0 36.9 32.2
Med 38.6 32.5 22.0 16.4 41.4 36.3 42.7 36.5 44.0 37.8 41.7 36.7
Phi 30.2 25.7 19.2 13.3 27.1 21.1 29.9 23.5 28.7 24.1 29.1 23.3
Phy 35.1 30.2 23.9 18.1 30.8 26.3 34.5 30.3 32.9 27.7 32.9 28.7
PS 28.6 23.1 19.4 14.0 24.2 18.0 26.4 21.7 25.9 21.2 26.8 21.7
Psy 32.5 28.9 20.3 16.2 32.3 28.1 34.2 30.5 34.3 29.4 34.2 28.3
Soc 26.8 20.5 20.2 15.8 25.2 20.5 26.7 21.9 27.3 22.2 26.7 22.2

AVG 33.7 28.5 20.9 15.2 30.6 25.5 32.6 27.3 32.7 27.4 31.8 26.4

Table 3: Results in terms of MAP and R@5 on MDCR. Values in bold indicate the best performing model for a
combination of field and metric.

Candidate types → BM25 SPECTER SciNCL Graph Most cited Random

Models ↓ MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5

BM25 52.2 39.0 68.8 57.5 68.0 56.9 58.0 46.7 90.3 82.2 93.0 86.3
SCIBERT 50.5 39.1 47.6 36.0 49.0 37.7 47.2 36.1 79.6 69.3 84.9 75.8
SPECTER 67.4 56.3 51.1 38.7 57.8 45.8 57.3 46.3 92.8 86.5 99.0 97.1
SCINCL 68.3 57.6 61.2 49.8 54.1 42.1 58.1 47.3 94.0 88.3 99.0 97.2
ASPIRE-BM 66.7 55.6 57.7 46.5 59.3 47.5 57.3 46.5 93.6 87.6 99.1 97.2
ASPIRE-CS 66.0 54.9 55.7 43.8 58.5 46.8 57.2 46.6 94.3 88.7 98.9 96.8

AVG 61.8 50.4 57.0 45.4 57.8 46.1 55.9 44.9 90.8 83.8 95.7 91.7

Table 4: Results in terms of MAP and R@5 for different candidate types on MDCR.

the ASPIRE variants and candidate types obtained
with the model-based strategy, ASPIRE variants
perform better on the BM25 candidate type than on
the SPECTER or SciNCL type. We hypothesize
that such difference is due to TAEs being simi-
lar neural models and therefore prone to similar
errors regarding semantic vs. lexical matching of
texts. In contrast, BM25, a purely lexical model,
makes different errors. We leave the analysis of
the differences in performance between neural and
non-neural models for future work.

5 Conclusion

We evaluated transformer-based article encoders
in large-scale citation recommendation scenarios
across different scientific fields and candidate pool
sizes. Together with transformer-based encoders,
we evaluated the performance of a robust lexical re-
trieval baseline BM25 and demonstrated that it still

performs competitively with recent neural-based
models. In the case of large field-specific candi-
date pools, BM25 outperformed transformer-based
models in most fields.

Furthermore, to promote a more realistic and
a more diverse evaluation across different fields
in comparison to the existing benchmarks used
for evaluating scientific article representations, we
presented a new multi-domain benchmark dataset
based on citation recommendation task, which we
call MDCR. Evaluation on MDCR demonstrated
the difficulty of specific candidate types and set
the ground for evaluating future scientific article
encoders.

Our evaluation demonstrated the varying perfor-
mance across scientific fields, which we believe
should be analyzed in future work to improve en-
coders’ performance across all fields, not just those
prevailing in the datasets. Given that our bench-
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mark dataset is not expert-annotated but rather
based on citations as relevance signals, we pro-
pose constructing an expert-annotated dataset with
articles from different scientific fields. We hope our
contributions will stimulate the community to work
on more realistic and challenging evaluation setups
of scientific article recommendation models.
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A Appendix

A.1 BM25
Here we provide details about the relevance score
function used by BM25 (Robertson and Walker,
1994). Before calculating relevance scores for pairs
of articles, article texts are first transformed into
bag-of-words vectors. Given a query Q, containing
terms q1, ..., qn, and a document D, BM25 calcu-
lates relevance score s as follows:

s(Q,D) =
n∑

i=1

IDF(qi)·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(
1− b+ b · |D|

avgdl

)
where f(qi, D) is the frequency qi in document D,
|D| is the length of D in words, avgdl is the aver-
age document length, and k1 and b are parameters
that can be tuned for a specific document collection.
IDF(qi) is the inverse document frequency for qi,
and is typically calculated as:

IDF(qi) = ln

(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)
where N is the total number of documents in the
collection and n(qi) is the number of documents
containing the term qi.

