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Abstract
We perform an in-depth error analysis of the
Adversarial NLI (ANLI) dataset, a recently
introduced large-scale human-and-model-in-
the-loop natural language inference dataset
collected dynamically over multiple rounds.
We propose a fine-grained annotation scheme
for the different aspects of inference responsi-
ble for the gold classification labels, and use
it to hand-code the ANLI development sets
in their entirety. We use these annotations
to answer a variety of important questions:
which models have the highest performance on
each inference type, which inference types are
most common, and which types are the most
challenging for state-of-the-art models? We
hope our annotations will enable more fine-
grained evaluation of NLI models, and provide
a deeper understanding of where models fail
(and succeed). Both insights can guide us in
training stronger models going forward.

1 Introduction

Natural Language Inference (NLI) is one of the
canonical benchmark tasks for research on Natural
Language Understanding (NLU). NLI1 has char-
acteristics that make it desirable both from the-
oretical and practical standpoints. Theoretically,
entailment is, in the words of Richard Montague,
“the basic aim of semantics” (Montague, 1970, p.
223 fn.), and indeed meaning in formal seman-
tics relies on necessary and sufficient truth con-
ditions. Practically, NLI is easy to evaluate and
intuitive even to non-linguists, enabling data to be
collected at scale with crowdworker annotators.
Moreover, many core NLP tasks can also easily
be converted to NLI problems (White et al. 2017;
Demszky et al. 2018; Poliak et al. 2018a i.a.) sug-
gesting that NLI is generally seen as a good proxy
for measuring models’ overall NLU capabilities.

1Also known as recognizing textual entailment (RTE; Fy-
odorov et al. 2000; Dagan et al. 2006, i.a.).

Benchmark datasets are essential for driving
progress in NLP and machine learning (DataPerf
Working Group, 2021). In recent years, large-
scale NLI benchmarks like SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) have es-
tablished a straightforward basis for comparison
between trained models. However, with the advent
of transformer language models, many bench-
marks are now reaching saturation, leading some
to wonder: have we solved NLI and, perhaps,
NLU? However, the recent ANLI dataset (Nie
et al., 2020a) illustrated that our models do not yet
perform NLI in the robust and generalizable way
that humans can. In this paper we ask: where do
our models still fall short?

To improve towards general NLU, merely list-
ing examples of failure cases is not by itself suf-
ficient. We also need a quantifiable and finer-
grained understanding of which phenomena are
responsible for failures (or successes). Since the
dynamic adversarial set up of ANLI encouraged
human annotators to exercise their creative facul-
ties to fool model adversaries, the data contains
a wide range of possible inferences (as we will
show). Because of this, ANLI is an ideal testbed
for studying current model shortcomings, and for
characterizing what future models will have to do
in order to make progress on the NLI task.

Towards that end, we propose a genre-agnostic
annotation scheme for NLI that classifies exam-
ple pairs into 40 inference types. It is hierarchical,
reaching a maximum of four levels deep, enabling
analysis of model performance at a flexible level
of granularity. We also contribute expert hand-
annotations on the ANLI development sets (3200
sentence pairs) according to our scheme2, thereby
extending the usefulness of the ANLI dataset by
making it possible to analyze future models. We

2All annotations are publicly available at
https://github.com/facebookresearch/anli/anlizinganli.
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Context Hypothesis Rationale Gold/Pred.
(Valid.)

Tags

Eduard Schulte (4 January 1891 in Düsseldorf – 6 January 1966 in
Zürich) was a prominent German industrialist. He was one of the first
to warn the Allies and tell the world of the Holocaust and systematic
exterminations of Jews in Nazi Germany occupied Europe.

Eduard Schulte is
the only person
to warn the Al-
lies of the atroci-
ties of the Nazis.

The context states that he is not
the only person to warn the Allies
about the atrocities committed by
the Nazis.

C/N (CC) Tricky, Prag., Numerical, Or-
dinal

Kota Ramakrishna Karanth (born May 1, 1894) was an Indian lawyer
and politician who served as the Minister of Land Revenue for the
Madras Presidency from March 1, 1946 to March 23, 1947. He was
the elder brother of noted Kannada novelist K. Shivarama Karanth.

Kota Ramakr-
ishna Karanth
has a brother who
was a novelist
and a politician

Although Kota Ramakrishna
Karanth’s brother is a novelist, we
do not know if the brother is also a
politician

N/E (NEN) Basic, Coord., Reasoning,
Plaus., Likely, Tricky, Syntac-
tic

Toolbox Murders is a 2004 horror film directed by Tobe Hooper, and
written by Jace Anderson and Adam Gierasch. It is a remake of the
1978 film of the same name and was produced by the same people
behind the original. The film centralizes on the occupants of an apart-
ment who are stalked and murdered by a masked killer.

Toolbox Murders
is both 41 years
old and 15 years
old.

Both films are named Toolbox
Murders one was made in 1978,
one in 2004. Since it is 2019 that
would make the first 41 years old
and the remake 15 years old.

E/C (EE) Reasoning, Facts, Numerical
Cardinal, Age, Basic, Coord.,
Tricky, Wordplay

Table 1: Examples from development set. ‘corr.’ is the original annotator’s gold label, ‘pred.’ is the model
prediction, ‘valid.’ is the validator label(s).

find that examples requiring models to resolve
references, utilize external knowledge, and de-
ploy syntactic abilities remain especially challeng-
ing. Our annotations are publicly available, and
we hope they will be useful for benchmarking
progress on particular inference types and expos-
ing weaknesses of future NLI models.

2 Background

We proposes an inference type annotation scheme
for the Adversarial NLI (ANLI) dataset, which
was collected via a gamified, adversarial human-
and-model-in-the-loop format using the Dyn-
abench platform (Kiela et al., 2021; Ma et al.,
2021). Human annotators are matched with a tar-
get model trained on existing NLI data, and tasked
with finding examples that fooled it into predict-
ing the wrong label. Dynamically collecting data
has since been shown to have training-time bene-
fits above statically collected data (Wallace et al.,
2021). Other than being dynamic, ANLI was col-
lected with a similar method to SNLI and MNLI:
untrained crowdworkers are given a context—and
one of three classification labels, i.e., Entailment,
Neutral and Contradiction—and asked to write a
hypothesis. Table 1 provides examples.

The ANLI dataset was collected in English over
three rounds, with different target model adver-
saries each round. The first round adversary was
a BERT-Large (Devlin et al., 2019) model trained
on SNLI and MNLI. The second was a RoBERTa-
Large (Liu et al., 2019) ensemble trained on SNLI
and MNLI, as well as FEVER (Thorne et al.,
2018) and the training data from the first round.
The third round adversary was a RoBERTa-Large
ensemble trained on all previous data, plus the
training data from the second round, with the ad-

ditional difference that the contexts were sourced
from multiple domains (rather than just from
Wikipedia, as in the preceding rounds). The ANLI
dataset is split so that all development and test set
data were human-validated as model-fooling.

The ANLI dataset creators encouraged crowd-
workers to give free rein to their creativity (Nie
et al., 2020a, p.8).3 Annotators explored, then ulti-
mately converged upon, inference types that chal-
lenged each round’s target model adversary. For
example, the target model in round 1 was often
fooled by numbers (see §4), which means the de-
velopment set from round 1 (i.e., A1) contains
many NUMERICAL examples. Training a later
rounds’ adversary on A1 then should result in a
model that does better on such examples. Ulti-
mately, crowdworkers would be less successful at
fooling later adversaries with numbers, and fewer
NUMERICAL examples will end up in later devel-
opment sets.4 In this way, understanding how in-
ference types dynamically shift across the ANLI
development sets can illuminate the capabilities of
the target models used to collect them.

3 Developing A Scheme for Annotating
Types of Inferences in NLI

Categorizing sentential inference relations into
types is by no means a new endeavor (see the
Doctrine of Categories from Aristotle’s Organon):
ample research has aimed to understand model
behavior and/or develop best annotation practices
which ought to be incorporated. However, a
scheme should be, at least to some extent, tai-

3Gamification generally results in wide coverage datasets
(Joubert et al., 2018; Bernardy and Chatzikyriakidis, 2019).

4Assuming that models trained on later rounds don’t suf-
fer from catastrophic forgetting.
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Top Level Second Level Description

Numeral

Cardinal basic cardinal numerals (e.g., 56, 57, 0, 952, etc.).
Ordinal basic ordinal numerals (e.g., 1st , 4th , 72nd etc.).

Counting counting references in the text, such as: Besides A and B, C is one of the monasteries located at Mt. Olympus. ⇒ C is one of three monasteries
on Mount Olympus.

Nominal numbers as names, such as: Player 37 scored the goal ⇒ a player was assigned jersey number 37.

Basic

Comp.& Super. degree expressions denoting relationships between things, such as: if X is faster than Y ⇒ Y is slower than X
Implications cause and effect, or logical conclusions that can be drawn from clear premises. Includes classical logic types such as Modus Ponens.

Idioms idioms or opaque multiword expressions, such as: Team A was losing but managed to beat the other team ⇒ Team A rose to the occasion
Negation inferences relying on negating content from the context, with “no”, “not’, “never”, “un-” or other linguistic methods

Coordinations inferences relying on “and”, “or”, “but”, or other coordinating conjunctions.

Ref.
Coref. accurately establishing multiple references to the same entity, often across sentences, such as: Sammy Gutierrez is Guty
Names content about names in particular (e.g., Ralph is a male name, Fido is a dog’s name, companies go by acronyms)
Family content that is about families or kinship relations (e.g., if X is Y’s aunt, then Y is X’s nephew/niece and Y is X’s parent’s sibling)

Tricky

Syntactic argument structure alternations or changes in argument order (e.g., Bill bit John ⇒ John got bitten., Bill bit John 6⇒ John bit Bill)
Pragmatic presuppositions, implicatures, and other kinds of reasoning about others’ mental states: It says ‘mostly positive’ so it stands to reason some

were negative.
Exhaustification pragmatic reasoning where all options not made explicit are impossible, for example: a field involves X, Y, and Z ⇒ X, Y and Z are the only

aspects of the field
Translation examples with text in a foreign language or using a foreign orthography.
Wordplay puns, anangrams, and other fun language tricks, such as Margaret Astrid Lindholm Ogden’s initials are MALO, which could be scrambled

around to form the word ’loam’.

Reasoning
Plausibility the annotators subjective impression of how plausible a described event is (e.g. Brofiscin Quarry is named so because a group of bros got

together and had a kegger at it. and Fetuses can’t make software are unlikely)
Facts common facts the average human would know (like that the year is 2020), but that the model might not (e.g., the land of koalas and kangaroos

⇒ Australia), including statements that are clearly not facts (e.g., In Ireland, there’s only one job.)
Containment references to mereological part-whole relationships, temporal containment between entities (e.g., October is in Fall), or physical containment

between locations or entities (e.g., Germany is in Europe). Includes examples of bridging (e.g., the car had a flat ⇒ The car’s tire was broken).

Imperfections

Error examples for which the expert annotator disagreed with the gold label, such as the gold label of neutral for the pair How to limbo. Grab a long
pole. Traditionally, people played limbo with a broom, but any long rod will work ⇒ limbo is a type of dance

Ambig. example pairs for which multiple labels seem to the expert to be appropriate. For example, with the context Henry V is a 2012 British television
film, whether Henry V is 7 years old this year should get a contradiction or neutral label depends on what year it is currently as well as on which
month Henry V began to be broadcast and when exactly the hypothesis was written.

Spelling examples with spelling errors.

Table 2: Summary of the Annotation Scheme. Toy examples are provided, ⇒ denotes entailment, 6⇒ denotes
contradiction. Only top and second level tags are provided, due to space considerations.

lored to the particular task at hand. Here, we
balance these considerations and develop a novel
NLI annotation scheme. We hope other large NLI
datasets will be annotated according to our scheme
to make even wider comparison possible.

Researchers have proposed many ways to
‘crack open the black box’ (Alishahi et al., 2019;
Linzen et al., 2019), from uncovering lexical con-
founders or annotation “artifacts” (Gururangan
et al., 2018; Geiger et al., 2018; Poliak et al.,
2018b; Tsuchiya, 2018; Glockner et al., 2018;
Geva et al., 2019) to evaluating generalization
with diagnostic datasets (McCoy et al., 2019; Naik
et al., 2018; Nie et al., 2019; Yanaka et al., 2019;
Warstadt et al., 2019a; Geiger et al., 2020; Hossain
et al., 2020; Jeretic et al., 2020; Warstadt et al.,
2020; Schuster et al., 2020); see Zhou et al. (2020)
for a critical overview. Specific to NLI, some have
probed models to see what they learn (Richardson
et al., 2019; Sinha et al., 2021b), honed data col-
lection methods (Bowman et al., 2020; Vania et al.,
2020; Parrish et al., 2021) and analyzed inherent
disagreements between human annotators (Pavlick
and Kwiatkowski, 2019; Nie et al., 2020b; Nangia
et al., 2021), all in the service of understanding
and improving models (see Poliak (2020) for a re-
cent survey). See Table 10 and §A.3 for compar-

isons between our annotation scheme and others.
To inventory possible inference types, three

NLP researchers independently inspected data
from ANLI A1. For consistency, we then dis-
cussed and merged codes, applying an inductive
approach (Thomas, 2006; Blodgett et al., 2021).
Our scheme—provided in abbreviated form in Ta-
ble 2—has 40 tag types that can be combined to a
depth of up to four (see the Appendix for more de-
tails in §A.1, and more examples in Table 14). The
top level of the scheme was fixed by the original
ANLI paper to five classes: NUMERICAL, BASIC,
REFERENCE, TRICKY inferences, and REASON-
ING.5 We aimed to balance proliferating narrow
tags (and potentially being overly expressive), and
limiting tag count to enable generalization (poten-
tially being not expressive enough). A hierarchi-
cal tagset achieves the best of both worlds—we
can measure all our metrics at varying granular-
ities while allowing for pairs to receive as many
tags as are warranted (see Table 1).

Annotation. Annotating NLI data for inference
types requires various kinds of expert knowledge,

5These top-level types were introduced for smaller sub-
sets of the ANLI development set in § 5 of Nie et al. (2020a),
which we drastically expand both in number and specificity
of tag types, as well as in annotation scope.
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Dataset Subset Numerical Basic Reference Tricky Reasoning Error

A1

All 40.8 31.4 24.5 29.5 58.4 3.3

C 18.6 8.2 7.8 13.7 11.9 0.7
N 7.0 9.8 7.1 6.4 31.3 1.0
E 15.2 13.4 9.6 9.4 15.2 1.6

A2

All 38.5 41.2 29.4 29.1 62.7 2.5

C 15.6 11.8 10.2 13.6 15.5 0.3
N 8.1 12.8 9.1 7.4 30.0 1.4
E 14.8 16.6 10.1 8.1 17.2 0.8

A3

All 20.3 50.2 27.5 25.6 63.9 2.2

C 8.7 17.2 8.6 12.7 14.9 0.3
N 4.9 13.1 8.2 4.6 30.1 1.0
E 6.7 19.9 10.7 8.3 18.9 0.8

Table 3: Percentages (of the total) of tags by gold label and subdataset. ‘All’ refers to the total percentage of
examples in that round that were annotated with that tag. ‘C’, ‘N’, and ‘E’, refer to percentage of examples with
that tag that receive each gold label.

i.e. with a range of complicated linguistic phe-
nomena and the particularities of the NLI task.
Our work is fairly unique in that examples are
only tagged as belonging to a particular branch
of the taxonomy when the annotator believed the
tagged phenomenon is required for a human to
arrive at the target label assignment. Mere pres-
ence of a phenomenon was insufficient, meaning
that automation was impossible, and expert anno-
tation was necessary.6 A single annotator with
a decade’s training in linguistics and expertise in
NLI both devised our scheme and applied it to the
ANLI development set. Annotation was laborious,
taking the expert several hundred hours.

Inter-annotator Agreement. Employing a sin-
gle annotator may have downsides, if they inadver-
tently introduce personal idiosyncrasies into their
annotations. NLI may be especially susceptible
to this, as recent work uncovers much variation
in human judgements for this task (Pavlick and
Kwiatkowski, 2019; Min et al., 2020; Nie et al.,
2020b). To understand whether our tags are in-
dividual to the main annotator, we employed a
second expert (with 5 years of linguistic training)
to re-annotate 300 random examples, 100 from
each development set. Re-annotation took the sec-
ond annotator approximately 35 hours (exclud-
ing training time). Further details on the scheme,
guidelines, and process are in Appendix A.

6Experts are well known to achieve higher performance
than naı̈ve crowdworkers when the task is linguistically com-
plex (e.g., the CoLA subtask of the GLUE benchmark from
Warstadt et al. (2019b), as well as Nangia and Bowman 2019,
p. 4569, Basile et al. 2012; Bos et al. 2017, i.a.).

We measure inter-annotator agreement for each
tag independently. For each example, annotators
agree on a tag if they both used that tag or both
did not use that tag; otherwise they disagree. Av-
erage percent agreement between our annotators
is 72% for top-level and 91% for low-level tags
respectively (see Table 8 and §A.2 for further de-
tails). Recall that 50% would be chance (since we
are measuring whether the tag was used or not be-
tween two annotators). Our inter-annotator agree-
ment is comparable to a similar semantic annota-
tion effort on top of the original RTE data (Toledo
et al., 2012), suggesting we have reached an ac-
ceptable level of agreement for our setting, and
that the main annotator is not very idiosyncratic.

4 Experiments

We investigate 8 models: the original ANLI tar-
get model adversaries7, and five SOTA models8—
a RoBERTa-Large (Liu et al., 2019), a BART-
Large (Lewis et al., 2019), an XLNet-Large (Yang
et al. 2019, an ELECTRA-Large (Clark et al.,
2020), and an ALBERT-XXLarge (Lan et al.,
2020)—finetuned on SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018), FEVER (Thorne
et al., 2018), and ANLI rounds 1–3.

We report the tag distribution of the ANLI val-
idation sets to establish an estimate of inference
type frequency and explore what models may have
learned as rounds progressed. To measure diffi-
culty, we report models’ correct label probability,

7For A2 and A3, which were ensembles, we randomly
select a single RoBERTa-Large as the representative.

