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Abstract
This paper is a description of our participation
in the Multi-document Summarization for Lit-
erature Review (MSLR) Shared Task, in which
we explore summarization models to create an
automatic review of scientific results. Rather
than maximizing the metrics using expensive
computational models, we placed ourselves in
a situation of scarce computational resources
and investigate the limits of a base sequence
to sequence models (thus with a limited input
length) to the task. Although we explore meth-
ods to feed the abstractive model with salient
sentences only (using a first extractive step),
we find that the results still need some improve-
ments.

1 Introduction

To summarize medical knowledge on specific is-
sues, researchers undertake systematic reviews of
the available literature. The process is usually long
and expensive; it requires identifying appropriate
studies, critically interpreting their findings, and
finally synthesizing the results.

Recently, Natural Language Processing (NLP)
researchers have explored the use of automatic
text summarization models and tools to assist re-
searchers with the process. Previous works by DeY-
oung et al. (2021); Wallace et al. (2021) have tried
to model the problem as a multi-document sum-
marization task, where several input papers (or ab-
stracts) are summarized to generate review conclu-
sions. Summarizing several documents is challeng-
ing, and few resources exist (DeYoung et al., 2021)
compared to single-document summarization tasks.

The shared task of Multi-document Summariza-
tion for Literature Review (MSLR) adopted a simi-
lar approach and challenged participants to explore
the state-of-the-art systems with two large-scale
multi-document summarization datasets for litera-
ture review. To this end, instead of aiming at using
very complex models to maximize the target met-
rics, we place ourselves in a situation of scarce

computational resources and explore the limits of
a base sequence-to-sequence model, BART, to the
task. Our contributions to this shared task, there-
fore, are as follows:

• We explore the performance of a simple base
transformer, namely BART, for this task.

• We explore ways to deal with the limited input
size of such models, applying an extractive
step before the abstractive one.

• We aim at creating general models, and ex-
plore how the two datasets can be combined
during training to improve performance.

After analyzing the datasets (Section 2), we first
experiment with baseline models (Section 3.1);
since the model can only deal with a limited num-
ber of input tokens, we explore various strategies
to reduce the input size (Section 3.2).

2 Datasets and metrics

We evaluated the models on two datasets:

Cochrane (Wallace et al., 2021): The dataset con-
sists of 4,692 systematic reviews from the
Cochrane collaboration1. The target is the
“authors’ conclusions” of the systematic re-
view abstracts, while the input is a set of titles
and abstracts of the related clinical trials.

MS^2 (DeYoung et al., 2021): is built from pa-
pers in the Semantic Scholar literature corpus
(Ammar et al., 2018). It consists of 17,876
reviews. The dataset also contains some back-
ground text derived from the reviews. The
dataset creation was semi-automatic: for each
review, each sentence is classified as back-
ground, target or other and sentences are then
aggregated.

1https://www.cochrane. org/
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Table 1 reports some statistics of the two datasets.
Notice that the Cochrane dataset contains some
input documents for which no abstract is provided.

Results are evaluated using:

ROUGE (Lin, 2004) (ROUGE-1, ROUGE-2,
ROUGE-L): These are classical metrics for
summarization, and compute the token over-
lap between the prediction and the gold-
standard in terms of n-grams and longest com-
mon subsequence. The higher the value the
better the score.

BERTScore (Zhang* et al., 2020): Instead of
computing exact matches, this metric consid-
ers contextual embeddings (as generated by
BERT (Devlin et al., 2019)); after computing
the cosine similarity among each pair in the
generated sequence and the gold standard, the
maximum similarities over the gold-standard
tokens (Recall) and the generated tokens (Pre-
cision) are summed and normalized; they are
later used to compute f1-like metric. The
higher the value the better the score.

∆ EI (DeYoung et al., 2021): It is a model-based
metric; the disagreement of (Is, Os, EI) triplets
between the input studies and the generated
summary is considered, where Is are the Inter-
ventions, Os are the Outcomes and EI is Evi-
dence Inference. The measure aims to better
correlate with the factuality of the generated
summary with respect to the sources. The
lower the value the better the score.

3 Experiments and results

In this work, we explore the use of a simple BART
base model (Lewis et al., 2020) – that we leave
unchanged – for the task of multi-document sum-
marization.

The BART model is limited to input size of 1024
sub-token. However, as figure 1 shows above, con-
catenating the abstracts leads to very long input
sentences, that cannot be dealt with by the model.
To this end, we explore if performing a previous
extractive step improves performance. Since the tar-
get text summarizes the findings of previous work,
we also explore the use of a classifier to extract
results only from the input.