Intuitively, s will output higher scores for a doc-
ument D that contains many terms as Q, that also
do not appear often in other documents. When it
comes to parameters b and k1, b controls to what
degree the length of a document will affect the fi-
nal score (Lipani et al., 2015), while k1 controls
to what degree an additional occurrence of a term
affects the final score (Lv and Zhai, 2011).

A.2 Field Abbreviations
Table 5 shows the abbreviations for MAG fields.

A.3 Evaluation on SCIDOCS

Table 6 shows the results of evaluation of SCIB-
ERT, SPECTER, SCINCL, and ASPIRE on SCI-
DOCS benchmark, as reported in the previous
work.

A.4 Field-level Evaluation Results
Results for “field-level” evaluation setup in terms
of NDCG and recall@30 are given in Tables 7
and 8, respectively. Best scoring combinations of
model and field are mostly the same as in case of
MAP (reported in Table 2), with the exception of

MAG field Abbreviation

Art Art
Biology Bio

Business Bus
Chemistry Ch

Computer Science CS
Economics Eco

Engineering Eng
Environmental Science ES

Geography Geog
Geology Geol
History His

Materials Science MS
Mathematics Mat

Medicine Med
Philosophy Phi

Physics Phy
Political Science PS

Psychology Psy
Sociology Soc

Table 5: Abbreviations for MAG fields that we use in
the field-level evaluation and in the new benchmark.

Model MAP NDCG

SCIBERT 48.3 71.7
SPECTER 88.3 94.9
SCINCL 93.6 97.3

TS-ASPIRE 91.0 95.0

Table 6: Results of different TAEs evaluated on SCI-
DOCS’s “Cite” task. Values as reported in (Cohan et al.,
2020), (Mysore et al., 2021a), and (Ostendorff et al.,
2022).

recall@30 in Bio field, where BM25 yields the
best result (as opposed to ASPIRE-BM in case of
MAP).
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Model Art Bio Bus Ch CS Eco Eng ES Geog Geol His MS Mat Med Phi Phy PS Psy Soc AVG

BM25 64.2 78.8 56.9 76.2 69.3 65.0 68.0 62.6 64.5 69.2 62.7 69.8 70.1 77.8 56.9 70.1 56.2 70.2 54.0 66.5
SCIBERT 33.2 45.8 33.6 43.7 36.0 39.6 36.4 36.8 37.6 39.6 32.9 37.3 37.9 39.8 31.2 39.5 32.1 40.9 32.9 37.2
SPECTER 53.5 74.2 53.9 71.8 67.7 61.9 63.6 58.2 56.5 59.2 47.0 65.6 66.5 79.2 48.6 63.8 49.2 70.5 49.9 61.1
SCINCL 55.3 77.5 54.1 74.0 70.3 62.5 66.0 60.7 59.6 61.2 50.5 67.0 68.0 81.1 50.8 67.1 51.4 71.7 51.3 63.1

ASPIRE-BM 55.6 79.2 55.2 74.4 69.1 63.5 64.8 60.0 59.4 61.5 50.1 66.2 68.1 81.0 50.1 66.2 50.6 70.9 49.8 62.9
ASPIRE-CS 54.8 74.2 56.1 71.1 69.4 62.9 65.0 57.7 57.8 59.0 48.1 64.3 69.1 77.9 49.6 65.5 50.4 70.8 51.4 61.8

Table 7: Results in terms of NDCG in the “field-level” evaluation setup. Values in bold indicate the best performing
model per field.

Model Art Bio Bus Ch CS Eco Eng ES Geog Geol His MS Mat Med Phi Phy PS Psy Soc AVG

BM25 46.5 38.9 27.5 41.7 43.1 29.7 42.7 35.3 34.6 34.2 42.7 39.5 42.2 48.2 34.0 40.9 28.3 32.0 24.0 37.2
SCIBERT 9.0 4.8 2.1 5.8 5.0 3.3 5.5 5.1 5.0 3.9 8.0 4.1 6.0 4.8 3.8 6.6 1.6 3.4 2.4 4.8
SPECTER 35.5 33.4 24.7 35.3 41.9 25.7 36.4 30.3 24.3 23.4 24.8 34.2 38.5 49.0 24.1 33.4 19.9 32.6 19.8 30.9
SCINCL 38.9 36.8 25.4 39.3 46.4 26.0 39.5 33.0 28.0 25.5 28.2 35.5 40.2 52.0 26.4 37.1 23.0 34.7 21.5 33.5

ASPIRE-BM 34.9 38.2 25.1 38.6 42.5 27.3 37.0 31.5 27.5 25.3 28.0 34.5 39.9 51.6 25.0 35.2 22.2 32.3 19.2 32.4
ASPIRE-CS 34.9 33.0 25.5 34.7 42.1 25.9 37.5 29.4 25.6 23.2 25.3 33.0 40.1 47.3 24.7 34.5 21.4 32.2 20.1 31.1

Table 8: Results in terms of recall@30 in the “field-level” evaluation setup. Values in bold indicate the best
performing model per field.