8https://github.com/facebookresearch/anli
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and entropy on example pairs requiring each infer-
ence type (as accuracy on ANLI is still very low).

4.1 Tag Distribution

REASONING tags are the most common in the
validation dataset, followed by NUMERICAL,
TRICKY, BASIC, REFERENCE and then IMPER-
FECTIONS. The frequency of top-level tags are
presented in Table 3, and for subtags in Table 15.

Walking through top-level types in turn, we find
that NUMERICAL pairs are most common in A1.
Since A1 contexts comprised the first few lines
of Wikipedia entries—which often have numbers
in them—this makes sense. A2, despite also us-
ing Wikipedia contexts, has a lower percentage of
NUMERICAL examples, possibly because its tar-
get model—also trained on A1—improved on that
category. In A3, the percentage of NUMERICAL

pairs has dropped even lower. Between A1/A2
and A3, this drop in top level NUMERICAL tag
frequency is due at least in part to a drop in the
use of CARDINAL subtag, which results in a corre-
sponding drop of third level DATES and AGES tags
(in the Appendix). Overall, NUMERICAL pairs are
more likely to have the gold label contradiction or
entailment than neutral.

BASIC pairs are fairly common, with increas-
ing frequency as rounds progress. Subtags LEXI-
CAL and NEGATION rise sharply in frequency be-
tween A1 and A3; IMPLICATIONS and IDIOMS

also rise—though they rise less sharply and are
only present in < 10% of examples. COORDINA-
TION and COMPARATIVES & SUPERLATIVES tag
frequency stays roughly constant. Overall, BASIC

examples tend to be gold labeled as entailment.
REFERENCE tags are rarest main tag type

(present in 24.5% of A1 examples, rising slightly
in A2 and A3). The most common subtag for REF-
ERENCE is COREFERENCE with incidences rang-
ing from roughly 16% in A1 to 26% in A3. Sub-
tags NAMES and FAMILY maintain roughly con-
stant low frequency across rounds, although there
is a precipitous drop in NAMES tags for A3 (likely
reflecting genre differences). Examples tagged as
REFERENCE most commonly have entailment as
their gold label for all rounds.

TRICKY inference types occur at relatively con-
stant rates. A1 contains more examples with word
reorderings than the others. PRAGMATIC exam-
ples are more prevalent in A1 and A3. A2 is
unique in having slightly higher frequency of EX-

HAUSTIFICATION tags. WORDPLAY examples in-
crease in A2 and A3 compared to A1. TRANS-
LATION pairs are rare (≈3%). On the whole,
there are fewer neutral TRICKY pairs than contra-
dictions or entailments, with contradiction being
somewhat more common.

REASONING examples are very common across
the rounds, with 50–60% of pairs receiving at least
one. Subtagged FACTS pairs are also common,
rising from 19% in A1 to roughly 25% of A2
and A3. CONTAINMENT shows the opposite pat-
tern; it halves its frequency between A1 and A3.
The frequency of third level LIKELY examples re-
mains roughly constant whereas third level UN-
LIKELY and DEBATABLE examples become more
common over the rounds. DEBATABLE tags rise to
3 times their rate in A1 by the third round, in part
reflecting the contribution of different domains of
text (see Table 7 for incidence on the procedural
genre). On average, REASONING tags are more
common for examples with a neutral gold label.

IMPERFECTION tags are rare across rounds (≈
14% of example pairs receive that tag on aver-
age), and are slightly more common for neutral
pairs. SPELLING imperfections are the most com-
mon second level tag type, at ≈ 5 − 6% of ex-
amples. Examples marked as AMBIGUOUS and
ERROR were rare at ≈ 3− 5%.

4.2 Model Predictions by Tag

For each model-round-tag triple, we report (i) the
average probability of the correct prediction and
(ii) the entropy of model predictions (i.e., from
the input to the softmax layer) in Table 49. We
report both because neither number is fully inter-
pretable in itself. Measuring the probability mass
the model assigned to the correct label gives a nu-
anced notion of accuracy, whereas entropy can be
seen as a measure of difficulty, in the sense that it
can tell us how (un)certain a model is in its pre-
dictions. If a particular model-round-tag triple has
high entropy, then that tag was more difficult for
that model to learn from that round’s data. A given
model-round-tag triple can have both high proba-
bility and high entropy, which would show that the
round-tag pairing is difficult (given the entropy),
but that the model succeeded, at least to some ex-
tent, in learning how to predict the correct label
anyway (given the probability).

ALBERT-XXLarge performs best overall, with

9Metrics for the lower level tags in Table 16–Table 20.
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Round Model Numerical Basic Ref. & Names Tricky Reasoning Imperfections

A1

BERT (R1) 0.10 (0.57) 0.13 (0.60) 0.11 (0.56) 0.10 (0.56) 0.12 (0.59) 0.13 (0.57)
RoBERTa Ensemble (R2) 0.68 (0.13) 0.67 (0.13) 0.69 (0.15) 0.60 (0.18) 0.66 (0.15) 0.61 (0.14)
RoBERTa Ensemble (R3) 0.72 (0.07) 0.73 (0.08) 0.72 (0.08) 0.65 (0.09) 0.70 (0.08) 0.68 (0.07)

RoBERTa-Large 0.73 (0.13) 0.75 (0.12) 0.76 (0.10) 0.70 (0.14) 0.75 (0.15) 0.68 (0.13)
BART-Large 0.73 (0.10) 0.76 (0.08) 0.72 (0.07) 0.70 (0.08) 0.70 (0.11) 0.71 (0.08)

XLNet-Large 0.73 (0.10) 0.74 (0.09) 0.75 (0.09) 0.70 (0.10) 0.72 (0.09) 0.67 (0.08)
ELECTRA-Large 0.71 (0.29) 0.66 (0.36) 0.68 (0.34) 0.62 (0.44) 0.63 (0.41) 0.63 (0.40)

ALBERT-XXLarge 0.74 (0.22) 0.77 (0.18) 0.76 (0.20) 0.65 (0.21) 0.77 (0.18) 0.69 (0.22)

A2

BERT (R1) 0.29 (0.53) 0.30 (0.47) 0.29 (0.44) 0.25 (0.48) 0.31 (0.47) 0.33 (0.48)
RoBERTa Ensemble (R2) 0.19 (0.28) 0.21 (0.26) 0.20 (0.25) 0.16 (0.23) 0.19 (0.24) 0.19 (0.27)
RoBERTa Ensemble (R3) 0.50 (0.18) 0.43 (0.16) 0.41 (0.14) 0.44 (0.14) 0.45 (0.14) 0.33 (0.14)

RoBERTa-Large 0.54 (0.22) 0.51 (0.21) 0.47 (0.17) 0.48 (0.22) 0.49 (0.20) 0.49 (0.19)
BART-Large 0.55 (0.13) 0.52 (0.13) 0.48 (0.14) 0.48 (0.15) 0.50 (0.13) 0.42 (0.10)

XLNet-Large 0.54 (0.11) 0.53 (0.12) 0.53 (0.13) 0.52 (0.12) 0.50 (0.10) 0.44 (0.10)
ELECTRA-Large 0.56 (0.36) 0.53 (0.40) 0.52 (0.40) 0.51 (0.45) 0.53 (0.38) 0.54 (0.39)

ALBERT-XXLarge 0.57 (0.28) 0.57 (0.29) 0.58 (0.28) 0.50 (0.26) 0.56 (0.25) 0.58 (0.32)

A3

BERT (R1) 0.34 (0.53) 0.34 (0.51) 0.32 (0.50) 0.29 (0.55) 0.32 (0.49) 0.31 (0.54)
RoBERTa Ensemble (R2) 0.29 (0.47) 0.26 (0.54) 0.26 (0.57) 0.24 (0.58) 0.27 (0.55) 0.23 (0.58)
RoBERTa Ensemble (R3) 0.20 (0.43) 0.23 (0.50) 0.24 (0.53) 0.25 (0.54) 0.25 (0.54) 0.23 (0.52)

RoBERTa-Large 0.44 (0.32) 0.44 (0.26) 0.45 (0.25) 0.49 (0.25) 0.46 (0.27) 0.40 (0.23)
BART-Large 0.51 (0.14) 0.50 (0.14) 0.49 (0.14) 0.53 (0.18) 0.50 (0.14) 0.48 (0.17)

XLNet-Large 0.52 (0.15) 0.49 (0.14) 0.49 (0.15) 0.51 (0.14) 0.52 (0.15) 0.43 (0.14)
ELECTRA-Large 0.55 (0.46) 0.51 (0.45) 0.52 (0.44) 0.54 (0.44) 0.52 (0.48) 0.47 (0.49)

ALBERT-XXLarge 0.56 (0.39) 0.57 (0.33) 0.55 (0.36) 0.52 (0.32) 0.54 (0.32) 0.52 (0.33)

ANLI

BERT (R1) 0.22 (0.54) 0.26 (0.52) 0.26 (0.50) 0.21 (0.53) 0.26 (0.51) 0.27 (0.53)
RoBERTa Ensemble (R2) 0.41 (0.26) 0.37 (0.33) 0.34 (0.37) 0.33 (0.34) 0.35 (0.33) 0.32 (0.37)
RoBERTa Ensemble (R3) 0.52 (0.20) 0.44 (0.27) 0.41 (0.30) 0.45 (0.26) 0.45 (0.28) 0.39 (0.28)

RoBERTa-Large 0.59 (0.21) 0.55 (0.20) 0.53 (0.19) 0.56 (0.20) 0.56 (0.21) 0.50 (0.19)
BART-Large 0.61 (0.12) 0.58 (0.12) 0.54 (0.13) 0.57 (0.14) 0.55 (0.13) 0.52 (0.12)

XLNet-Large 0.61 (0.12) 0.58 (0.12) 0.56 (0.13) 0.57 (0.12) 0.57 (0.12) 0.50 (0.11)
ELECTRA-Large 0.62 (0.35) 0.56 (0.40) 0.56 (0.40) 0.56 (0.44) 0.55 (0.43) 0.54 (0.44)

ALBERT-XXLarge 0.64 (0.28) 0.63 (0.27) 0.61 (0.30) 0.56 (0.26) 0.61 (0.25) 0.59 (0.30)

Table 4: Mean correct label probability (highest bold) and mean entropy of label predictions (lowest bold) by
model and top level tag. Recall that the entropy for three equiprobable outcomes (i.e., random chance of three NLI
labels) is upper bounded by ≈ 1.58. See Appendix E: Table 16–Table 21 for full results on lower-level tags.

the highest label probability for the full ANLI
development set for each top-level tag except
for TRICKY, where it performs roughly as well
as the others. BART-Large, XLNet-Large, and
ELECTRA-Large are tied for second place, with
RoBERTa-Large being a relatively close third.
In general, the five SOTA models’ probabilities
of correct label differ by a few points, although
BART-Large and XLNet-Large show markedly
more certainty (i.e., lower entropy of predictions)
than the others. It is clear that A1 is easier than
A2 and A3, as measured by both higher correct la-
bel probability and lower entropy in general across
models. A2 and A3 don’t appreciably differ, al-
though A3 generally has slightly lower correct la-
bel probabilities and higher entropies, meaning
that A2 and A3 remain difficult for current models.

The ANLI model adversaries perform much
worse that the SOTA models, having both lower
mean probability of the correct label and often
higher entropy: On A1 and A2, of three model ad-
versaries, RoBERTa-Large (R3) also has the high-

est average label probability and lowest entropy
(recall that RoBERTa-Large (R3) was one of the
model adversaries in the ensemble, so its average
prediction probability on A3 should be low).

Difficulty by Tag. Accuracy on ANLI is still
fairly low (see Table 13), however it is still worth
discussing which inference types confound our
best current models. To understand our results,
we have to be aware of how prevalent in the train-
ing corpus certain types are. We cannot neces-
sarily expect a model to perform well on things it
hasn’t seen (although people often do, see Chom-
sky 1980). Because the ANLI training sets are not
annotated, we will estimate the incidence of tags
using the development sets (recall Table 3). To
explore the relationship between phenomenon fre-
quency and learnability by models, we split lower
level tags into “common” tags are present in ap-
proximately 10% or more the ANLI development
sets, while the rest are deemed “uncommon” (see
Appendix E Table 16–Table 21 for more details).
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Wikipedia Fiction News Procedural Legal RTE

0.64 (0.24) 0.57 (0.29) 0.58 (0.24) 0.60 (0.28) 0.55 (0.39) 0.52 (0.52)

Table 5: Mean correct label probability (mean entropy
of label predictions) for ALBERT-XXLarge by genre.

Tag Wikipedia Fiction News Procedural

Numerical 39.7% 3.5% 17.2% 10.5%
Basic 36.8% 41.0% 54.5% 48.5%
Reference 27.5% 21.0% 19.7% 14.5%
Tricky 29.0% 28.5% 25.3% 24.0%
Reasoning 61.7% 67.5% 59.6% 62.5%
Error 2.8% 3.5% 1.0% 2.5%

Table 6: Percentage of top-level tags in each genre.

Perhaps obviously, common inference types
(e.g., REASONING-LEXICAL, NUMERICAL-
DATES, REASONING-LIKELY) are easier for
models to perform well on (according to higher
correct label probability). More compellingly
though, there were some common inference
types that the models still behaved poorly
on, namely REASONING-FACTS, REFERENCE-
COREFERENCE, BASIC-NEGATION and TRICKY-
SYNTACTIC. Since these tags are fairly frequent,
it’s reasonable to conclude that these types re-
quired more complex knowledge. For example,
REASONING-FACTS, which includes knowing
that “2020 is this year” or that “a software
engineering tool can’t enable people to fly”.

Models can do fairly well on some un-
common tags, e.g., BASIC-COORDINATION

and NUMERICAL-NOMINAL, REASONING-
UNLIKELY, REFERENCE-NAMES, REASONING-
CONTAINMENT, TRICKY-WORDPLAY. There are
two potential explanations for this higher than
expected performance: perhaps the SNLI, MNLI
or FEVER training data has sufficient quantities
these inference types or, alternatively, these
types are somewhat easier to learn from fewer
examples. Models do struggle with NUMERICAL-
COUNTING, NUMERICAL-AGE, BASIC-
IMPLICATIONS, REASONING-DEBATABLE,
BASIC-IDIOM, TRICKY-PRAGMATICS, TRICKY-
EXHAUSTIFICATION. Similarly, these failures
can either be due to tag rarity or to their inher-
ent difficulty. Future work could ask whether
augmenting training data with more examples of
these types boosts performance.

Overall, models struggle with examples requir-
ing linguistic or external knowledge: the hardest
top-level tag for all models is TRICKY, with REA-
SONING and REFERENCE being next in line. Any-

Tag Wikipedia Fiction News Procedural

Numerical 0.65 (0.25) 0.65 (0.27) 0.67 (0.32) 0.66 (0.26)
Basic 0.64 (0.25) 0.55 (0.27) 0.56 (0.22) 0.61 (0.32)
Reference 0.65 (0.22) 0.50 (0.23) 0.52 (0.23) 0.71 (0.29)
Tricky 0.56 (0.24) 0.52 (0.26) 0.64 (0.19) 0.57 (0.29)
Reasoning 0.66 (0.24) 0.61 (0.28) 0.55 (0.24) 0.56 (0.31)
Imperfection 0.63 (0.27) 0.62 (0.34) 0.60 (0.26) 0.53 (0.26)

Table 7: Mean correct label probability (mean entropy
of label predictions) for ALBERT-XXLarge.

where from one quarter to two thirds of data con-
tains at least one of these tags, so models have
been exposed to these inference types. NUMER-
ICAL and BASIC examples are less difficult, but
are by no means solved. On rounds A1–3, ad-
versaries improve on NUMERICAL examples, sug-
gesting that exposure to relevant NUMERICAL ex-
amples can enable modest improvement (see also
Dua et al. 2019 for a related observation).

Summary. ALBERT-XXLarge performs
slightly better than the others, but it is less certain
in its predictions; XLNet-Large and BART-Large
perform slightly worse, but have lower entropy.
Top-level TRICKY10, REASONING, and REF-
ERENCE categories are still difficult for SOTA
models, even though they are frequent. Of the
lower level tags that appear in approximately
10% of the ANLI development sets, FACTS,
COREFERENCE, NEGATION and SYNTACTIC

example pairs remain difficult.

4.3 Overlap in Model Predictions
Generally, model outputs were somewhat corre-
lated with ANLI gold labels represented as one-
hot vectors (see Figure 1). ALBERT-XXLarge
model outputs are the most positively correlated
(Pearson’s correlation) (≈ 0.5), RoBERTa-Large,
BART-Large, XLNet-Large, and ELECTRA-
Large have medium sized positive correlations,
and the R2 and R3 RoBERTa-Large models have
small positive correlations. BERT (R1) is slightly
negatively correlated with gold labels. All differ-
ences were significant (p < 0.01).

However, different models made very simi-
lar predictions: RoBERTa-Large, BART-Large,
XLNet-Large, and ALBERT-XXLarge correlated
highly with each other (> 0.6), with ELECTRA-
Large (> 0.5), and with A2 and A3 RoBERTa-

10TRICKY was the only inference type for which
ALBERT-XXLarge wasn’t the top performer; XLNet-Large
performed somewhat better, largely due to stronger higher
probability and lower entropy on linguistically sophisticated
SYNTACTIC and PRAGMATIC examples.
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gold label

RoBERTa-Large

BART-Large

XLNet-Large

ELECTRA-Large

ALBERT-XXLarge

BERT (R1)

RoBERTa Ens. (R2)

RoBERTa Ens. (R3)

1.00 0.36 0.39 0.39 0.41 0.47 -0.16 0.06 0.20

0.36 1.00 0.62 0.64 0.56 0.60 0.10 0.53 0.66

0.39 0.62 1.00 0.65 0.54 0.61 0.14 0.47 0.55

0.39 0.64 0.65 1.00 0.56 0.60 0.15 0.46 0.55

0.41 0.56 0.54 0.56 1.00 0.57 0.11 0.39 0.48

0.47 0.60 0.61 0.60 0.57 1.00 0.09 0.43 0.51

-0.16 0.10 0.14 0.15 0.11 0.09 1.00 0.28 0.16

0.06 0.53 0.47 0.46 0.39 0.43 0.28 1.00 0.68

0.20 0.66 0.55 0.55 0.48 0.51 0.16 0.68 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Correlation between gold labels and model
outputs. All comparisons are significant p < 0.01.

