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Abstract
Non-lexical items are expressive devices
used in conversations that are not words
but are nevertheless meaningful. These
items play crucial roles, such as signaling
turn-taking or marking stances in interac-
tions. However, as the non-lexical items do
not stably correspond to written or phono-
logical forms, past studies tend to focus on
studying their acoustic properties, such as
pitches and durations. In this paper, we
investigate the discourse functions of non-
lexical items through their acoustic proper-
ties and the phone embeddings extracted
from a deep learning model. Firstly, we
create a non-lexical item dataset based on
the interpellation video clips from Taiwan’s
Legislative Yuan. Then, we manually iden-
tify the non-lexical items and their dis-
course functions in the videos. Next, we an-
alyze the acoustic properties of those items
through statistical modeling and building
classifiers based on phone embeddings ex-
tracted from a phone recognition model.
We show that (1) the discourse functions
have significant effects on the acoustic
features; and (2) the classifiers built on
phone embeddings perform better than the
ones on conventional acoustic properties.
These results suggest that phone embed-
dings may reflect the phonetic variations
crucial in differentiating the discourse func-
tions of non-lexical items.

Keywords: non-lexical item, discourse
function, acoustic property, acoustic represen-
tation, pragmatics

1 Introduction
People’s everyday interactions include sounds
that are not verbal words in the traditional

sense. These sounds, such as sighs, sniffs, and
grunts, are used in indexing the turn-taking in
dialogues, marking stance, showing affections,
and expressing roles and meanings in conversa-
tions (Dingemanse, 2020). Examples of these
non-lexical items are un-huh in English as a
marker showing understanding and attentive-
ness, while the single syllable uh and um act
as fillers and disfluency markers (Ward, 2006;
Buschmeier et al., 2011).
While these non-lexical items are important

linguistically, they pose an interesting chal-
lenge to linguistic inquiry. Non-lexical items
do not belong to a major word class, and some
do not conform to the language’s phonologi-
cal requirements (Keevallik and Ogden, 2020).
Moreover, while the phonetic properties of
non-lexical items could be generally described,
they are nevertheless “phonetically underspeci-
fied.”(Keating, 1988) For example, in the study
of “moan” in board game interactions, Hof-
stetter (2020) found “moans” involve phonetic
properties related to open vowels, irrespective
of their frontness, backness, or roundedness.
The study suggests that a non-lexical item can
not be represented as a single phonetic sym-
bol; instead, it may refer to the vowel space
for which we do not have a general phonetic
symbol. Some studies, therefore, analyze these
items in terms of their acoustic properties: the
components’ sound (Ward, 2006), the funda-
mental frequencies, durations, and intensities.
(Shan, 2021; Ballier and Chlébowski, 2021).

In contrast to the conventional acoustic
property analysis, an alternative approach
to analyzing non-lexical items is through
the acoustic representations learned by data-
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driven methods. These methods include deep
learning models mapping the audio segments
to the latent embedding space from acoustic
data in a (self-)supervised fashion (Li et al.,
2020; Xu et al., 2021; Baevski et al., 2020). Al-
though the models are not explicitly trained
to represent the similarities among phonetic
features, studies nonetheless find the audio
segments with similar linguistic properties are
closer together in the embedding space (Ma
et al., 2021; Cormac English et al., 2022; Sil-
fverberg et al., 2021). Therefore, these pho-
netic representations may already encode the
phonetic variability of non-lexical items to re-
flect their different discourse functions.
This study thus aims to investigate how

the acoustic properties contribute to the non-
lexical items’ discourse functions and how the
phone embeddings extracted from the deep
learning model help differentiate those func-
tions. The rest of the paper is organized as
follows. We first review related works on dis-
course markers and how they are analyzed
with acoustic properties (Sec. 2). Next, we de-
scribe our dataset on non-lexical items (Sec.
3) in Taiwan Mandarin, in which we manu-
ally identify the items and annotate their dis-
course functions in interpellation video clips of
Taiwan’s Legislative Yuan. Finally, based on
the dataset, we conduct the acoustic property
analysis (Sec. 4) and build classifiers based on
the phone embeddings extracted from a deep
learning model (Sec. 5). Finally, Section 6
concludes the paper.