Figure 1: The number of token in the Cochraine and in
the MS^2 datasets with concatenated inputs

3.1 Baselines

We train a base BART model, fine-tuned for 4
epochs on the Pubmed summarization dataset2 (Co-
han et al., 2018) to predict the target given the
concatenated abstracts. Specifically, we use the
concatenated abstracts as input and the target as
output. We do not generally use the titles, with a
few exceptions in case no abstract is present. For
MS^2, we do not use any additional background
information, as we want to construct models that
are as general as possible. We separate the inputs
using the <sep> special tokens. We do not perform
any other preprocessing to the dataset text. Table 2
reports the results for our base configuration on the
validation set. We report results for all metrics.

3.2 Unsupervised algorithms for decreasing
the input size

Since the base model can only process a fraction
of our very long input, we explore if performing
an extractive step can improve performance, fol-

2Model mse30/bart-base-finetuned-pubmed from the Hug-
ging Face model hub
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C train C dev C test M train M dev M test
Number of input docs 40,497 5,033 5,678 323,608 5,033 5,678
Number of empty abstracts 2,611 464 470 0 0 0
Number of targets 3,752 470 470 14,188 2,021 1667
Number of docs per target (avg) 10.79 10.71 12.08 22.81 24.24 25.63
Number of tokens per abstract (avg) 224.33 222.47 14.88 299.88 302.83 301.42
Number of tokens per target (avg) 67.78 69.9 - 61.28 61.05 -

Table 1: Statistics on the Cochrane (C) and the MS^2 (M) datasets

Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M M 13.18 1.31 10.17 83.2 50.22 42.53

C + M (mix) M 13.18 1.31 10.18 83.2 50.22 42.53
C, M (sequential) M 13.23 1.35 10.18 83.14 49.33 42.55

C C 22.48 6 16.43 86.81 31.03 38.23
C + M (mix) C 22.86 6.03 16.82 85.1 27.85 36.44

M, C (sequential) C 18.78 2.77 12.97 84.52 36.54 37.22

Table 2: Baseline results obtained with a base BART model on the raw input. Some models are trained on the MS^2
dataset (M) or on the Cochrane dataset (C) independently. We also trained a single model with the mixed MS^2 and
Cochrane data, in random order (mix) and evaluate it on both datasets independently. Finally, we experiment with
sequential fine-tunings over the two datasets (with the fine-tuning over the target dataset being the last one); for
example, M, C (sequential), means that the BART model was first fine-tuned on the MS^2 dataset and then on the
Cochrane dataset. All measures are obtained using the official evaluation script on the validation set.

lowing previous work (Huang et al., 2019). Specif-
ically, we use classical unsupervised algorithms,
namely TextRank (Mihalcea and Tarau, 2004) and
LexRank (Erkan and Radev, 2004), that we chose
since they are simple, well-studied and have a low
computational cost. For each target, the extraction
is performed on the whole pool of the concatenated
abstracts. We also experiment with extracting sen-
tences related to the results only from each abstract
(which we then concatenate).

3.2.1 TextRank
TextRank constructs a graph using sentences as
nodes and their similarity in terms of normalized
number of words as edges. Then, the algorithm
extracts the most central sentences according to
PageRank (Page et al., 1999).

In order to extract the most important sentences
only and minimize repetitions, we grouped all ab-
stracts related to a single target and extracted the
salient sentences from the whole pool of text. We
used the summa library3; we constrained the sum-
mary obtained through TextRank to be approxi-
mately 1000 tokens (as this is the maximum num-
ber of tokens BART can process) and 500 tokens

3https://github.com/summanlp/textrank

long (to experiment with even shorter salient in-
puts). Then, we fine-tuned a base BART model
with the output data. Table 3 shows the results.

3.2.2 LexRank
Similarly to TextRank, LexRank constructs a graph
using sentences as nodes and their similarity as
edges; the similarity is computed in terms of term
frequency-inverse document frequency (TF-IDF)
vectors. Then most central sentences are extracted.
We used the sumy4 library for extraction and ex-
plored with outputs of a maximum of 30 sen-
tences (as we estimate this will be compatible with
BART’s input constraint). Then, we fine-tuned a
base BART model with the output data. Table 4
shows the results.

3.3 Extracting the abstracts’ results to
decrease the input size

Since a systematic review aims in assessing the
knowledge in a given area, we explored extracting
the results of each abstract only. To do so, we down-
loaded 150,000 random structured abstracts in En-
glish using the Pubmed Advanced Search Builder5.