Large models (0.4− 0.5). RoBERTa-Large model
predictions from A2 correlated with those from
A3 (0.68). These results suggest that substantial
improvement on ANLI may require radically new
ideas, not just minor adjustments to the pretrain-
finetune paradigm (c.f. Sinha et al. 2021a,b).

4.4 Analyzing Results by Genre

A3 was collected using contexts from a variety
of text domains. Table 5 shows the performance
of the highest performing model (ALBERT-
XXLarge) across genres. Wikipedia is the least
difficult genre (as well as the most frequent), Pro-
cedural is somewhat harder, then News (which is
lower entropy), followed by Fiction, Legal, then
RTE. Genres differ widely in how many of their
examples have particular top-level tags (see Ta-
ble 6). Across all genres, TRICKY and REASON-
ING examples occur at roughly the same rates—
with REASONING examples being very common
across the board. Compared to the other genres,
News text has more BASIC tags, and Wikipedia
text has more NUMERICAL. Procedural text has
the lowest rate of NUMERICAL and REFERENCE

tags, but the highest rate of IMPERFECTION.
Table 7 breaks down of the performance of

the ALBERT-XXLarge model by genre and tag
(see Table 22 in the Appendix for the other mod-
els’ performance). ALBERT-XXLarge perfor-
mance on NUMERICAL examples is relatively sta-
ble across the genres, but for the other top level

tags there is some variation that does not just re-
flect tag frequency. For example, the ALBERT-
XXLarge model does better on BASIC and REA-
SONING examples from Wikipedia, on REFER-
ENCE examples from the Procedural genre, and on
TRICKY examples from the News genre. This sug-
gests that data from different genres could be dif-
ferentially beneficial for training the skills needed
for these top-level tags, suggesting that targeted
upsampling could be beneficial in the future.

4.5 Other Analyses

Appendix B provides a detailed analysis of other
dataset properties (word and sentence length, and
most common words by round, gold label, and
tag), where we show that ANLI and MNLI are rel-
atively similar to each other but differ from SNLI.
Crowdworker rationales from ANLI are explored
in §B.1, Table 23–Table 24.

5 Conclusion

We release annotations of the ANLI development
sets to determine which inference types are re-
sponsible for model success and failure, and how
their frequencies change over dynamic data collec-
tion. Inferences relying on numerical or common
sense reasoning are most prevalent, appearing in
≈40%–60% of examples. We finetuned a variety
of transformer language models on NLI and com-
pared their performance to the original target mod-
els used to adversarially collect ANLI. ALBERT-
XXLarge performs the best of our 8 model sam-
ple, but there is still ample room for improvement
in accuracy. Despite being frequent, examples re-
quiring common sense reasoning, understanding
of co-reference, negation and syntactic knowledge
remain the most difficult. One could imagine ex-
plicit interventions to address this, perhaps incor-
porating insights from Sap et al. (2020), or using
other modes of evaluation that explore model and
data dynamics (Gardner et al., 2020; Swayamdipta
et al., 2020; Rodriguez et al., 2021).

ANLI remains difficult: the huge GPT-3
model (Brown et al., 2020) barely made any
progress, and even the recent DeBERTa model
(He et al., 2021) cannot break 70% accuracy. We
hope our annotations will inspire new innovations
by enabling more fine-grained understanding of
model strengths and weaknesses as ANLI matures.
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A Further Details on Annotation

A.1 Details of the Annotation Scheme

A full ontology, comprising all four levels, is pro-
vided together with examples in Table 14.

To give an idea of what sorts of information
falls under each tag, we will go through them
in turn. NUMERICAL classes refer to examples
where numerical reasoning is crucial for determin-
ing the correct label, and break down into CARDI-
NAL, ORDINAL—along the lines of Ravichander
et al. (2019)—COUNTING and NOMINAL; the first
two break down further into AGES and DATES if
they contain information about either of these top-
ics. BASIC consists of staple types of reasoning,
such as lexical hyponymy and hypernymy (see
also Glockner et al. 2018), conjunction (see also
Toledo et al. 2012; Saha et al. 2020), and negation
(see also Hossain et al. 2020). REFERENCE con-
sists of pairs that require noun or event references
to be resolved (either within or between context
and hypothesis). TRICKY examples require either
complex linguistic knowledge, say of pragmatics
or syntactic verb argument structure, reorderings,
word games (e.g., anagrams, acrostic jokes), and
foreign language content (TRANSLATION).

REASONING examples require the application
of reasoning outside of what is provided in the ex-
ample alone; it is divided into three levels. The
first is PLAUSIBILITY, which was loosely inspired
by Bhagavatula et al. (2020); Chen et al. (2020),
for which the annotator provided their subjective
intuition on how likely the situation is to have
genuinely occurred (for example ‘when computer
games come out they are often buggy’ and ‘lead
actors get paid the most’ are likely). PLAUSIBIL-
ITY also contains DEBATABLE examples, which
depend on opinion or scalar adjectives like “big”
(e.g. a big mouse is “big” for a mouse, but not big
when compared to an elephant). The other two
FACTS and CONTAINMENT refer to external facts
about the world (e.g., ‘what year is it now?’) and
relationships between things (e.g., ‘Australia is in
the southern hemisphere’), respectively, that were
not clearly provided by the example pair itself.

There is also a catch-all class labeled IM-
PERFECTION that catches not only label “er-
rors” (i.e., rare cases of labels for which the
expert annotator(s) disagreed with the gold la-
bel from the crowdworker-annotator), but also
spelling mistakes (SPELLING), event corefer-

ence examples (EVENTCOREF11), and pairs that
could reasonably be given multiple correct labels
(AMBIGUOUS). The latter are likely uniquely sub-
ject to human variation in entailment labels, à
la Pavlick and Kwiatkowski (2019), Min et al.
(2020), Nie et al. (2020b), since people might vary
on which label they initially prefer, even though
multiple labels might be possible.

Exhaustive List of Tags. In the actual dataset,
tags at different levels are dash-separated, as in
REASONING-PLAUSIBILITY-LIKELY. These in-
clude: BASIC CAUSEEFFECT, BASIC COMPAR-
ATIVESUPERLATIVE, BASIC COORDINATION,
BASIC FACTS, BASIC IDIOMS, BASIC LEXI-
CAL DISSIMILAR, BASIC LEXICAL SIMILAR,
BASIC MODUS, BASIC NEGATION, EVENT-
COREF, IMPERFECTION AMBIGUITY, IMPER-
FECTION ERROR, IMPERFECTION NONNATIVE,
IMPERFECTION SPELLING, NUMERICAL CAR-
DINAL, NUMERICAL CARDINAL AGE, NU-
MERICAL CARDINAL COUNTING, NUMERI-
CAL CARDINAL DATES, NUMERICAL CARDI-
NAL NOMINAL, NUMERICAL CARDINAL NOM-
INAL AGE, NUMERICAL CARDINAL NOMI-
NAL DATES, NUMERICAL ORDINAL NUMER-
ICAL ORDINAL AGE, NUMERICAL ORDINAL

DATES, NUMERICAL ORDINAL NOMINAL, NU-
MERICAL ORDINAL NOMINAL DATES, REA-
SONING CAUSEEFFECT, REASONING CONTAIN-
MENT LOCATION, REASONING CONTAINMENT

PARTS, REASONING CONTAINMENT TIMES,
REASONING DEBATABLE, REASONING FACTS,
REASONING-PLAUSIBILITY LIKELY, REASON-
ING PLAUSIBILITY UNLIKELY, REFERENCE

COREFERENCE, REFERENCE FAMILY, REFER-
ENCE NAMES, TRICKY EXHAUSTIFICATION,
TRICKY PRAGMATIC, TRICKY SYNTACTIC,
TRICKY TRANSLATION, TRICKY WORDPLAY.

In addition to these tags, some top-level tags are
associated with a -0 flag; these are very rare (less
than 30 of these in the dataset). The zero-flag was
associated with examples that didn’t fall into any
lower level categories. Finally, for the purposes
of this paper, we collapsed two second-level tags
BASIC CAUSEEFFECT and BASIC MODUS12 into
BASIC-IMPLICATIONS because these types were
rare, we felt the two are related.

11SNLI and MNLI annotation guidelines required annota-
tors to assume event coreference.

12MODUS labeled classical inference types such as Modus
Ponens, Modus Tollens, etc.
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Tag Agreement (%) A1 # of Tags A2 # of Tags

REASONING 59.1% 176 226
BASIC 69.2% 122 128
REFERENCE 64.5% 88 136
NUMERICAL 88.6% 94 112
TRICKY 64.5% 89 105
IMPERFECTION 81.2% 44 56
EVENTCOREF 89.2% 11 29

REASONING-FACTS 54.8% 61 174
REFERENCE-COREFERENCE 66.2% 72 109
REASONING-PLAUSIBILITY 71.2% 104 70
BASIC-LEXICAL 73.9% 67 69
NUMERICAL-CARDINAL-DATES 92.9% 51 68
TRICKY-PRESUPPOSITION 74.9% 19 66
BASIC-NEGATION 94.3% 34 33
REFERENCE-NAMES 82.2% 22 45
NUMERICAL-CARDINAL 92.9% 23 38
BASIC-CONJUNCTION 87.9% 12 38
TRICKY-SYNTACTIC 88.2% 33 12
EVENTCOREF 89.2% 11 29
TRICKY-TRANSLATION 92.6% 15 23
TRICKY-EXHAUSTIFICATION 94.6% 22 14
IMPERFECTION-SPELLING 93.3% 15 15
REASONING-CONTAINMENT-LOCATION 96.6% 15 13
NUMERICAL-CARDINAL-AGE 98.6% 14 12
IMPERFECTION-NONNATIVE 94.3% 5 20
IMPERFECTION-LABEL 93.6% 8 17
IMPERFECTION-AMBIGUITY 93.9% 16 8
BASIC-COMPARATIVESUPERLATIVE 95.3% 17 5
REASONING-CONTAINMENT-TIME 94.3% 16 5
BASIC-CAUSEEFFECT 95.9% 8 12
NUMERICAL-ORDINAL 98.6% 9 9
NUMERICAL-CARDINAL-COUNTING 99.3% 7 9
NUMERICAL-CARDINAL-NOMINAL-DATES 95.3% 0 14
TRICKY-WORDPLAY 96.9% 8 5
NUMERICAL-CARDINAL-NOMINAL 96.3% 6 7
BASIC-IDIOM 96.3% 7 6
REFERENCE-FAMILY 99.3% 5 5
NUMERICAL-ORDINAL-DATES 97.9% 4 2
BASIC-0 98.3% 4 1
IMPERFECTION-0 98.9% 2 1
REASONING-CONTAINMENT-PARTS 99.6% 1 0
REASONING-0 99.6% 0 1

Aggregate 91.1% (avg) 713 (sum) 955 (sum)

Table 8: Interannotator agreement percentages (bold exceeded 90%) and tag counts for 300 randomly sampled
examples. Tags are sorted by the number of usages of that tag by either annotator.

More Examples from the Annotation Guide-
lines. Some tags required sophisticated linguis-
tic domain knowledge, so more the annotation
guidelines included more examples (some will
be provided here). For example, the TRICKY-
EXHAUSTIFICATION is wholly novel, i.e., not
adopted from, or similar to, any other semantic an-
notation scheme known to the authors. This tag
marks examples where the original crowdworker-
annotator assumed that only one predicate holds
of the topic, and that other predicates don’t. Of-
ten TRICKY-EXHAUSTIFICATION examples have
the word “only” in the hypothesis, but that’s only
a tendency: observe the context, Linguistics is
the scientific study of language, and involves an
analysis of language form, language meaning, and
language in context and the hypothesis Form and
meaning are the only aspects of language linguis-
tics is concerned with, which gets labeled as a con-

tradiction.13 For this example, the crowdworker-
annotator wrote a hypothesis that excludes one of
the core properties of linguistics provided in the
context and claims that the remaining two they list
are the only core linguistic properties.

To take another example, also a contradiction:
For the context, The Sound and the Fury is an
American drama film directed by James Franco. It
is the second film version of the novel of the same
name by William Faulkner and hypothesis Two
Chainz actually wrote The Sound and the Fury,
we have a TRICKY-EXHAUSTIFICATION tag. The
Gricean Maxims of Relation and Quantity (Grice,
1975) require the writer of the original context
to be maximally cooperative and informative, and
thus, to list all the authors of The Sound and Fury.
Since the context only listed Faulkner, we con-

13This example also receives BASIC-COORDINATION,
and BASIC-LEXICAL-SIMILAR for “involves” and “as-
pects”/“concerned with”.
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clude that the book only had one author, Faulkner,
and Two Chainz did not in fact (co-)author The
Sound and the Fury.14

As we mentioned above, any one example sen-
tence pair can receive multiple tags. An ex-
ample with a hypothesis George III comes af-
ter George II would receive tags REFERENCE-
NAMES (because we are comparing the names
of two individuals), and NUMERICAL-ORDINAL

(because we are comparing the roman numerals
for first and second). A pair with the context Sean
Patrick Hannity...is an American talk show host,
author, and conservative political commentator...
and the hypothesis Hannity has dated a liberal
would receive the tags BASIC-LEXICAL (because
of the relation between “conservative” and “lib-
eral”), REFERENCE-COREFERENCE, (because of
the coreference between “Sean Patrick Hannity”
and “Hannity”), and REASONING-UNLIKELY

(because it’s unlikely given world knowledge that
a liberal and a conservative commentator would
date, although it’s definitely possible).

The annotation guidelines also provided exam-
ples to aid in disentangling REFERENCE-NAMES

from REFERENCE-COREFERENCE, as they of-
ten appear together. REFERENCE-COREFERENCE

should be used when resolving reference between
non-string matched noun phrases (i.e. DPs) is nec-
essary to get the label: Mary Smithi was a pro-
lific author. Shei had a lot of published works by
2010.⇒Smithi published many works of litera-
ture. REFERENCE-NAMES is used when the label
is predicated on either (i) a discussion of names,
or (ii) resolving multiple names given to a per-
son, but the reference in the hypothesis is an ex-
act string match to one of the options: La Cygnei
(pronounced “luh SEEN”) is a city in the south
of France.⇒La Cygnei is in France. Some ex-
amples require both REFERENCE-COREFERENCE

and REFERENCE-NAMES tags: Mary Beauregard
Smith, the fourth grand Princess of Winchester
was a prolific author.⇒Princess Mary wrote a lot.

A.2 Inter-Annotator Agreement

Annotation guidelines for each tag were discussed
verbally between the two annotators during the
training of the second expert. The main expert an-
notator trained the second by first walking through
the annotation guidelines (i.e., Table 2), answering

14This pair also gets TRICKY-PRAGMATIC, and EVENT-
COREF and BASIC-LEXICAL-SIMILAR tags.

Average Top Level Tags
Precision Recall F1 Precision Recall F1

A1 0.55 0.42 0.44 0.59 0.73 0.61
A2 0.42 0.55 0.73 0.59

Table 9: Average Precision, Recall and F1 between our
two annotators on 300 randomly selected development
set examples. A1 was taken with the original annotator
as ground truth, A2 with the second expert. Recall that
X to Y precision is equivalent to Y to X recall.

any questions, and providing additional examples
taken from their experience as necessary. The sec-
ond expert then annotated 20 randomly sampled
examples from the R1 training set as practice.

The two annotators subsequently discussed
their selections on these training examples when
they differed. Of course, there is some subjec-
tivity inherent in this annotation scheme, which
crucially relies on expert opinions about what in-
formation in the premise or hypothesis could be
used to determine the correct label. After sat-
isfactorily coming to a conclusion (i.e., a con-
sensus for all 20 examples), the second annota-
tor was provided with another set of 20 randomly
sampled examples, this time from the R3 train-
ing set (to account for genre differences across
rounds), and again, discussion was repeated un-
til consensus was reached. Several further discus-
sions took place. Once both annotators were confi-
dent in the second expert annotator’s understand-
ing of the scheme, the secondary annotator was
provided with 3 random selections of 100 exam-
ples (one from each development set) as the final
set to calculate inter-annotator agreement from.
The second annotator was also provided with the
exhaustive tag list (above), which includes some
splits that subcategorize the tags from Table 2 even
further. The tags are visible in Table 8, along with
percent agreement for each tag.

To provide additional NLI-internal context for
our percent agreement results, we note that percent
agreement on both top and lower level tags ex-
ceeds the percent agreement of non-experts on the
task of NLI as reported in Bowman et al. (2015)
and Williams et al. (2018). Recall that performing
NLI is a subtask of our annotations (i.e., experts
must check the NLI label to determine if there was
an error and must also then tag contained phenom-
ena that contribute to the label decision).