2 Related Works

2.1 Discourse Marker
Discourse markers (hereafter, DMs) has re-
ceived increasing attention since Schiffrin
(1987, p. 31) initially defined them as “sequen-
tially dependent elements which bracket units
of talk.” However, little consensus has been
not only on the terminology1 of DMs but on
the classification frameworks. Schiffrin (1987)
has proposed that DMs form a category com-
posed of phrases, conjunctions, and interjec-
tions, and that they have a part in discourse

1For instance, discourse marker (Jucker and Ziv,
1998; Schiffrin, 1987); discourse particles (Aijmer,
2002; Fischer, 2006); pragmatic marker (Brinton,
1996); among others

coherence considering different planes of talk.2
Additionally, DMs can also serve as identi-
fiers of participation status, speaker’s assump-
tions, or hearer’s knowledgement (Schiffrin,
1987; Schwenter, 1996; Fraser, 1999).
Despite that earlier research considered

DMs as text-connective items bonding to syn-
tactic structures, Fischer (2006, p. 9) de-
fined DMs as devices involved in “turn-taking,
interpersonal management, topic structure,
and participation frameworks.” Subsequently,
Diewald (2006, 2013) suggested that DMs
demonstrate pragmatic functions, manage dis-
course in a syntactically-independent way, and
present their polyfunctionality in discourse
(c.f. Fraser, 2009; Hansen, 2006; Németh,
2022).
Although numerous analyses were con-

ducted on the pragmatic functions of DMs,
they focused mostly on the associations with
semantic senses and syntactic structures (e.g.,
Aijmer, 2011; Crible, 2017; Ford and Thomp-
son, 1996). That is, studies of the connec-
tions between the discourse functions and the
phonological information of DMs are relatively
few.

2.2 Acoustic Property
The previous works which interwove DMs
and their acoustic properties were mainly
on the pragmatic-prosodic interface. Shan
(2021) and Zhao and Wang (2019) investigated
the Mandarin Chinese DMs, 你知道 ni zhi-
dao ‘you know’and 你不知道 ni bu zhidao
‘you don’t know’, respectively. While Shan
(2021) analyzed on duration, tempo, inten-
sity, and fundamental frequencies (i.e., pitch,
hereinafter F0), Zhao and Wang (2019) exam-
ined the speech tempo, mean F0 frequencies,
and pitch accents of the DMs. In general,
they have found correlations between the dis-
course functions and the acoustic properties.
Moreover, Tseng et al. (2006) have suggested
that connectors are predictable from speech
prosody; most ‘redundant prosodic fillers’
are duration-triggered and manifested through

2Schiffrin has suggested the five planes of talk:
the Exchange structure (ES), Action structure (AS),
Ideational structure (IdS), Participation framework
(PF), and Information state (InS). More details can be
seen in Schiffrin (2005), Maschler and Schiffrin (2015),
and Hamilton et al. (2015).
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narrowed F0 ranges, whereas‘obligatory dis-
course markers’are syntax-triggered and man-
ifested through widened F0 ranges and resets.

The acoustic properties and their relevance
to the pragmatic functions of DMs have
also been analyzed cross-linguistically (e.g.,
Cabarrão et al., 2018; Raso and Vieira, 2016;
Gonen et al., 2015; Beňuš, 2014). Referring
to Wu et al. (2021), the phonetic variations of
DMs in French are likely to appear in sponta-
neous speech and undergo phonetic reduction,
considering their shorter mean phone duration
and a rather centralized vowel space. Addi-
tionally, Schubotz et al. (2015) investigates
the common English construction you know in
terms of its duration, which is likely to be af-
fected by the residuals of speech rate.

In addition to acoustic properties, past stud-
ies also examined the phonetic representations
learned with data-driven methods. For exam-
ple, Silfverberg et al. (2021) studied phonolog-
ical alternations of Finnish consonant grada-
tion with vector representations retrieved from
RNN models. Other studies also tried to learn
dense vector representations purely from text
using grapheme-to-phoneme mappings with
CBOW and SkipGram models (O’Neill and
Carson-Berndsen, 2019). Notably, recent stud-
ies found transformer-based speech processing
models (Baevski et al., 2020; Hsu et al., 2021),
while not explicitly modeling phonetic proper-
ties, encoded the phonetic categorization infor-
mation in the model representations, such as
vowels and consonants, or fricatives and stops
(Ma et al., 2021; Cormac English et al., 2022).