4https://github.com/miso-belica/sumy
5https://pubmed.ncbi.nlm.nih.gov/advanced/
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Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M - 1k tokens M 12.7 1.15 9.79 83.02 51.98 43.32

C + M (mix) - 1k tokens M 12.5 1.07 9.73 83.01 53.26 41.83
C + M (mix) - 500 tokens M 13.21 1.3 10.13 83.24 49.87 42.87

C - 1k tokens C 19.9 2.98 13.56 84.81 37.52 37.14
C + M (mix) - 1k tokens C 22.63 6.09 16.95 86.89 31.92 38.83

M, C (sequential) - 1k tokens C 19.47 3.4 13.75 84.94 36.63 38.43
C + M (mix) - 500 tokens C 22.63 6.07 16.8 87 28.71 36.88

Table 3: Results obtained with a base BART model on inputs capped at around 1000 and 500 tokens extracted by
TextRank algorithm. Some models are trained on the MS^2 dataset (M) or on the Cochrane dataset (C) independently.
We also trained a single model with the mixed MS^2 and Cochrane data, in random order (mix) and evaluate it on
both datasets independently. Finally, we experiment with sequential fine-tunings over the two datasets (with the
fine-tuning over the target dataset being the last one); for example M, C (sequential), means that the BART model
was first fine-tuned on the MS^2 dataset and then fine-tuned on the Cochrane dataset. All measures are obtained
using the official evaluation script on the validation set.

Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M M 13.18 1.3 10.2 83.12 50.09 43.08

C + M (mix) M 13.96 1.55 10.66 83.44 47.52 42.99
C C 18.1 2.52 12.6 84.24 37.43 37.65

C + M (mix) C 22.03 5.61 16.28 86.71 26.98 39.29

Table 4: Results obtained with a base BART model on inputs capped at around 30 sentences extracted by LexRank
algorithm. Some models are trained on the M S2 dataset (M) or on the Cochrane dataset (C) independently. We
also trained a single model with the mixed MS^2 and Cochrane data, in random order (mix) and evaluate it on both
datasets independently. All measures are obtained using the official evaluation script on the validation set.

Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M M 12.97 1.27 10.02 83.09 49.59 42.48

C + M (mix) M 12.61 1.61 9.69 82.96 52.36 41.98
C C 22.42 5.84 16.59 86.82 30.05 38.02

C + M (mix) C 22.95 6.17 16.9 86.94 28.43 36.97

Table 5: Results on the development set for the BART model after extracting the results only with a classifier.
Some models are trained on the M S2 dataset (M) or on the Cochrane dataset (C) independently. We also trained
a single model with the mixed MS^2 and Cochrane data, in random order (mix) and evaluate it on both datasets
independently. All measures are obtained using the official evaluation script on the validation set.

Structured abstracts are divided into a number of
sections with a related label (e.g., AIM, METHOD,
CONCLUSIONS). We used regular expressions to
divide the abstract into sections and extract the re-
lated label (we identified a label as a cased word
or set of words at the start of a line followed by
columns) and considered a section containing re-
sults as any section having as label CONCLU-
SION(S), CONCLUDING *, RESULT(S), SIG-
NIFICANCE, IMPORTANCE, RECOMMENDA-
TION(S). We constructed a dataset assigning the
positive label to sentences in such section and the
negative label to sentences in the others. Since

the negative instances were more than an order of
magnitude more common than the positive ones,
we balanced the dataset and obtained a sample of
700 negative sentences and 524 positive sentences.
Then, we trained a Roberta base model to classify
the sentences according to their labels. We used
the dataset to extract sentences from the abstracts
that have at least a 0.4 log prob of belonging to
the positive class (we prefer to increase recall over
accuracy, as the summarization step will remove
pleonastic content). Then, we fine-tuned a BART
base model with the concatenated results. Table 5
shows the obtained results.
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Figure 2: Effect of the extractive step. For each dataset, we consider the base model trained and evaluated on
the target dataset as our baseline, and show the relative difference in performance when compared to the best
model for each extractive algorithm. For LexRank, we considered the model trained on M+C mixed data, after
extracting the salient sentences with LexRank. For TextRank, we considered the model trained on M+C mixed data,
after extracting the salient sentences (500 tokens long for MS^2 and 1000 for Cochrane); for the Results only, we
considered the model fine-tuned on MS^2 only for MS^2 and the mixed one for Cochrane.

4 Conclusions

We have explored a number of base BART models
for the task of generating systematic reviews in the
medical domain. Given the limited number of to-
kens BART can handle, we adopted several simple
extractive strategies to retrieve salient sentences
to the abstractive model; we also trained a model
from the abstract results sentences only.

Generally, we found results on the Cochrane
datasets are much more encouraging than those on
the MS^2 and we believe that using the background
info might improve performance. We found that
the results obtained from the salient sentences only
show mixed results. For MS^S, extracting the re-
sults sentences only seems to be the most promising
method. For the Cochrane dataset, all extractive
methods show small improvements over the base-
line. LexRank seems to be the most promising, as
it slightly improves the results, both in terms of
ROUGE and factuality metrics.

In addition to ours, other strategies could be ex-
plored to sort the input abstract: DeYoung et al.
(2021), for example, sorts abstracts by some mea-
sures of quality; it would be interesting to see how
this compares to our proposed strategies. We also
plan to explore different input representations that
go beyond the simple concatenation of abstract and

data augmentation techniques. Another possible
route could be that of extracting domain-specific
concepts, through, e.g., PubTator (Wei et al., 2013),
to enrich abstracts.
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