Since our annotation scheme incorporated some
subjectivity—i.e., annotators tag phenomena they
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Our Scheme’s Tag Other Scheme’s Tag (Citation)

BASIC-NEGATION Negation (Naik et al., 2018; Hossain et al., 2020; Geiger et al., 2020)
BASIC-LEXICAL-DISSIMILAR Antonymy (Naik et al., 2018), Contrast (Bejar et al., 2012); Ch. 315

BASIC-LEXICAL-SIMILAR Overlap (Naik et al., 2018), Similar (Bejar et al., 2012); Ch. 3, hyponym/hypernym (Geiger et al., 2020), Lexical (Joshi et al., 2020)
BASIC-CAUSEEFFECT Cause-Purpose (Bejar et al., 2012); Ch. 3, cause (Sammons et al., 2010), Cause and Effect (LoBue and Yates, 2011)

BASIC-COORDINATION Conjoined Noun Phrases (Cooper et al., 1996), ConjNLI (Saha et al., 2020), “Connectives” (Joshi et al., 2020)
BASIC-COMPARATIVESUPERLATIVE Comparatives (Cooper et al., 1996), , “Connectives” (Joshi et al., 2020)

NUMERICAL numeric reasoning, numerical quantity (Sammons et al., 2010), Mathematical (Joshi et al., 2020)
NUMERICAL-CARDINAL cardinal (Ravichander et al., 2019)
NUMERICAL-ORDINAL ordinal (Ravichander et al., 2019)

REFERENCE-COREFERENCE Anaphora (Inter-Sentential, Intra-Sentential) (Cooper et al., 1996), coreference (Sammons et al., 2010)
REFERENCE-COREFERENCE with REFERENCE-NAMES Representation (Bejar et al., 2012); Ch. 3

REFERENCE-FAMILY parent-sibling, kinship (Sammons et al., 2010)
REFERENCE-NAMES name (Sammons et al., 2010)

REASONING-DEBATABLE Cultural/Situational (LoBue and Yates, 2011), Defeasible Inferences (Rudinger et al., 2020)
REASONING-PLAUSIBILITY-LIKELY Probabilistic Dependency (LoBue and Yates, 2011)
REASONING-CONTAINMENT-TIMES Temporal Adverbials (Cooper et al., 1996), Space-Time (Bejar et al., 2012); Ch. 3, event chain, temporal (Sammons et al., 2010)

REASONING-CONTAINMENT-LOCATION spatial reasoning (Sammons et al., 2010), Geometry (LoBue and Yates, 2011)
REASONING-CONTAINMENT-PARTS Part-Whole, Class-Inclusions (Bejar et al., 2012); Ch. 3, has-parts (LoBue and Yates, 2011)

REASONING-FACTS Real World Knowledge (Naik et al., 2018; Clark, 2018; Bernardy and Chatzikyriakidis, 2019)
TRICKY-SYNTACTIC passive-active, missing argument, missing relation, simple rewrite, (Sammons et al., 2010)

IMPERFECTIONS-AMBIGUITY Ambiguity (Naik et al., 2018)

Table 10: Comparisons between our tagset and tags from other annotation schemes.

believe a human would use to provide the NLI la-
bel for the example—annotators are likely to have
different blindspots. Descriptively, annotators dif-
fered slightly in the number of tags they assign on
average: the original annotator assigns fewer tags
per example (Mean = 2.25, Std. = 1.01) than
the second expert (Mean = 3.02, Std. = 1.45).
The number of tags in the intersection of the two
was predictably lower (Mean = 1.20, Std.= 0.85)
than either annotator’s average or the union (Mean
= 4.07, Std. = 1.55).

In addition to agreement percentages that are
reported in Table 8, we report average preci-
sion, recall, and F1 (a weighted average of the
two) for our annotations in Table 9.16 For per-
centages, we note that agreement was generally
higher for rarer tags. The most frequent top-
level tag, REASONING, had the lowest agreement,
perhaps due to disagreements in REASONING-
FACTS, where the subjectivity of decisions likely
drove down agreement. Subjectivity might be ex-
pected for REASONING-PLAUSIBILITY examples
as well, because it is hard to be sure whether a
particular fact is necessary for the label (partic-
ular in the case of REASONING-PLAUSIBILITY-
DEBATABLE. REASONING-PLAUSIBILITY also
showed some disagreement, as people differ
whether they feel compelled to note that the likeli-
hood of a context is relevant for the label decision.
Finally, we note that frequent lower level tags
NUMERICAL-CARDINAL(-DATES) and BASIC-
NEGATION had the highest agreement.

Although we report accuracy (i.e., percentage
16For all statistics that aggregate tag results, we did not

include Imperfection tags, as imperfections can be difficult
to spot and annotator differences for these tags typically only
represent whether an annotator noticed a mistake when the
other did not.

agreement), F1 is usually more useful than accu-
racy, especially if you have an uneven class dis-
tribution (as we do). For this reason, we addi-
tionally report F1, precision and recall between
the two annotators (reporting statistics twice, once
with each annotator taken to be ground truth). Pre-
cision, recall and F1 are all fairly high (recall that
these three measures are upper bounded by 1), but
are higher for top level tags than for the average
of all tags. We believe this is an acceptable level
of agreement, especially given the difficulty of the
task and the fact that tags vary in how subjective
their decisions are.

A.3 Direct Comparisons to other Annotation
Schemes

Our scheme derives its inspiration from the wealth
of prior work on types of sentential inference
both within and from outside NLP—Cooper et al.
(1996); Sammons et al. (2010); LoBue and Yates
(2011); Jurgens et al. (2012); Jia and Liang (2017);
White et al. (2017); Naik et al. (2018); Nie et al.
(2019); Kim and Linzen (2020); Yu and Ettinger
(2020); White et al. (2020), i.a. When one im-
plements an annotation scheme, one must decide
on the level of depth one wants to achieve. On
the one hand, a small number of tags can allow
for easy annotation (by non-experts or even auto-
matically), whereas on the other, a more compli-
cated and complete annotation scheme (like, e.g.,
Cooper et al. 1996; Bejar et al. 2012) can allow for
a better understanding of the full range of possible
phenomena that might be relevant. (Note: for con-
textualization, our tags are greater in tag number
than Naik et al. (2018) but smaller and more man-
ageable than Cooper et al. 1996 and Bejar et al.
2012). We wanted annotations that allow for an
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evaluation of model behavior on a phenomenon-
by-phenomenon basis, in the spirit of Weston et al.
(2016); Wang et al. (2018); Jeretic et al. (2020)—
but unlike Jia and Liang (2017). We also wanted to
be able to detect interactions between phenomena
(Sammons et al., 2010). Thus, we implemented
our hierarchical scheme (for flexible tag-set size)
in a way that could provide all these desiderata.

Table 10 provides a by-tag comparison between
our annotation scheme and several others. Only
direct comparisons are listed in the table; in other
cases, our scheme had two tags where another
scheme had one, or vice versa. Some of these ex-
amples are listed below, by the particular inference
types for each annotation scheme.

Several labels from Naik et al. (2018)’s annota-
tion scheme concur with ours, but ours has much
wider coverage. In fact, it is a near proper superset
of their scheme. Both taxonomies have a NEGA-
TION tag, an AMBIGUITY tag, a REAL WORLD

KNOWLEDGE—which for us is REASONING-
FACTS, and a ANONYMY tag—which for us
is BASIC-LEXICAL-DISSIMILAR. Additionally,
both annotation schemes have a tag for numeri-
cal reasoning. We didn’t include “word overlap”
as that is easily automatable and would thus be an
inappropriate use of limited hand-annotation time.
Instead, we include a more flexible/complex no-
tion of overlap in our BASIC-LEXICAL-SIMILAR

tag, which accounts not only for synonyms, but
also for phrase level paraphrases.

Our scheme can handle nearly all of the infer-
ence types in Sammons et al. (2010). For example,
their ‘numerical reasoning’ tag maps onto a com-
bination of NUMERICAL tags and REASONING-
FACTSfor us to account for external mathemat-
ical knowledge. A combination of their ‘kin-
ship’ and ‘parent-sibling’ tags is present in our
REFERENCE-FAMILY tag. One important differ-
ence between our approach and theirs is that we
do not separate negative and positive occurrences
of phenomena; both would appear under the same
tag for us. One could imagine performing a further
round of annotation on the ANLI data to separate
positive from negative as Sammons et al. does.

Several of the intuitions of the LoBue and
Yates (2011) taxonomy are present in our scheme.
For example, their ‘arithmetic’ tag roughly cor-
responds to a combination of our NUMERICAL-
CARDINAL and REASONING-FACTS (i.e., for
mathematical reasoning). Examples labeled

with their “preconditions” tag would receive our
TRICKY-PRAGMATIC tag. Interestingly, our
TRICKY-EXHAUSTIFICATION tag seems to be a
combination of their ‘mutual exclusivity’, ‘omni-
science’ and ‘functionality’ tags. Other relation-
ships between our tags and theirs are in Table 10.

Many of our numerical reasoning types were in-
spired by Ravichander et al. (2019), which showed
that many NLI systems perform very poorly on
many types of numerical reasoning. In addi-
tion to including cardinal and ordinal tags, as
they do, we take their ideas one step further and
also tag numerical examples where the numbers
are not merely playing canonical roles as degrees
of measure (e.g., NUMERICAL-NOMINAL and
NUMERICAL-COUNTING). We also expand on
their basic numerical types by specifying whether
a number refers to a date or an age. For any of
their examples requiring numerical reasoning, we
would assign NUMERICAL as a top level tag, as
well as a REASONING-FACTS tag, as we described
in the paragraph above. A similar set of tags
would be present for their “lexical inference” ex-
amples where, e.g., it is necessary to know that ‘m’
refers to ‘meters’ when it follows a number; in this
case, we would additionally include a TRICKY-
WORDPLAY tag.

The annotation tagset of Poliak et al. (2018a)
overlaps with ours in a few tags. For exam-
ple, their ‘pun’ tag is a proper subset of our
TRICKY-WORDPLAY tag. Their ‘NER’ and ‘Gen-
dered Anaphora’ fall under our REFERENCE-
COREFERENCE and REFERENCE-NAMES tags.
Their recasting of the MegaVeridicality dataset
(White and Rawlins, 2018) would have some over-
lap with our TRICKY-PRAGMATIC tag, for ex-
ample, for the factive pair Someone knew some-
thing happened. ⇒ something happened.. Sim-
ilarly, their examples recast from Schuler (2005,
VerbNet) would likely recieve our TRICKY-
SYNTACTIC tag for argument structure alterna-
tion, in at least some cases.

Rozen et al. (2019)’s tagset also has some
overlap with ours, although none directly.
They present two automatically generated
datasets: one targets comparative reasoning about
numbers—i.e., corresponding to a combination
of our NUMERICAL-CARDINAL and BASIC-
COMPARATIVESUPERLATIVE tags—and the
other targets dative-alternation—which, like (Po-
liak et al., 2018a)’s recasting of VerbNet, would
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Dataset Contexts Statements
WordLen. Sent.Len. WordLen. Sent.Len.

ANLI

All 4.98 (0.60) 55.6 (13.7) 4.78 (0.76) 10.3 (5.28)
A1 5.09 (0.69) 54.1 (8.35) 4.91 (0.74) 11.0 (5.36)
A2 5.09 (0.47) 54.2 (8.24) 4.80 (0.77) 10.1 (4.95)
A3 4.73 (0.50) 59.2 (21.5) 4.59 (0.76) 9.5 (5.38)
C 5.00 (0.79) 55.8 (13.8) 4.76 (0.73) 11.4 (6.51)
N 4.97 (0.47) 55.4 (13.8) 4.83 (0.78) 9.4 (4.49)
E 5.00 (0.49) 55.7 (13.6) 4.75 (0.78) 10.3 (4.44)

MNLI

All 4.90 (0.97) 19.5 (13.6) 4.82 (0.90) 10.4 (4.43)
M 4.88 (1.10) 19.3 (14.2) 4.78 (0.92) 9.9 (4.28)

MM 4.93 (0.87) 19.7 (13.0) 4.86 (0.89) 10.8 (4.53)
C 4.90 (0.97) 19.4 (13.6) 4.79 (0.90) 9.7 (3.99)
N 4.90 (0.98) 19.4 (13.8) 4.79 (0.85) 10.9 (4.46)
E 4.91 (0.96) 19.6 (13.5) 4.86 (0.95) 10.4 (4.71)

SNLI

All 4.31 (0.65) 14.0 (6.32) 4.23 (0.75) 7.5 (3.14)
C 4.31 (0.64) 14.0 (6.35) 4.16 (0.71) 7.4 (2.90)
N 4.31 (0.66) 13.8 (6.28) 4.26 (0.72) 8.3 (3.36)
E 4.31 (0.64) 14.0 (6.31) 4.26 (0.81) 6.8 (2.90)

Table 11: Average length of words and sentences in
contexts, statements, and reasons for ANLI, MultiNLI,
SNLI. Average and (standard deviation).

probably correspond to our TRICKY-SYNTACTIC.

White et al. (2017) uses pre-existing seman-
tic annotations to create an RTE/NLI formatted
dataset. Their approach has several strong ben-
efits, not the least of which is its use of min-
imal pairs to generate examples that can pin-
point exact failure points. For the first of our
goals—understanding the contents of ANLI in
particular—it would be interesting to have such
annotations, and this could be a potentially fruit-
ful future direction for research. But for the
other—understanding current model performance
on ANLI—it is not immediately clear to us that
annotating ANLI for lexical semantic properties
of predicates and their arguments (e.g., volition,
awareness, and change of state) would help. In the
end, it is an empirical question for future work.

From the above pairwise comparisons between
existing annotation schemes (or data creation
schemes), it should be clear there are many shared
intuitions and many works are attempting to cap-
ture similar phenomena. We believe our tags
thread the needle in a way that incorporates the
best parts of the older annotation schemes while
also innovating new phenomena and ways to view
phenomena in relation to each other. In particular,
very few of the schemes cited above arrange low
level phenomena into a comprehensive multilevel
hierarchy. This is one of the main benefits of our
scheme. Our hierarchy allows us to compare mod-
els at multiple levels, and hopefully, as our mod-
els improve, it can allow us to explore transfer be-
tween different reasoning types.

Dataset WordLen. Sent.Len. Count

All 4.54 (0.69) 21.05 (13.63) 3200

R1 4.57 (0.65) 22.40 (13.80) 1000
R2 4.51 (0.71) 20.14 (12.96) 1000
R3 4.55 (0.70) 20.81 (14.11) 1200

C 4.53 (0.70) 19.46 (12.64) 1062
N 4.52 (0.64) 23.81 (15.05) 1066
E 4.58 (0.72) 19.87 (12.66) 1070

Numerical 4.44 (0.65) 21.79 (13.21) 1036
Basic 4.63 (0.69) 21.31 (13.92) 1327

Reference 4.53 (0.70) 20.04 (13.01) 868
Tricky 4.56 (0.71) 20.58 (13.22) 893

Reasoning 4.52 (0.66) 21.82 (14.08) 1197
Imperfection 4.53 (0.71) 19.26 (13.06) 452

Table 12: Average length of words and sentences in
rationales for ANLI. Average and (standard deviation).

B Dataset Properties

To further describe the ANLI dataset, we mea-
sure the length of words and sentences across all
rounds and across all gold labels. We compare
ANLI to SNLI and MNLI in Table 11. We also re-
port length of rationales in Table 12. As the tables
show, the statistics across classification labels are
roughly the same within each dataset. It is easy to
see that ANLI contains much longer contexts than
both MNLI and SNLI. Overall, ANLI and MNLI
appear more similar in statistics to each other than
to SNLI, having have longer statements and longer
words.

We analyzed the top 25 most frequent words
(with stopwords removed based on the NLTK17

stopword list) in development set contexts, state-
ments, and rationales. We investigate frequent
words for the entire dataset, by round, and by
gold label (see Table 23), and by top-level an-
notation tag (see Table 24). The most frequent
words in contexts reflect the domains of the orig-
inal text. Since Wikipedia contexts were the most
frequent in ANLI, words from Wikipedia includ-
ing, for example ‘film’, ‘album’, ‘directed’, ‘foot-
ball’, ‘band’, ‘television’ predictably figure promi-
nently. References to nations, such as ‘american’,
‘state’, and ‘national’ are also common—perhaps
reflecting a North American bias in the dataset.

Statements written by crowdworkers show a
preference instead for terms like ‘born’, ‘died’,
and ‘people’, suggesting again, that Wikipedia
contexts, consisting largely of biographies, have
a specific genre effect on constructed statements.

17https://www.nltk.org/
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Model A1 A2 A3 ANLI hyperparameters

BERT (R1) 0 28 32 21 24-layer, 1024-hidden, 16-heads, 335M param.
RoBERTa (R2) Ens. 67 18 22 35 24-layer, 1024-hidden, 16-heads, 355M param.
RoBERTa (R3) Ens. 72 45 20 44 24-layer, 1024-hidden, 16-heads, 355M param.
RoBERTa-Large 74 51 46 56 24-layer, 1024-hidden, 16-heads, 355M param.
BART-Large 74 52 50 58 24-layer, 1024-hidden, 16-heads, 406M param.
XLNet-Large 74 52 51 58 24-layer, 1024-hidden, 16-heads, 340M param.
ELECTRA-Large 67 54 55 58 24-layer, 1024-hidden, 16-heads, 335M param.
ALBERT-XXLarge 76 57 57 63 12 repeating layer, 4096-hidden, 64-heads, 223M param.

Table 13: Accuracy for each model on the ANLI De-
velopment Sets (highest accuracy is bolded). Hyper-
parameters also provided. ‘Ens.’ refers to one model
randomly selected from an ensemble of different seeds

Several examples appear in the top 25 most fre-
quent words for both statements and contexts,
including ‘film’, ‘american’, ‘one’, ‘two’, ‘not’,
‘first’, ‘new’, ‘played’, ‘album’, and ‘city’. In
particular, words such as ‘one’, ‘first’, ‘new’, and
‘best’ in contexts appear to be opposed by (near)
antonyms such as ‘two’, ‘last’, ‘old’, ‘least’, and
‘less’ in statements. This suggests the words
present in a context might affect how crowdwork-
ers construct statements, potentially suggesting
some lexical confounds in ANLI. Finally, we ob-
serve that the top 25 most frequent words in con-
texts are used roughly 3 times as often as the top
25 most frequent words in statements. This sug-
gests that statements have wider and more varied
vocabulary than contexts do.

B.1 Analyzing Annotator Rationales

We observe that the most frequent words in ratio-
nales differ from those in contexts and statements.
The original annotators often use ‘statement’ and
‘context’ in their rationales to refer to example
pairs, as well as ‘system’ to refer to the model; this
last term is likely due to the fact that the name of
the Mechanical Turk task used to employ crowd-
workers in the original data collection was called
“Beat the System” (Nie et al., 2020a, App. E). The
set of most frequent words in rationales also con-
tains, predictably, references to the model perfor-
mance (e.g., ‘correct’, ‘incorrect’), and to speech
act verbs (e.g., ‘says’, ‘states’).

Interestingly, there is a higher number of verbs
in the rationales denoting mental states (e.g.,
‘think’, ‘know’, ‘confused’), which suggests that
the annotators could be ascribing theory of mind
to the system, or at least using mental-state terms
metaphorically—which could be due to the Nie
et al. (2020a) data collection procedure that en-
courages crowdworkers to think of the model as
an adversary. Rationales also contain more modals
(e.g., ‘probably’, ‘may’, ‘could’), which are often
used to mark uncertainty, suggesting that the an-

notators are aware of the fact that their rationales
might be biased by their human expectations. Fi-
nally, we note that the top 25 most frequent words
used in rationales are much more common than
are the top 25 most frequent words in contexts (by
roughly two times) or in statements (by roughly
5-6 times). This suggests that vocabulary used
for writing rationales is smaller than that in the
contexts (from domains such as Wikipedia), and
crowdworker annotated statements.

C Tag Breakdowns

Table 15 shows a breakdown of second-level tag
incidence by top-level tag.

D Development Set Accuracies for
8 Transformer Models

Table 13 shows development set accuracies for all
transformer models, by round. ANLI is still quite
challenging, with even SOTA models barely ex-
ceeding 50% accuracy (although remember that
the development set is approximately balanced 3-
way classification, so we are beating random base-
line). The ALBERT-XXLarge model achieves
the highest accuracy on the full development set,
reaching approximately 63% correct. On A1, the
accuracy between the ALBERT-XXLarge and the
other SOTA models hovers around two points, ex-
tending to 5–6 percentage points on A2, and 6–11
points on A3; the gap between ALBERT-XXLarge
and the other SOTA models on the full ANLI de-
velopment set hovers between 5 and 7 points.

E Model Predictions Breakdown by Tag

Model predictions by specific tags are in Ta-
ble 16 (BASIC), Table 17 (NUMERICAL), Table 18
(REASONING), Table 19 (REFERENCE), Table 20
(TRICKY), Table 21 (IMPERFECTIONS).

For NUMERICAL, COUNTING is the hardest,
which makes sense given that COUNTING exam-
ples are relatively rare, and require that one actu-
ally counts phrases in the text, which is a metalin-
guistic skill. ORDINAL is the next most difficult
category, perhaps because, like COUNTING exam-
ples, ORDINAL examples are relatively rare.18 For

18Additionally, it seems difficult for models to bootstrap
their CARDINAL number knowledge for ORDINAL numbers.
One might hope that a model could bootstrap its knowledge
of the order of cardinal numbers (e.g., that one comes before
two and three) to perform well on their corresponding ordi-
nals, However, numerical order information doesn’t seem to
be generally applied in these models. Perhaps this is because
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BASIC, IMPLICATION, IDIOM and NEGATION

were more difficult than LEXICAL, COMPARA-
TIVE & SUPERLATIVE and COORDINATION. For
REFERENCE, there is a lot of variation in the
behavior of different models, particularly for the
NAMES examples, although also for COREFER-
ENCE examples, making it difficult to determine
which is more difficult. Finally, for TRICKY ex-
amples, WORDPLAY examples the most difficult,
again because these require complex metalinguis-
tic abilities (i.e., word games, puns, and ana-
grams), but they are followed closely by EXHAUS-
TIFICATION examples, which require a complex
type of pragmatic reasoning.19

F Model Predictions Breakdown by
Domain

Table 22 shows the breakdown by genre.
Wikipedia results correspond with the overall
dataset: ALBERT-XXLarge performs the best
on everything except TRICKY (where XLNET-
LARGE performs best. ALBERT-XXLarge per-
forms best nearly across the board on pro-
cedural text (being narrowly edged out by
ELECTRA-Large on REASONING) and fiction
(where ELECTRA-Large performs best on REF-
ERENCE, and where BART-Large and ELECTRA-
Large jointly take top slot for TRICKY). Fi-
nally, the news genre has the most variation:
ALBERT-XXLarge still performs well on BASIC,
TRICKY, REASONING tags, although ELECTRA-
Large narrowly beats it on NUMERICAL; XLNet-
Large beats out all others on REFERENCE in the
news genre by 3+ points.

We aim to characterize relative performance
between the models and note variation between
model performances on different genres. For ex-
ample, BART and RoBERTa struggle with fic-
tion (except for on the TRICKY tag). For ex-
ample, ELECTRA-Large performs quite well on
NUMERICAL examples from the Wikipedia, news,
and procedural datasets, but poorly on NUMER-
ICAL examples from Fiction. Similary BART-
LARGE performs well on TRICKY examples from
Wikipedia, fiction, and news, but struggles with
TRICKY examples in procedural text. To give a fi-

many common ordinal numbers in English are not morpho-
logically composed of their cardinal counterparts (e.g., one
and first, two and second.

19See Chierchia et al. (2004) for a summary of the linguis-
tic theory on exhaustification, although we adopt a wider def-
inition of the phenomenon for the tag here as in Table 14.

nal example, RoBERTa-Large and XLNet-Large
do well on REFERENCE examples in procedu-
ral text and Wikipediate to some extent (and, for
XLNet-Large, also news text), but they struggle
with fiction (and, for RoBERTa-Large, also news).
Since models do not perform similarly on par-
ticular tags across genres, we suggest they have
not learned fully generalizable knowledge corre-
sponding to these tag types.20

20Although we analyze examples in the aggregate to ab-
stract away from particular example idiosyncrasies, remem-
ber that examples can be tagged with any number of other
inference types and may vary in many other features (e.g.,
length, vocabulary etc.), so they are not strictly comparable,
and more work needs to be done to bolster these conclusions.
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Top
Level

Second
Level

Third
Level

Context Hypothesis Round Label Other Tags

Num.

Cardinal Dates Otryadyn Gündegmaa (. . . born 23 May 1978), is a Mongo-
lian sports shooter. . . .

Otryadyn Gündegmaa was
born on May 23rd

A1 E (N) Ordinal, Dates

Ages . . . John Fox probably won’t roam an NFL sideline
again. . . the 63-year-old Fox will now move into an analyst
role. . .

John Fox is under 60 years
old.

A3 C (E) Ref., Coref.

Ordinal Dates Black Robe. . . is a historical novel by Brian Moore set in
New France in the 17th century. . .

Black Robe is a novel set in
New France in the mid 1600s

A2 N (E) Reasoning, Plaus.,
Likely, Cardinal

Ages John Barnard (6 July 1794 at Chislehurst, Kent; died 17
November 1878 at Cambridge, England) was an English
amateur cricketer who played first-class cricket from 1815
to 1830. M. . .

John Barnard died before his
fifth birthday.

A1 C (N) Cardinal, Dates, Rea-
soning, Facts

Counting . . . The Demand Institute was founded in 2012 by Mark
Leiter and Jonathan Spector. . .

The Demand Institute was
founded by two men.

A2 E (N) Ref., Names

Nominal Raúl Alberto Osella (born 8 June 1984 in Morteros) is an
Argentine association footballer . . . He played FIFA U-17
World Cup Final for Argentina national team in 2001. . . .

Raul Alberto Osella no longer
plays for the FIFA U-17 Ar-
gentina team.

A2 E (N) Reasoning, Facts,
Tricky, Exhaust.,
Cardinal, Age, Dates

Basic

Lexical . . . The dating app Hater, which matches users based on
the things they hate, has compiled all of their data to create
a map of the foods everyone hates. . .

Hater is an app designed for
foodies in relationships.

A3 C (N)

Comp.&
Super.

. . . try to hit your shot onto the upslope because they are eas-
ier putts to make opposed to downhill putts.

Upslope putts are simple to
do

A3 N (E)

Implic. [DANIDA]. . . provides humanitarian aid . . . to developing
countries. . .

Focusing on developing
countries, DANIDA hopes to
improve citizens of different
countries lives.

A2 E (N)

Idioms . . . he set to work to hunt for his dear money. . . he found
nothing; all had been spent. . .

The money got up and
walked away.

A3 N (C) Reasoning, Plaus.,
Unlikely

Negation Bernardo Provenzano . . . was suspected of having been the
head of the Corleonesi . . .

It was never confirmed that
Bernardo Provenzano was
the leader of the Corleonesi.

A2 E (N) Tricky, Prag.

Coord. . . . Dan went home and started cooking a steak. However,
Dan accidentally burned the steak. . . .

The steak was cooked for too
long or on too high a tem-
perature.

A3 E (N) Basic, Lexical, Tricky,
Prag.

Ref.
Coref. . . . Tim was a tutor. . . . His latest student really pushed him,

though. Tim could not get through to him. He had to give
up. . .

Tim gave up on her eventu-
ally.

A3 C (E)

Names Never Shout Never is an EP by Never Shout Never which
was released December 8, 2009.. . .

Never Shout Never has a self
titled EP.

A1 E (N)

Family Sir Hugh Montgomery . . . was the son of Adam Mont-
gomery, the 5th Laird of Braidstane, by his wife and cousin.

Sir Hugh Montgomery had at
least one sibling.

A2 N (E) Reasoning, Plaus.,
Likely

Tricky

Syntactic Gunby. . . is situated close to the borders with Leicester-
shire and Rutland, and 9 mi south from Grantham. . .

Gunby borders Rutland an
Grantham.

A1 C (E) Imperfect., Spelling

Prag. . . . Singh won the award for Women Leadership in Indus-
try. . .

. . . Singh won many awards
for Women in Leadership in
Industry.

A3 C (N)

Exhaust. Linguistics . . . involves an analysis of language form, lan-
guage meaning, and language in context. . . .

Form and meaning are the
only aspects of language lin-
guistics is concerned with.

A1 C (N)

Wordplay . . . Brock Lesnar and Braun Strowman will both be under
. . . on Raw. . .

Raw is not an anagram of
war

A3 C (E)

Reasoning

Plaus.
Likely B. Dalton Bookseller. . . founded in 1966 by Bruce Day-

ton, a member of the same family that operated the Dayton’s
department store chain. . .

Bruce Dayton founded the
Dayton’s department store
chain.

A1 C (E) Ref., Names

Unlikely The Disenchanted Forest is a 1999 documentary film that
follows endangered orphan orangutans . . . returned to their
rainforest home. . . .

The Disenchanted Forest is
. . . about orangutans trying
to learn how to fly by build-
ing their own planes. . .

A2 C (N) Reasoning, Facts

Debatable The Hitchhiker’s Guide to the Galaxy is a 2005 British-
American comic science fiction film. . .

Hitchhiker’s Guide to the
Galaxy is a humorous film.

A1 N (E) Basic, Lexical

Facts . . . [Joey] decided to make [his mom] pretend tea. He got
some hot water from the tap and mixed in the herb. But to
his shock, his mom really drank the tea! She said the herb
he’d picked was chamomile, a delicious tea!

Joey knew how to make
chamomile tea.

A3 C (E)

Contain.
Parts Milky Way Farm in Giles County, Tennessee, is the former

estate of Franklin C. Mars . . . its manor house is now a
venue for special events.

The barn is occassionaly
staged for photo shoots.

A1 N (C) Plaus., Unlikely, Im-
perfect., Spelling

Loc. Latin Jam Workout is a Latin Dance Fitness Pro-
gram. . . [f]ounded in 2007 in Los Angeles, California,
Latin Jam Workout combines . . . music with dance. . .

Latin Jam Workout was not
created in a latin american
country

A2 E (C) Basic, Negation

Times Forbidden Heaven is a 1935 American drama
film. . . released on October 5, 1935 . . .

Forbidden Heaven is . . . film
released in the same month
as the holiday Halloween.

A1 Facts

Imperfect.

Error Albert Levitt (March 14, 1887 – June 18, 1968) was a judge,
law professor, attorney, and candidate for political office. . . .

Albert Levitt . . . held several
positions in the legal field dur-
ing his life, (which ended in
the summer of 1978). . .

A2 N (C) Num., Cardinal, Dates

Ambig. Diablo is a 2015 Canadian-American psychological western
. . . starring Scott Eastwood. . . It was the first Western star-
ring Eastwood, the son of Western icon Clint Eastwood.

It was the last western starring
Eastwood

A2 C (N) Ref., Coref., Label,
Basic, Comp.&Sup.,
Lexical, Num., Ordi-
nal, Family

Spelling “Call My Name” is a song recorded by Pietro Lombardi
from his first studio album “Jackpot”. . . It was written and
produced by “DSDS” jury member Dieter Bohlen. . . .

“Call my Name” was writ-
ten and recorded by Pier-
rot Lombardi for his album
”Jackpot”.

A1 C (E) Tricky, Syntactic, Im-
perfect., Spelling

Translat. Club Deportivo Dénia is a Spanish football team. . . it plays
in Divisiones Regionales de Fútbol . . . holding home games
at “Estadio Diego Mena Cuesta”,. . .

Club Deportivo Dénia
plays in the Spanish vil-
lage “Estadio Diego Mena
Cuesta”.

A2 C (E) Tricky, Syntactic

Table 14: Examples from the full scheme.
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Round Overall Cardinal Ordinal Counting Nominal Dates Age

Numerical

A1 40.8% 37.8% 6.2% 1.9% 4.2% 27.4% 5.9%
A2 38.5% 34.7% 6.7% 2.8% 3.5% 24.3% 6.7%
A3 20.3% 18.6% 2.8% 2.3% 0.4% 7.1% 3.2%
All 32.4% 29.6% 5.1% 2.3% 2.6% 18.8% 5.1%

Round Overall Lexical Compr. Supr. Implic. Idioms Negation Coord.

Basic

A1 31.4% 16.0% 5.3% 1.5% 0.3% 5.6% 5.5%
A2 41.2% 20.2% 7.6% 2.4% 1.7% 9.8% 4.5%
A3 50.2% 26.4% 4.9% 4.2% 2.2% 15.8% 6.1%
All 41.5% 21.2% 5.9% 2.8% 1.4% 10.7% 5.4%

Round Overall Coreference Names Family

Ref. & Names

A1 24.5% 15.8% 12.5% 1.0%
A2 29.4% 22.7% 11.2% 1.7%
A3 27.5% 25.5% 1.9% 1.3%
All 27.1% 21.6% 8.1% 1.3%

Round Overall Syntactic Prag. Exhaustif. Wordplay

Tricky

A1 29.5% 14.5% 4.7% 5.5% 2.0%
A2 29.1% 8.0% 2.8% 8.6% 5.7%
A3 25.6% 9.3% 6.7% 4.8% 5.5%
All 27.9% 10.5% 4.8% 6.2% 4.5%

Round Overall Likely Unlikely Debatable Facts Containment

Reasoning

A1 58.4% 25.7% 6.2% 3.1% 19.6% 11.0%
A2 62.7% 23.9% 6.9% 6.5% 25.6% 10.3%
A3 63.9% 22.7% 10.9% 10.8% 26.5% 5.3%
All 61.8% 24.0% 8.2% 7.0% 24.0% 8.7%

Round Overall Error Ambiguous EventCoref Translation Spelling

Imperfections

A1 12.4% 3.3% 2.8% 0.9% 5.7% 5.8%
A2 13.5% 2.5% 4.0% 3.4% 6.2% 6.5%
A3 16.1% 2.2% 7.6% 1.9% 0.8% 5.5%
All 14.1% 2.6% 5.0% 2.1% 4.0% 5.9%

Table 15: Percent examples in development set with particular tag, per round, on average.

BASIC
Round Model Basic Lexical Comp.Sup. ModusPonens CauseEffect Idiom Negation Coordination

A1

BERT (R1) 0.11 (0.56) 0.12 (0.59) 0.13 (0.66) 0.07 (0.31) 0.15 (0.55) 0.01 (0.45) 0.07 (0.40) 0.10 (0.52)
RoBERTa Ensemble (R2) 0.69 (0.15) 0.73 (0.14) 0.63 (0.24) 0.43 (0.06) 0.75 (0.02) 0.35 (0.12) 0.66 (0.17) 0.67 (0.13)
RoBERTa Ensemble (R3) 0.72 (0.08) 0.78 (0.08) 0.72 (0.15) 0.32 (0.19) 0.75 (0.01) 0.67 (0.02) 0.67 (0.06) 0.65 (0.08)

RoBERTa-Large 0.76 (0.10) 0.80 (0.12) 0.82 (0.11) 0.56 (0.08) 0.67 (0.20) 0.66 (0.02) 0.71 (0.11) 0.74 (0.06)
BART-Large 0.72 (0.07) 0.76 (0.07) 0.68 (0.08) 0.29 (0.01) 0.75 (0.00) 0.67 (0.00) 0.65 (0.07) 0.76 (0.11)

XLNet-Large 0.75 (0.09) 0.78 (0.09) 0.77 (0.13) 0.23 (0.35) 0.75 (0.00) 0.66 (0.02) 0.64 (0.11) 0.76 (0.03)
ELECTRA-Large 0.68 (0.34) 0.71 (0.34) 0.71 (0.23) 0.39 (0.42) 0.60 (0.20) 0.31 (0.66) 0.61 (0.33) 0.65 (0.43)

ALBERT-XXLarge 0.76 (0.20) 0.80 (0.19) 0.78 (0.24) 0.31 (0.46) 0.64 (0.15) 0.67 (0.02) 0.63 (0.21) 0.77 (0.14)

A2

BERT (R1) 0.29 (0.44) 0.31 (0.46) 0.31 (0.56) 0.24 (0.31) 0.29 (0.40) 0.35 (0.44) 0.24 (0.41) 0.20 (0.38)
RoBERTa Ensemble (R2) 0.20 (0.25) 0.24 (0.23) 0.19 (0.33) 0.33 (0.32) 0.21 (0.35) 0.19 (0.21) 0.17 (0.26) 0.15 (0.29)
RoBERTa Ensemble (R3) 0.41 (0.14) 0.43 (0.15) 0.49 (0.16) 0.55 (0.18) 0.15 (0.17) 0.28 (0.10) 0.42 (0.09) 0.41 (0.21)

RoBERTa-Large 0.47 (0.17) 0.47 (0.17) 0.49 (0.23) 0.99 (0.07) 0.30 (0.23) 0.37 (0.10) 0.55 (0.12) 0.48 (0.15)
BART-Large 0.48 (0.14) 0.55 (0.14) 0.48 (0.18) 0.40 (0.00) 0.23 (0.06) 0.43 (0.21) 0.48 (0.16) 0.44 (0.09)

XLNet-Large 0.53 (0.13) 0.54 (0.13) 0.51 (0.13) 0.80 (0.02) 0.39 (0.17) 0.53 (0.02) 0.56 (0.18) 0.51 (0.09)
ELECTRA-Large 0.52 (0.40) 0.54 (0.46) 0.46 (0.41) 0.47 (0.52) 0.38 (0.42) 0.53 (0.28) 0.56 (0.40) 0.56 (0.26)

ALBERT-XXLarge 0.58 (0.28) 0.61 (0.28) 0.53 (0.31) 0.80 (0.04) 0.48 (0.50) 0.60 (0.31) 0.64 (0.22) 0.50 (0.21)

A3

BERT (R1) 0.32 (0.50) 0.33 (0.51) 0.36 (0.59) 0.29 (0.72) 0.25 (0.57) 0.22 (0.47) 0.32 (0.46) 0.34 (0.50)
RoBERTa Ensemble (R2) 0.26 (0.57) 0.26 (0.57) 0.29 (0.55) 0.25 (0.81) 0.16 (0.58) 0.24 (0.68) 0.25 (0.62) 0.26 (0.56)
RoBERTa Ensemble (R3) 0.24 (0.53) 0.23 (0.53) 0.21 (0.53) 0.24 (0.57) 0.17 (0.51) 0.19 (0.57) 0.23 (0.57) 0.28 (0.50)

RoBERTa-Large 0.45 (0.25) 0.44 (0.24) 0.46 (0.38) 0.45 (0.15) 0.39 (0.17) 0.42 (0.22) 0.46 (0.25) 0.49 (0.26)
BART-Large 0.49 (0.14) 0.51 (0.16) 0.49 (0.11) 0.29 (0.14) 0.42 (0.10) 0.46 (0.13) 0.49 (0.15) 0.52 (0.13)

XLNet-Large 0.49 (0.15) 0.50 (0.12) 0.47 (0.26) 0.34 (0.23) 0.40 (0.14) 0.44 (0.13) 0.46 (0.16) 0.59 (0.08)
ELECTRA-Large 0.52 (0.44) 0.56 (0.43) 0.51 (0.50) 0.58 (0.46) 0.43 (0.36) 0.64 (0.48) 0.52 (0.43) 0.54 (0.44)

ALBERT-XXLarge 0.55 (0.36) 0.55 (0.35) 0.56 (0.48) 0.65 (0.33) 0.48 (0.27) 0.52 (0.44) 0.56 (0.36) 0.53 (0.33)

ANLI

BERT (R1) 0.26 (0.50) 0.27 (0.51) 0.27 (0.60) 0.21 (0.50) 0.25 (0.52) 0.26 (0.46) 0.26 (0.44) 0.23 (0.48)
RoBERTa Ensemble (R2) 0.34 (0.37) 0.36 (0.37) 0.35 (0.37) 0.33 (0.46) 0.25 (0.45) 0.23 (0.47) 0.29 (0.44) 0.36 (0.36)
RoBERTa Ensemble (R3) 0.41 (0.30) 0.42 (0.31) 0.46 (0.27) 0.34 (0.36) 0.23 (0.35) 0.25 (0.36) 0.36 (0.35) 0.43 (0.29)

RoBERTa-Large 0.53 (0.19) 0.54 (0.19) 0.57 (0.24) 0.61 (0.11) 0.40 (0.19) 0.42 (0.16) 0.53 (0.19) 0.57 (0.17)
BART-Large 0.54 (0.13) 0.58 (0.13) 0.54 (0.13) 0.31 (0.06) 0.41 (0.08) 0.46 (0.15) 0.51 (0.14) 0.57 (0.11)

XLNet-Large 0.56 (0.13) 0.58 (0.11) 0.57 (0.17) 0.41 (0.22) 0.44 (0.13) 0.49 (0.08) 0.52 (0.16) 0.62 (0.07)
ELECTRA-Large 0.56 (0.40) 0.59 (0.42) 0.54 (0.39) 0.49 (0.46) 0.44 (0.36) 0.58 (0.42) 0.55 (0.40) 0.58 (0.39)

ALBERT-XXLarge 0.61 (0.30) 0.63 (0.29) 0.61 (0.34) 0.58 (0.30) 0.50 (0.32) 0.56 (0.37) 0.60 (0.29) 0.60 (0.24)

Table 16: Correct label probability and entropy of label predictions for the BASIC subset: mean probability (mean
entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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NUMERICAL
Round Model Numerical Cardinal Ordinal Counting Nominal Dates Age

A1

BERT (R1) 0.10 (0.57) 0.10 (0.57) 0.11 (0.60) 0.09 (0.64) 0.07 (0.46) 0.10 (0.58) 0.07 (0.41)
RoBERTa Ensemble (R2) 0.68 (0.13) 0.68 (0.13) 0.71 (0.18) 0.51 (0.23) 0.72 (0.11) 0.69 (0.13) 0.64 (0.11)
RoBERTa Ensemble (R3) 0.72 (0.07) 0.72 (0.07) 0.77 (0.05) 0.51 (0.23) 0.69 (0.06) 0.75 (0.07) 0.64 (0.08)

RoBERTa-Large 0.73 (0.13) 0.73 (0.13) 0.75 (0.10) 0.58 (0.10) 0.76 (0.14) 0.74 (0.14) 0.65 (0.18)
BART-Large 0.73 (0.10) 0.73 (0.10) 0.72 (0.11) 0.54 (0.12) 0.74 (0.04) 0.77 (0.10) 0.67 (0.12)

XLNet-Large 0.73 (0.10) 0.74 (0.10) 0.63 (0.08) 0.53 (0.15) 0.70 (0.11) 0.76 (0.09) 0.71 (0.13)
ELECTRA-Large 0.71 (0.29) 0.71 (0.28) 0.74 (0.35) 0.69 (0.42) 0.64 (0.23) 0.73 (0.27) 0.68 (0.38)

ALBERT-XXLarge 0.74 (0.22) 0.75 (0.22) 0.72 (0.21) 0.56 (0.19) 0.78 (0.19) 0.77 (0.21) 0.71 (0.32)

A2

BERT (R1) 0.29 (0.53) 0.28 (0.53) 0.33 (0.53) 0.43 (0.49) 0.31 (0.53) 0.25 (0.53) 0.18 (0.48)
RoBERTa Ensemble (R2) 0.19 (0.28) 0.20 (0.28) 0.19 (0.24) 0.14 (0.30) 0.20 (0.34) 0.19 (0.26) 0.22 (0.25)
RoBERTa Ensemble (R3) 0.50 (0.18) 0.51 (0.18) 0.50 (0.13) 0.36 (0.20) 0.44 (0.19) 0.55 (0.17) 0.51 (0.15)

RoBERTa-Large 0.54 (0.22) 0.54 (0.22) 0.49 (0.21) 0.47 (0.17) 0.55 (0.10) 0.56 (0.24) 0.51 (0.26)
BART-Large 0.55 (0.13) 0.54 (0.14) 0.57 (0.10) 0.56 (0.08) 0.47 (0.18) 0.56 (0.12) 0.50 (0.15)

XLNet-Large 0.54 (0.11) 0.55 (0.11) 0.45 (0.14) 0.51 (0.06) 0.54 (0.12) 0.57 (0.11) 0.54 (0.14)
ELECTRA-Large 0.56 (0.36) 0.57 (0.35) 0.55 (0.32) 0.52 (0.34) 0.49 (0.22) 0.60 (0.36) 0.59 (0.40)

ALBERT-XXLarge 0.57 (0.28) 0.57 (0.28) 0.60 (0.26) 0.58 (0.26) 0.53 (0.20) 0.59 (0.30) 0.52 (0.34)

A3

BERT (R1) 0.34 (0.53) 0.34 (0.53) 0.43 (0.49) 0.34 (0.34) 0.41 (0.48) 0.31 (0.48) 0.28 (0.45)
RoBERTa Ensemble (R2) 0.29 (0.47) 0.29 (0.46) 0.25 (0.47) 0.17 (0.48) 0.35 (0.41) 0.30 (0.34) 0.32 (0.36)
RoBERTa Ensemble (R3) 0.20 (0.43) 0.20 (0.42) 0.25 (0.52) 0.11 (0.37) 0.20 (0.77) 0.22 (0.30) 0.26 (0.44)

RoBERTa-Large 0.44 (0.32) 0.44 (0.32) 0.48 (0.29) 0.53 (0.15) 0.36 (0.53) 0.38 (0.33) 0.42 (0.37)
BART-Large 0.51 (0.14) 0.52 (0.14) 0.48 (0.12) 0.51 (0.17) 0.59 (0.07) 0.51 (0.10) 0.46 (0.14)

XLNet-Large 0.52 (0.15) 0.52 (0.16) 0.57 (0.09) 0.47 (0.11) 0.59 (0.07) 0.50 (0.17) 0.42 (0.16)
ELECTRA-Large (tuned) 0.55 (0.46) 0.56 (0.44) 0.52 (0.54) 0.58 (0.44) 0.66 (0.53) 0.54 (0.43) 0.57 (0.30)

ALBERT-XXLarge 0.56 (0.39) 0.56 (0.38) 0.61 (0.40) 0.61 (0.32) 0.46 (0.43) 0.58 (0.36) 0.56 (0.35)

A3

BERT (R1) 0.22 (0.54) 0.22 (0.55) 0.27 (0.54) 0.31 (0.48) 0.19 (0.49) 0.19 (0.54) 0.16 (0.45)
RoBERTa Ensemble (R2) 0.41 (0.26) 0.41 (0.26) 0.40 (0.26) 0.25 (0.35) 0.48 (0.22) 0.44 (0.21) 0.39 (0.23)
RoBERTa Ensemble (R3) 0.52 (0.20) 0.52 (0.19) 0.55 (0.18) 0.30 (0.27) 0.56 (0.16) 0.59 (0.14) 0.50 (0.19)

RoBERTa-Large 0.59 (0.21) 0.59 (0.21) 0.59 (0.18) 0.52 (0.15) 0.65 (0.15) 0.62 (0.21) 0.54 (0.26)
BART-Large 0.61 (0.12) 0.61 (0.12) 0.61 (0.11) 0.54 (0.12) 0.62 (0.10) 0.65 (0.10) 0.55 (0.13)

XLNet-Large 0.61 (0.12) 0.62 (0.12) 0.54 (0.10) 0.50 (0.10) 0.62 (0.11) 0.65 (0.11) 0.57 (0.14)
ELECTRA-Large 0.62 (0.35) 0.62 (0.34) 0.61 (0.38) 0.58 (0.40) 0.58 (0.25) 0.65 (0.33) 0.62 (0.37)

ALBERT-XXLarge 0.64 (0.28) 0.64 (0.28) 0.65 (0.27) 0.59 (0.26) 0.66 (0.21) 0.67 (0.27) 0.60 (0.33)

Table 17: Correct label probability and entropy of label predictions for the NUMERICAL subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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REASONING
Round Model Reasoning Likely Unlikely Debatable Facts Containment

A1

BERT (R1) 0.13 (0.60) 0.14 (0.57) 0.15 (0.54) 0.16 (0.52) 0.11 (0.64) 0.11 (0.62)
RoBERTa Ensemble (R2) 0.67 (0.13) 0.64 (0.16) 0.78 (0.13) 0.61 (0.05) 0.65 (0.12) 0.71 (0.14)
RoBERTa Ensemble (R3) 0.73 (0.08) 0.72 (0.09) 0.78 (0.04) 0.68 (0.00) 0.71 (0.08) 0.75 (0.11)

RoBERTa-Large 0.75 (0.12) 0.74 (0.15) 0.82 (0.09) 0.67 (0.06) 0.74 (0.15) 0.75 (0.09)
BART-Large 0.76 (0.08) 0.78 (0.07) 0.86 (0.06) 0.70 (0.04) 0.71 (0.09) 0.72 (0.12)

XLNet-Large 0.74 (0.09) 0.74 (0.08) 0.82 (0.07) 0.70 (0.09) 0.72 (0.12) 0.74 (0.08)
ELECTRA-Large 0.66 (0.36) 0.68 (0.35) 0.77 (0.24) 0.66 (0.42) 0.63 (0.37) 0.58 (0.47)

ALBERT-XXLarge 0.77 (0.18) 0.77 (0.17) 0.88 (0.09) 0.67 (0.21) 0.73 (0.21) 0.76 (0.20)

A2

BERT (R1) 0.30 (0.47) 0.34 (0.44) 0.31 (0.42) 0.36 (0.44) 0.23 (0.49) 0.33 (0.54)
RoBERTa Ensemble (R2) 0.21 (0.26) 0.27 (0.28) 0.21 (0.33) 0.16 (0.27) 0.18 (0.22) 0.17 (0.19)
RoBERTa Ensemble (R3) 0.43 (0.16) 0.43 (0.14) 0.45 (0.18) 0.43 (0.16) 0.40 (0.13) 0.38 (0.17)

RoBERTa-Large 0.51 (0.21) 0.48 (0.19) 0.56 (0.20) 0.43 (0.21) 0.49 (0.23) 0.49 (0.22)
BART-Large 0.52 (0.13) 0.61 (0.12) 0.53 (0.13) 0.48 (0.13) 0.43 (0.14) 0.48 (0.17)

XLNet-Large 0.53 (0.12) 0.57 (0.13) 0.56 (0.12) 0.49 (0.05) 0.48 (0.11) 0.49 (0.11)
ELECTRA-Large 0.53 (0.40) 0.58 (0.39) 0.54 (0.38) 0.52 (0.39) 0.49 (0.39) 0.51 (0.42)

ALBERT-XXLarge 0.57 (0.29) 0.62 (0.27) 0.65 (0.30) 0.55 (0.25) 0.50 (0.30) 0.53 (0.29)

A3

BERT (R1) 0.34 (0.51) 0.37 (0.47) 0.38 (0.48) 0.35 (0.51) 0.29 (0.54) 0.35 (0.46)
RoBERTa Ensemble (R2) 0.26 (0.54) 0.25 (0.51) 0.28 (0.58) 0.25 (0.62) 0.25 (0.51) 0.28 (0.38)
RoBERTa Ensemble (R3) 0.23 (0.50) 0.23 (0.47) 0.25 (0.52) 0.21 (0.56) 0.22 (0.48) 0.20 (0.38)

RoBERTa-Large 0.44 (0.26) 0.44 (0.25) 0.51 (0.25) 0.47 (0.24) 0.40 (0.27) 0.50 (0.32)
BART-Large 0.50 (0.14) 0.52 (0.14) 0.57 (0.13) 0.47 (0.15) 0.44 (0.14) 0.58 (0.16)

XLNet-Large 0.49 (0.14) 0.47 (0.13) 0.56 (0.14) 0.50 (0.16) 0.47 (0.15) 0.51 (0.13)
ELECTRA-Large 0.51 (0.45) 0.49 (0.48) 0.56 (0.39) 0.49 (0.49) 0.48 (0.44) 0.51 (0.48)

ALBERT-XXLarge 0.57 (0.33) 0.59 (0.33) 0.65 (0.32) 0.58 (0.37) 0.50 (0.33) 0.55 (0.23)

ANLI

BERT (R1) 0.26 (0.52) 0.29 (0.49) 0.31 (0.48) 0.33 (0.49) 0.23 (0.55) 0.25 (0.56)
RoBERTa Ensemble (R2) 0.37 (0.33) 0.39 (0.32) 0.38 (0.41) 0.28 (0.44) 0.33 (0.32) 0.41 (0.21)
RoBERTa Ensemble (R3) 0.44 (0.27) 0.46 (0.24) 0.43 (0.32) 0.34 (0.37) 0.41 (0.26) 0.48 (0.19)

RoBERTa-Large 0.55 (0.20) 0.55 (0.19) 0.60 (0.20) 0.49 (0.21) 0.52 (0.22) 0.60 (0.19)
BART-Large 0.58 (0.12) 0.63 (0.11) 0.63 (0.12) 0.51 (0.13) 0.50 (0.13) 0.60 (0.15)

XLNet-Large 0.58 (0.12) 0.59 (0.12) 0.62 (0.12) 0.52 (0.12) 0.54 (0.13) 0.59 (0.10)
ELECTRA-Large 0.56 (0.40) 0.58 (0.41) 0.60 (0.35) 0.52 (0.45) 0.52 (0.41) 0.54 (0.46)

ALBERT-XXLarge 0.63 (0.27) 0.66 (0.26) 0.70 (0.26) 0.58 (0.31) 0.56 (0.29) 0.63 (0.24)

Table 18: Correct label probability and entropy of label predictions for the REASONING subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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REFERENCE
Round Model Reference Coreference Names Family

A1

BERT (R1) 0.12 (0.59) 0.11 (0.56) 0.12 (0.60) 0.12 (0.56)
RoBERTa Ensemble (R2) 0.66 (0.15) 0.67 (0.15) 0.68 (0.15) 0.29 (0.19)
RoBERTa Ensemble (R3) 0.70 (0.08) 0.70 (0.08) 0.75 (0.06) 0.44 (0.17)

RoBERTa-Large 0.75 (0.15) 0.76 (0.15) 0.77 (0.15) 0.52 (0.26)
BART-Large 0.70 (0.11) 0.73 (0.13) 0.73 (0.09) 0.54 (0.10)

XLNet-Large 0.72 (0.09) 0.74 (0.08) 0.75 (0.09) 0.62 (0.09)
ELECTRA-Large 0.63 (0.41) 0.64 (0.41) 0.66 (0.40) 0.61 (0.35)

ALBERT-XXLarge 0.77 (0.18) 0.78 (0.18) 0.80 (0.17) 0.67 (0.12)

A2

BERT (R1) 0.31 (0.47) 0.29 (0.47) 0.33 (0.48) 0.34 (0.41)
RoBERTa Ensemble (R2) 0.19 (0.24) 0.20 (0.24) 0.16 (0.24) 0.18 (0.24)
RoBERTa Ensemble (R3) 0.45 (0.14) 0.46 (0.16) 0.42 (0.14) 0.45 (0.17)

RoBERTa-Large 0.49 (0.20) 0.53 (0.20) 0.42 (0.19) 0.44 (0.16)
BART-Large 0.50 (0.13) 0.52 (0.13) 0.41 (0.13) 0.40 (0.14)

XLNet-Large 0.50 (0.10) 0.52 (0.10) 0.43 (0.08) 0.48 (0.19)
ELECTRA-Large 0.53 (0.38) 0.55 (0.39) 0.48 (0.39) 0.38 (0.47)

ALBERT-XXLarge 0.56 (0.25) 0.58 (0.28) 0.49 (0.22) 0.58 (0.17)

A3

BERT (R1) 0.32 (0.49) 0.33 (0.48) 0.27 (0.51) 0.25 (0.59)
RoBERTa Ensemble (R2) 0.27 (0.55) 0.27 (0.53) 0.26 (0.76) 0.39 (0.39)
RoBERTa Ensemble (R3) 0.25 (0.54) 0.24 (0.54) 0.26 (0.46) 0.47 (0.41)

RoBERTa-Large 0.46 (0.27) 0.46 (0.27) 0.46 (0.38) 0.47 (0.22)
BART-Large 0.50 (0.14) 0.49 (0.13) 0.67 (0.17) 0.62 (0.23)

XLNet-Large 0.52 (0.15) 0.50 (0.16) 0.70 (0.15) 0.61 (0.09)
ELECTRA-Large 0.52 (0.48) 0.51 (0.48) 0.66 (0.42) 0.51 (0.45)

ALBERT-XXLarge 0.54 (0.32) 0.53 (0.32) 0.66 (0.31) 0.62 (0.27)

ANLI

BERT (R1) 0.26 (0.51) 0.27 (0.49) 0.22 (0.54) 0.25 (0.51)
RoBERTa Ensemble (R2) 0.35 (0.33) 0.34 (0.35) 0.42 (0.24) 0.29 (0.28)
RoBERTa Ensemble (R3) 0.45 (0.28) 0.42 (0.31) 0.56 (0.13) 0.46 (0.26)

RoBERTa-Large 0.56 (0.21) 0.55 (0.22) 0.59 (0.19) 0.47 (0.20)
BART-Large 0.55 (0.13) 0.55 (0.13) 0.59 (0.12) 0.51 (0.16)

XLNet-Large 0.57 (0.12) 0.56 (0.12) 0.61 (0.09) 0.56 (0.13)
ELECTRA-Large 0.55 (0.43) 0.55 (0.43) 0.59 (0.40) 0.48 (0.43)

ALBERT-XXLarge 0.61 (0.25) 0.60 (0.27) 0.65 (0.20) 0.62 (0.20)

Table 19: Correct label probability and entropy of label predictions for the REFERENCE subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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TRICKY
Round Model Tricky Syntactic Pragmatic Exhaustification Wordplay

A1

BERT (R1) 0.10 (0.56) 0.10 (0.54) 0.09 (0.56) 0.11 (0.56) 0.13 (0.72)
RoBERTa Ensemble (R2) 0.60 (0.18) 0.60 (0.17) 0.60 (0.23) 0.59 (0.17) 0.52 (0.15)
RoBERTa Ensemble (R3) 0.65 (0.09) 0.67 (0.09) 0.72 (0.08) 0.54 (0.11) 0.51 (0.06)

RoBERTa-Large 0.70 (0.14) 0.72 (0.15) 0.68 (0.10) 0.64 (0.13) 0.65 (0.15)
BART-Large 0.70 (0.08) 0.73 (0.09) 0.64 (0.07) 0.62 (0.08) 0.75 (0.02)

XLNet-Large 0.70 (0.10) 0.73 (0.11) 0.66 (0.06) 0.56 (0.10) 0.78 (0.15)
ELECTRA-Large 0.62 (0.44) 0.62 (0.49) 0.62 (0.40) 0.56 (0.41) 0.60 (0.45)

ALBERT-XXLarge 0.65 (0.21) 0.66 (0.19) 0.61 (0.17) 0.58 (0.25) 0.63 (0.23)

A2

BERT (R1) 0.25 (0.48) 0.22 (0.53) 0.20 (0.35) 0.29 (0.47) 0.21 (0.47)
RoBERTa Ensemble (R2) 0.16 (0.23) 0.19 (0.25) 0.10 (0.13) 0.20 (0.21) 0.09 (0.30)
RoBERTa Ensemble (R3) 0.44 (0.14) 0.40 (0.13) 0.33 (0.10) 0.37 (0.16) 0.59 (0.14)

RoBERTa-Large 0.48 (0.22) 0.49 (0.20) 0.33 (0.21) 0.40 (0.25) 0.59 (0.16)
BART-Large 0.48 (0.15) 0.46 (0.14) 0.26 (0.14) 0.45 (0.15) 0.58 (0.13)

XLNet-Large 0.52 (0.12) 0.48 (0.13) 0.39 (0.14) 0.50 (0.14) 0.60 (0.07)
ELECTRA-Large 0.51 (0.45) 0.49 (0.52) 0.39 (0.44) 0.47 (0.41) 0.57 (0.45)

ALBERT-XXLarge 0.50 (0.26) 0.44 (0.25) 0.40 (0.28) 0.51 (0.29) 0.42 (0.24)

A3

BERT (R1) 0.29 (0.55) 0.29 (0.50) 0.29 (0.64) 0.28 (0.48) 0.25 (0.58)
RoBERTa Ensemble (R2) 0.24 (0.58) 0.26 (0.51) 0.24 (0.62) 0.18 (0.53) 0.24 (0.72)
RoBERTa Ensemble (R3) 0.25 (0.54) 0.29 (0.53) 0.20 (0.57) 0.23 (0.58) 0.24 (0.50)

RoBERTa-Large 0.49 (0.25) 0.47 (0.28) 0.41 (0.19) 0.46 (0.24) 0.63 (0.25)
BART-Large 0.53 (0.18) 0.51 (0.17) 0.43 (0.21) 0.46 (0.18) 0.72 (0.20)

XLNet-Large 0.51 (0.14) 0.57 (0.14) 0.46 (0.13) 0.36 (0.11) 0.57 (0.16)
ELECTRA-Large 0.54 (0.44) 0.53 (0.44) 0.41 (0.50) 0.49 (0.45) 0.72 (0.41)

ALBERT-XXLarge 0.52 (0.32) 0.53 (0.36) 0.46 (0.30) 0.44 (0.31) 0.62 (0.32)

ANLI

BERT (R1) 0.21 (0.53) 0.19 (0.52) 0.22 (0.56) 0.24 (0.50) 0.22 (0.55)
RoBERTa Ensemble (R2) 0.33 (0.34) 0.39 (0.30) 0.32 (0.41) 0.30 (0.29) 0.22 (0.47)
RoBERTa Ensemble (R3) 0.45 (0.26) 0.48 (0.24) 0.38 (0.34) 0.38 (0.27) 0.42 (0.29)

RoBERTa-Large 0.56 (0.20) 0.58 (0.21) 0.48 (0.17) 0.48 (0.21) 0.62 (0.20)
BART-Large 0.57 (0.14) 0.59 (0.13) 0.46 (0.15) 0.50 (0.14) 0.67 (0.15)

XLNet-Large 0.57 (0.12) 0.62 (0.12) 0.51 (0.11) 0.48 (0.12) 0.61 (0.12)
ELECTRA-Large 0.56 (0.44) 0.56 (0.48) 0.47 (0.46) 0.50 (0.42) 0.65 (0.43)

ALBERT-XXLarge 0.56 (0.26) 0.57 (0.26) 0.49 (0.26) 0.51 (0.28) 0.54 (0.28)

Table 20: Correct label probability and entropy of label predictions for the TRICKY subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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IMPERFECTIONS
Round Model Imperfections Errors Ambiguity EventCoref Translation Spelling

A1

BERT (R1) 0.13 (0.57) 0.07 (0.38) 0.17 (0.73) 0.12 (0.77) 0.11 (0.59) 0.14 (0.64)
RoBERTa Ensemble (R2) 0.61 (0.14) 0.38 (0.11) 0.53 (0.19) 0.82 (0.25) 0.67 (0.17) 0.77 (0.12)
RoBERTa Ensemble (R3) 0.68 (0.07) 0.49 (0.12) 0.57 (0.02) 0.89 (0.00) 0.71 (0.06) 0.81 (0.07)

RoBERTa-Large 0.68 (0.13) 0.46 (0.15) 0.65 (0.17) 0.88 (0.04) 0.75 (0.13) 0.79 (0.14)
BART-Large 0.71 (0.08) 0.52 (0.06) 0.73 (0.10) 0.78 (0.00) 0.74 (0.11) 0.79 (0.11)

XLNet-Large 0.67 (0.08) 0.49 (0.11) 0.58 (0.18) 0.81 (0.24) 0.72 (0.06) 0.81 (0.06)
ELECTRA-Large 0.63 (0.40) 0.49 (0.43) 0.65 (0.51) 0.58 (0.50) 0.73 (0.37) 0.70 (0.35)

ALBERT-XXLarge 0.69 (0.22) 0.48 (0.24) 0.62 (0.27) 0.78 (0.19) 0.71 (0.19) 0.78 (0.21)

A2

BERT (R1) 0.33 (0.48) 0.42 (0.39) 0.32 (0.47) 0.27 (0.43) 0.29 (0.51) 0.34 (0.45)
RoBERTa Ensemble (R2) 0.19 (0.27) 0.22 (0.22) 0.19 (0.23) 0.21 (0.33) 0.16 (0.23) 0.21 (0.28)
RoBERTa Ensemble (R3) 0.33 (0.14) 0.34 (0.17) 0.43 (0.11) 0.40 (0.11) 0.46 (0.13) 0.32 (0.12)

RoBERTa-Large 0.49 (0.19) 0.38 (0.26) 0.50 (0.16) 0.50 (0.20) 0.48 (0.27) 0.56 (0.18)
BART-Large 0.42 (0.10) 0.29 (0.08) 0.48 (0.10) 0.58 (0.12) 0.48 (0.13) 0.45 (0.11)

XLNet-Large 0.44 (0.10) 0.36 (0.03) 0.48 (0.10) 0.54 (0.13) 0.55 (0.10) 0.45 (0.10)
ELECTRA-Large 0.54 (0.39) 0.40 (0.24) 0.63 (0.33) 0.55 (0.38) 0.56 (0.44) 0.60 (0.46)

ALBERT-XXLarge 0.58 (0.32) 0.60 (0.42) 0.69 (0.26) 0.54 (0.23) 0.66 (0.26) 0.54 (0.30)

A3

BERT (R1) 0.31 (0.54) 0.30 (0.57) 0.28 (0.58) 0.24 (0.29) 0.42 (0.76) 0.36 (0.52)
RoBERTa Ensemble (R2) 0.23 (0.58) 0.22 (0.65) 0.23 (0.58) 0.36 (0.52) 0.26 (0.21) 0.19 (0.46)
RoBERTa Ensemble (R3) 0.23 (0.52) 0.23 (0.55) 0.17 (0.52) 0.32 (0.48) 0.16 (0.26) 0.22 (0.46)

RoBERTa-Large 0.40 (0.23) 0.32 (0.14) 0.35 (0.19) 0.70 (0.18) 0.56 (0.13) 0.39 (0.24)
BART-Large 0.48 (0.17) 0.37 (0.13) 0.39 (0.17) 0.63 (0.26) 0.30 (0.03) 0.53 (0.15)

XLNet-Large 0.43 (0.14) 0.41 (0.10) 0.40 (0.15) 0.64 (0.13) 0.52 (0.19) 0.40 (0.12)
ELECTRA-Large 0.47 (0.49) 0.32 (0.42) 0.43 (0.53) 0.63 (0.37) 0.33 (0.40) 0.48 (0.46)

ALBERT-XXLarge 0.52 (0.33) 0.39 (0.31) 0.50 (0.36) 0.68 (0.32) 0.47 (0.49) 0.49 (0.28)

ANLI

BERT (R1) 0.27 (0.53) 0.24 (0.44) 0.27 (0.58) 0.24 (0.43) 0.22 (0.57) 0.28 (0.53)
RoBERTa Ensemble (R2) 0.32 (0.37) 0.28 (0.31) 0.27 (0.42) 0.35 (0.39) 0.39 (0.20) 0.38 (0.29)
RoBERTa Ensemble (R3) 0.39 (0.28) 0.36 (0.27) 0.31 (0.33) 0.44 (0.22) 0.55 (0.11) 0.44 (0.22)

RoBERTa-Large 0.50 (0.19) 0.39 (0.18) 0.44 (0.18) 0.62 (0.17) 0.60 (0.20) 0.57 (0.19)
BART-Large 0.52 (0.12) 0.41 (0.09) 0.47 (0.14) 0.62 (0.15) 0.58 (0.11) 0.58 (0.12)

XLNet-Large 0.50 (0.11) 0.42 (0.09) 0.45 (0.14) 0.61 (0.14) 0.62 (0.09) 0.55 (0.10)
ELECTRA-Large 0.54 (0.44) 0.41 (0.37) 0.52 (0.48) 0.58 (0.40) 0.62 (0.41) 0.59 (0.42)

ALBERT-XXLarge 0.59 (0.30) 0.49 (0.32) 0.57 (0.32) 0.62 (0.26) 0.67 (0.25) 0.60 (0.27)

Table 21: Correct label probability and entropy of label predictions for the IMPERFECTIONS subset: mean prob-
ability (mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1,
whereas RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different ran-
dom seeds, so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three
equiprobable outcomes (i.e., random chance of three NLI labels) is upper bounded by≈ 1.58. A3 had no examples
of TRANSLATION, so no numbers can be reported.
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Genre Model Numerical Basic Reference Tricky Reasoning Imperfections

Wikipedia

BERT (R1) 0.20 (0.55) 0.23 (0.49) 0.24 (0.51) 0.18 (0.52) 0.23 (0.53) 0.24 (0.52)
RoBERTa Ensemble (R2) 0.43 (0.21) 0.40 (0.21) 0.40 (0.21) 0.37 (0.22) 0.42 (0.21) 0.37 (0.21)
RoBERTa Ensemble (R3) 0.58 (0.13) 0.51 (0.12) 0.54 (0.12) 0.52 (0.12) 0.53 (0.13) 0.46 (0.12)

RoBERTa-Large 0.61 (0.18) 0.57 (0.15) 0.59 (0.18) 0.58 (0.18) 0.60 (0.18) 0.55 (0.18)
BART-Large 0.63 (0.11) 0.57 (0.11) 0.58 (0.12) 0.58 (0.12) 0.62 (0.11) 0.54 (0.10)

XLNet-Large 0.62 (0.11) 0.61 (0.12) 0.59 (0.09) 0.60 (0.11) 0.62 (0.11) 0.53 (0.09)
ELECTRA-Large 0.62 (0.33) 0.57 (0.38) 0.57 (0.40) 0.56 (0.44) 0.58 (0.38) 0.57 (0.40)

ALBERT-XXLarge 0.65 (0.25) 0.64 (0.25) 0.65 (0.22) 0.56 (0.24) 0.66 (0.24) 0.63 (0.27)

Fiction

BERT (R1) 0.49 (0.35) 0.28 (0.54) 0.29 (0.52) 0.35 (0.60) 0.29 (0.51) 0.30 (0.62)
RoBERTa Ensemble (R2) 0.32 (0.73) 0.25 (0.68) 0.26 (0.70) 0.24 (0.71) 0.26 (0.63) 0.24 (0.73)
RoBERTa Ensemble (R3) 0.35 (0.55) 0.26 (0.70) 0.29 (0.73) 0.26 (0.72) 0.27 (0.64) 0.28 (0.73)

RoBERTa-Large 0.41 (0.14) 0.46 (0.22) 0.45 (0.26) 0.56 (0.16) 0.45 (0.24) 0.35 (0.15)
BART-Large 0.14 (0.06) 0.49 (0.17) 0.46 (0.14) 0.59 (0.12) 0.48 (0.14) 0.47 (0.14)

XLNet-Large 0.57 (0.01) 0.49 (0.08) 0.50 (0.10) 0.52 (0.09) 0.52 (0.10) 0.40 (0.04)
ELECTRA-Large 0.23 (0.28) 0.54 (0.36) 0.56 (0.45) 0.59 (0.36) 0.51 (0.38) 0.47 (0.45)

ALBERT-XXLarge 0.65 (0.27) 0.55 (0.27) 0.50 (0.23) 0.52 (0.26) 0.61 (0.28) 0.62 (0.34)

News

BERT (R1) 0.38 (0.47) 0.32 (0.53) 0.26 (0.48) 0.25 (0.61) 0.40 (0.49) 0.39 (0.46)
RoBERTa Ensemble (R2) 0.23 (0.40) 0.24 (0.43) 0.16 (0.32) 0.23 (0.49) 0.26 (0.41) 0.14 (0.64)
RoBERTa Ensemble (R3) 0.19 (0.30) 0.22 (0.37) 0.21 (0.34) 0.26 (0.40) 0.22 (0.39) 0.23 (0.41)

RoBERTa-Large 0.43 (0.31) 0.46 (0.22) 0.41 (0.14) 0.49 (0.15) 0.47 (0.23) 0.50 (0.23)
BART-Large 0.56 (0.16) 0.49 (0.14) 0.41 (0.18) 0.63 (0.17) 0.54 (0.15) 0.66 (0.20)

XLNet-Large 0.56 (0.14) 0.51 (0.13) 0.55 (0.18) 0.52 (0.12) 0.49 (0.14) 0.48 (0.17)
ELECTRA-Large 0.68 (0.39) 0.53 (0.39) 0.45 (0.33) 0.57 (0.35) 0.48 (0.40) 0.53 (0.45)

ALBERT-XXLarge 0.67 (0.32) 0.56 (0.22) 0.52 (0.23) 0.64 (0.19) 0.55 (0.24) 0.60 (0.26)

Procedural

BERT (R1) 0.37 (0.43) 0.30 (0.57) 0.38 (0.48) 0.19 (0.46) 0.34 (0.56) 0.30 (0.58)
RoBERTa Ensemble (R2) 0.28 (0.65) 0.24 (0.67) 0.22 (0.69) 0.21 (0.70) 0.26 (0.70) 0.23 (0.60)
RoBERTa Ensemble (R3) 0.21 (0.63) 0.24 (0.59) 0.21 (0.68) 0.27 (0.64) 0.25 (0.63) 0.25 (0.51)

RoBERTa-Large 0.58 (0.23) 0.50 (0.13) 0.65 (0.25) 0.57 (0.25) 0.45 (0.20) 0.45 (0.07)
BART-Large 0.53 (0.08) 0.47 (0.07) 0.49 (0.19) 0.41 (0.16) 0.47 (0.10) 0.52 (0.09)

XLNet-Large 0.57 (0.10) 0.53 (0.14) 0.66 (0.21) 0.53 (0.17) 0.49 (0.15) 0.57 (0.18)
ELECTRA-Large 0.67 (0.35) 0.58 (0.43) 0.58 (0.44) 0.55 (0.41) 0.58 (0.44) 0.42 (0.52)

ALBERT-XXLarge 0.66 (0.26) 0.61 (0.32) 0.71 (0.29) 0.57 (0.29) 0.56 (0.31) 0.53 (0.26)

Table 22: Probability of the correct label (entropy of label predictions) for each model on each top level annotation
tag. BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas RoBERTas
(R2) and (R3) were part of an ensemble of several identical architectures with different random seeds, so they have
low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable outcomes
(i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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Subset Context Statement Rationale Context+Statement

ANLI film (647), american (588), known
(377), first (376), (born (365), also
(355), one (342), new (341), released
(296), album (275), united (249), di-
rected (240), not (236), – (218), based
(214), series (196), best (191), may
(188), band (185), state (182), football
(177), two (175), written (175), televi-
sion (175), national (169), south (165)

not (252), born (132), years (120),
released (107), one (87), film (83),
first (82), only (76), people (75), year
(61), played (58), new (58), two (54),
made (54), album (49), no (46), died
(46), won (46), less (44), last (42),
american (41), years. (40), three
(40), written (38), used (37), john
(37)

not (1306), system (753), statement
(494), know (343), think (274), def-
initely (268), context (261), correct
(243), difficult (228), only (224),
doesn’t (223), may (221), confused
(218), no (200), says (198), incor-
rect (193), text (184), could (181),
states (166), born (160), one (155),
say (147), years (146), don’t (140),
would (130), whether (129)

film (730), american (629), not (488),
first (458), one (429), known (414),
released (403), new (399), also (379),
(born (368), album (324), united
(281), directed (274), based (238),
two (229), born (226), series (223),
played (221), – (221), best (220),
band (219), only (213), written (213),
football (208), may (208), state (204)

R1 film (299), american (272), known
(175), (born (169), first (158), also
(129), released (119), album (115), di-
rected (106), based (104), united (103),
new (97), – (93), football (88), one (84),
band (77), best (77), south (73), former
(71), written (70), series (67), played
(67), march (66), city (65), located (65),
television (64)

born (65), film (47), not (46), years
(45), released (43), first (36), died
(26), only (25), american (24), pop-
ulation (23), old (23), album (22),
won (22), played (21), directed (21),
new (19), last (18), football (18), cen-
tury. (18), year (18), united (17),
years. (16), world (16), written (16),
one (16), based (16)

not (392), system (331), know (135),
statement (126), think (111), context
(105), difficult (93), definitely (86),
correct (80), born (80), only (75),
may (75), confused (75), incorrect
(63), could (62), stated (62), don’t
(59), says (58), doesn’t (57), infor-
mation (54), states (53), no (53), first
(52), probably (49), used (48), text
(47)

film (346), american (296), first
(194), known (188), (born (170), re-
leased (162), also (140), album (137),
directed (127), united (120), based
(120), new (116), born (109), football
(106), one (100), – (94), band (91),
best (89), played (88), written (86),
south (81), world (79), city (77), se-
ries (77), population (77), name (77)

R2 film (301), american (266), known
(166), (born (159), also (146), released
(136), new (128), album (127), first
(126), directed (114), one (112), series
(110), united (97), – (95), television
(95), band (87), state (86), based (83),
written (82), song (79), national (76),
played (74), best (69), located (67), city
(66), football (66)

not (75), years (54), released (53),
born (51), one (32), first (32), film
(31), year (29), ago. (24), only (24),
played (23), album (23), known (22),
two (22), new (21), band (19), made
(18), city (16), no (16), died (16),
john (15), less (15), won (15), written
(14), people (14), lived (14)

not (387), system (198), statement
(125), know (93), doesn’t (79), diffi-
cult (78), think (77), years (74), con-
text (72), confused (70), may (65),
only (63), born (61), states (60), cor-
rect (59), no (56), ai (55), definitely
(55), released (52), text (50), incor-
rect (49), say (48), year (48), could
(45), one (44), says (42)

film (332), american (280), released
(189), known (188), (born (161),
also (159), first (158), album (150),
new (149), one (144), series (124),
directed (123), band (106), united
(105), television (101), not (98),
played (97), – (97), written (96), state
(96), song (89), born (88), based (87),
national (83), city (82), located (80)

R3 not (197), one (146), said (122), new
(116), would (104), first (92), some (91),
make (87), people (83), may (83), also
(80), time (77), no (75), – (75), like
(74), get (74), last (72), only (68), two
(68), police (66), made (61), think (55),
home (54), go (54), way (53), many
(53)

not (131), people (48), one (39), only
(27), no (22), made (21), years (21),
speaker (19), two (19), new (18),
three (17), used (16), use (16), per-
son (16), less (16), born (16), good
(15), make (14), year (14), first (14),
played (14), school (13), govern-
ment (13), didn’t (13), last (13), some
(13)

not (527), statement (243), system
(224), definitely (127), know (115),
correct (104), says (98), no (91),
doesn’t (87), text (87), think (86),
only (86), context (84), incorrect (81),
may (81), model (75), could (74),
confused (73), one (67), said (66), say
(63), whether (58), difficult (57), nei-
ther (57), incorrect. (56), would (53)

not (328), one (185), new (134), peo-
ple (131), said (127), would (115),
first (106), some (104), make (101),
no (97), may (95), only (95), two
(87), time (86), last (85), like (83), get
(82), made (82), also (80), – (75), po-
lice (74), use (67), many (66), three
(63), home (62), go (62)

Contra. american (219), film (216), new (146),
(born (129), first (124), also (116),
known (115), united (110), one (108),
released (94), album (86), – (81), di-
rected (78), series (76), may (72), best
(71), television (70), band (69), not (68),
based (66), written (65), south (65), na-
tional (63), two (62), song (60), football
(59)

not (63), years (55), born (42), film
(37), released (36), first (31), year
(30), only (28), one (23), new (23),
died (21), people (19), american (19),
won (19), years. (19), world (18),
three (18), played (18), album (17),
two (17), less (17), directed (17), old
(16), made (16), written (15), lived
(15)

not (471), system (269), statement
(174), incorrect (121), think (104),
definitely (90), confused (87), diffi-
cult (83), only (78), born (71), says
(63), context (61), years (57), states
(51), one (50), would (49), incorrect.
(47), know (42), name (42), probably
(41), year (41), ai (41), could (40),
first (38), may (38), model (35)

film (253), american (238), new
(169), first (155), not (131), one
(131), (born (130), released (130),
known (126), also (125), united
(119), album (103), directed (95), se-
ries (88), – (83), band (82), written
(80), two (79), best (79), may (78),
television (78), south (77), world
(75), based (74), years (74), football
(72)

Neut. film (224), american (198), known
(126), first (118), one (116), released
(115), (born (112), also (107), album
(101), new (97), not (95), directed (93),
based (77), united (74), football (67),
may (61), band (60), best (60), – (58),
city (55), two (55), national (54), played
(54), series (53), state (51), song (51)

not (63), one (37), born (36), released
(29), only (28), never (25), played
(24), film (22), people (21), made
(19), first (18), no (18), new (17),
album (17), won (17), known (16),
population (15), john (14), two (14),
last (14), name (13), united (13), died
(12), best (12), football (11), written
(11)

not (608), know (263), system (236),
doesn’t (157), no (150), context
(147), statement (146), may (133),
say (125), whether (124), correct
(123), could (119), neither (117),
don’t (117), only (110), definitely
(109), text (102), information (89),
nor (83), mentioned (80), think (80),
state (78), says (71), difficult (71), in-
correct (69), confused (67)

film (246), american (208), not (158),
one (153), released (144), known
(142), first (136), album (118), new
(114), (born (114), also (112), di-
rected (101), united (87), based (83),
played (78), football (78), only (76),
best (72), band (70), two (69), made
(69), city (66), may (64), born (63),
name (63), written (60)

Entail. film (207), american (171), known
(136), first (134), also (132), (born
(124), one (118), new (98), album (88),
released (87), – (79), state (73), not (73),
based (71), directed (69), series (67),
united (65), played (61), written (61),
best (60), television (60), former (60),
two (58), band (56), may (55), located
(53)

not (63), one (37), born (36), released
(29), only (28), never (25), played
(24), film (22), people (21), made
(19), first (18), no (18), new (17),
album (17), won (17), known (16),
population (15), john (14), two (14),
last (14), name (13), united (13), died
(12), best (12), football (11), written
(11)

not (608), know (263), system (236),
doesn’t (157), no (150), context
(147), statement (146), may (133),
say (125), whether (124), correct
(123), could (119), neither (117),
don’t (117), only (110), definitely
(109), text (102), information (89),
nor (83), mentioned (80), think (80),
state (78), says (71), difficult (71), in-
correct (69), confused (67)

film (231), not (199), american (183),
first (167), known (146), one (145),
also (142), released (129), (born
(124), new (116), album (103), born
(91), state (84), years (82), two (81),
based (81), – (79), directed (78),
played (77), series (76), united (75),
written (73), people (71), best (69),
band (67), may (66)

Table 23: Top 25 most common words used by round and gold label. Bolded words are used preferentially in
particular subsets.
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Subset Context Statement Rationale Context+Statement+Rationale

ANLI film (647), american (588), known
(377), first (376), (born (365), also
(355), one (342), new (341), re-
leased (296), album (275), united
(249), directed (240), not (236), –
(218), based (214), series (196), best
(191), may (188), band (185), state
(182), football (177), two (175), writ-
ten (175), television (175), national
(169), south (165)

not (252), born (132), years (120),
released (107), one (87), film (83),
first (82), only (76), people (75),
year (61), played (58), new (58),
two (54), made (54), album (49),
no (46), died (46), won (46),
less (44), last (42), american (41),
years. (40), three (40), written
(38), used (37), john (37)

not (1306), system (753), statement
(494), know (343), think (274), def-
initely (268), context (261), correct
(243), difficult (228), only (224),
doesn’t (223), may (221), confused
(218), no (200), says (198), incorrect
(193), text (184), could (181), states
(166), born (160), one (155), say (147),
years (146), don’t (140), would (130),
whether (129)

not (1794), film (802), system
(781), american (659), one (584),
first (563), statement (511), re-
leased (504), known (495), also
(467), new (452), only (437), may
(429), know (387), born (386),
(born (371), album (362), no (337),
think (337), based (335), years
(332), two (313), states (313),
united (308), state (304), directed
(301)

Numerical american (236), film (211), (born
(162), first (151), known (138), al-
bum (136), new (129), released (126),
also (117), united (117), one (109),
– (101), band (87), series (83), best
(82), television (79), directed (77),
football (76), based (75), state (74),
played (73), second (72), south (71),
world (70), city (69), states (65)

years (114), born (79), released
(74), first (61), year (52), not (44),
died (38), less (37), two (36), one
(35), years. (34), three (32), popu-
lation (30), old (30), film (28), ago.
(27), album (26), only (24), old.
(24), century. (23), last (23), won
(20), least (20), world (20), second
(18), played (18)

not (344), system (291), statement
(166), years (137), difficult (125), born
(115), think (103), definitely (102), year
(90), confused (90), only (88), correct
(84), know (82), context (77), released
(72), may (71), incorrect (70), first (61),
text (60), could (59), would (57), one
(55), says (51), doesn’t (50), mentioned
(49), died (48)

not (423), system (297), years
(278), first (273), released (272),
film (265), american (256), born
(231), one (199), album (181),
year (170), statement (169), (born
(166), known (160), only (158),
new (158), two (145), may (140),
also (137), united (134), difficult
(125), based (124), states (117),
think (112), band (111), second
(109)

Basic film (238), american (193), one (143),
known (138), new (135), first (134),
also (132), not (125), released (105),
directed (104), (born (100), album
(99), state (97), united (90), may (83),
song (80), based (78), series (74), best
(74), two (73), television (72), – (69),
south (68), written (68), said (65),
would (64)

not (219), one (51), people (41),
no (36), film (31), new (31), re-
leased (28), less (28), never (27),
played (24), only (24), born (23),
two (23), made (22), album (21),
last (21), first (21), used (20), least
(18), written (18), three (17), di-
rected (17), best (16), years (16),
movie (16), good (16)

not (546), system (290), statement
(248), know (125), definitely (120),
think (115), context (101), says (101),
doesn’t (97), correct (92), only (91),
confused (89), may (88), incorrect (83),
states (78), no (76), text (75), could (69),
one (65), difficult (61), whether (58),
would (58), say (56), neither (54), said
(52), model (50)

not (890), system (303), film
(298), one (259), statement (254),
american (227), new (196), first
(191), known (182), also (181),
may (180), only (176), released
(165), no (154), think (149), know
(146), state (140), would (137),
two (134), directed (133), album
(132), states (128), based (127),
says (127), people (126), said (123)

Reference film (188), american (163), known
(139), (born (128), also (112), first
(98), one (85), new (83), directed
(72), – (71), not (71), released (70),
best (66), united (61), album (57),
television (56), south (54), world
(54), based (53), may (52), written
(52), series (50), band (49), ) (45),
two (45), national (44)

not (70), born (39), years (33),
name (23), film (21), made (20),
won (19), one (19), people (19),
first (19), only (17), year (17),
played (16), released (16), died
(16), known (15), band (15),
speaker (14), new (14), written
(14), three (13), two (12), no (12),
man (12), directed (11), album (10)

not (358), system (199), statement
(112), know (91), think (71), doesn’t
(70), confused (67), may (66), context
(60), model (60), only (57), says (52),
correct (52), could (51), definitely (50),
name (50), difficult (49), born (46), one
(42), probably (41), would (41), incor-
rect (40), states (39), don’t (38), no (35),
understand (34)

not (499), film (230), system (207),
known (186), american (171), first
(147), one (146), also (139), (born
(129), may (126), statement (122),
born (122), new (112), only (109),
name (105), released (105), know
(104), think (100), directed (93),
years (89), would (88), written
(84), two (83), states (82), based
(82), best (80)

Tricky film (227), american (142), first
(110), known (104), one (102), also
(99), new (93), (born (88), album
(83), released (81), directed (77),
based (75), song (71), not (68), series
(65), written (61), united (60), band
(59), ) (55), may (51), – (50), south
(48), only (48), two (48), television
(46), located (44)

not (82), only (58), born (33), film
(32), released (27), one (26), two
(22), first (21), made (19), years
(19), new (18), three (18), played
(16), album (16), american (16),
used (16), people (14), series (14),
wrote (13), directed (13), written
(13), also (13), band (13), known
(13), won (13), starts (12)

not (386), system (204), statement
(129), only (88), know (75), think (73),
difficult (69), context (67), confused
(66), incorrect (63), definitely (63), may
(57), correct (54), says (51), states (49),
doesn’t (48), one (43), name (42), used
(41), text (41), no (40), ai (38), don’t
(37), words (36), first (36), could (35)

not (536), film (281), system (208),
only (194), one (171), first (167),
american (166), also (146), known
(141), statement (133), new (124),
released (123), album (111), may
(110), based (110), directed (99),
two (92), (born (89), written (89),
series (88), know (87), song (86),
used (86), made (86), name (86),
think (85)

Reasoning film (390), american (363), (born
(245), first (229), also (227), known
(226), new (219), one (203), released
(173), album (159), united (154), di-
rected (151), not (147), based (138),
– (125), football (124), state (117),
national (116), played (111), best
(110), band (109), television (108),
may (108), series (106), former (105),
south (104)

not (131), born (92), released (66),
years (60), people (50), first (49),
one (49), film (43), played (39),
year (36), only (35), new (35),
made (30), never (30), two (29),
died (27), album (27), won (26), no
(26), known (25), last (25), amer-
ican (24), used (24), united (22),
john (22), city (22)

not (919), system (466), know (291),
statement (279), context (188), def-
initely (173), correct (172), doesn’t
(171), think (164), no (162), may (162),
could (147), difficult (144), only (126),
say (126), whether (123), says (119),
confused (119), text (118), don’t (114),
neither (110), incorrect (110), born
(101), one (96), information (95), states
(92)

not (1197), system (483), film
(481), american (411), one (348),
first (335), know (312), released
(307), known (306), also (292),
new (290), statement (288), may
(281), (born (250), only (249),
born (249), no (239), state (218),
based (213), album (206), think
(200), played (196), united (196),
context (191), could (184), doesn’t
(182)

Imperfections film (87), american (76), also (54),
one (52), first (47), known (45), re-
leased (45), new (44), album (42), not
(36), based (35), directed (35), (born
(35), city (34), united (33), written
(31), two (30), song (29), – (26), se-
ries (25), band (25), people (25), tele-
vision (24), population (24), name
(24), national (24)

not (38), film (18), people (14),
born (12), written (12), one (12),
only (11), first (11), made (10),
released (10), new (10), american
(8), city (8), two (7), years (7),
popular (7), many (6), different
(6), united (6), album (6), street
(6), show (6), also (6), population
(6), three (6), life (5)

not (168), system (82), statement (70),
know (50), correct (38), context (35),
think (34), says (32), no (30), definitely
(29), doesn’t (28), confused (26), could
(26), incorrect (26), one (24), states
(23), only (23), stated (22), neither (22),
may (21), model (21), say (21), text
(20), don’t (20), difficult (19), state (19)

not (242), film (116), american
(94), system (89), one (88), state-
ment (72), also (72), first (71),
known (65), released (64), know
(63), new (58), written (55), based
(54), album (53), only (52), no
(50), two (49), people (47), think
(46), city (45), may (44), states
(44), made (43), directed (42),
united (42)

Table 24: Top 25 most common words used by annotation tag. Bolded words are used preferentially in particular
subsets.
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