Tracing back to the former sections, previ-
ous literature on DMs mostly concentrated on
their status at the semantic-pragmatic inter-
face. The reviewed acoustic-related research,
however, focused on those construction-wise
DMs, and not to mention that the analyzed
acoustic properties were limited to supraseg-
mental features, such as pitch and duration.
In this case, the potential phonetic-pragmatic
interrelationship of non-lexical items is yet to
be elaborated.

3 Non-lexical Items Dataset

First, we used four interpellation video clips
from Taiwan’s Legislative Yuan.3. Audio
tracks were then extracted from the clips, con-
verted into 16 bit WAV format, and resampled
with 22kHz sampling rates. The overall data
comprise separate interpellation of two male
and two female legislators, each ranging 6-8
minutes. The equal number of genders was
to balance potential gender differences in the
utterances.
Secondly, the audio segments of non-lexical

items (e.g., uh, em, and ho) were annotated
by three native speakers via Praat 6.2.03
(Boersma and Weenink, 2021). Each non-
lexical item acquired two tags, one for func-
tional Role and one for pragmatic Meaning.
Referring to Ward (2006), we defined the six
candidates of Role as follows:

• BACKCHANNEL, which occurs repetitively
and shows the agreement of the hearer;
it often overlaps the main channel4 of the
utterance.

• CFT (Clause-final token), which oc-
curs in the sentence-final position and
ends certain turn of talk.

• DISFLUENCY, which refers to the onset or
coda of a word that can hardly be recog-
nized due to its discoursal incompleteness.

• FILLER, which serves as a connector be-
tween two sentences or a sentence-initial
particle of the speaker.

• RESPONSE, which occurs in the main chan-
nel and often indicates a flippant attitude.

• OTHER, which represents the non-lexical
item not belonging to the above types.

Similarly, we summarized the following
eight candidates for Meaning. It is noted that
certain non-lexical items may carry multiple
pragmatic meanings, and that the candidates
below are not mutually exclusive. Thus, one
non-lexical item is allowed to be annotated
with multiple Meaning tags.

3The clips were downloaded from the Parliament
TV website (https://www.parliamentarytv.org.tw/)
and encoded as AAC, H.264

4see also Heinz (2003), Li et al. (2010), and McNely
(2009) among others.
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• authority. The speaker demonstrates
his profession, personal experience, or in-
tention in the speech.

• control. The speaker is in control of
knowing exactly what to say or do next.

• concern. The speaker lacks confidence
in his own words or tries to show respect
to the audience.

• thought. The speaker takes the words
(from himself or the other participant) as
involving or meriting thought.

• dissatisfaction. The speaker is unsat-
isfied with his own words, the conversa-
tion, or the other participant.

• new information. The speaker wants to
express that he has received new infor-
mation; the speaker successfully lets the
other participant understand the topic of
the speech.

• old ground. The speaker is expecting
to move on to the next topic since he has
already acknowledged the current one.

• neutral.

In sum, a total of 143 non-lexical items pro-
duced by the legislators were manually anno-
tated. We then moved on to extract the acous-
tic properties for the dataset.

4 Acoustic Property Analysis

With the assumption that the discourse func-
tions may encode phonological variations, we
illustrated our data collection and the annota-
tion for non-lexical items in Sec. 3. The fol-
lowing sections (4.1 and 4.2) then present the
analyses and results of acoustic properties.

4.1 Property Extraction
For each non-lexical item, we retrieved six
conventional acoustic properties: mean pitch,
duration, F1, F2, F3, and nasality, via cus-
tomized Praat scripts (Styler, 2017). As for-
mant frequencies construct the vowel space,
F1 is determined by the vowel height, F2 is
determined by the vowel backness, and F3 is
determined by the vowel roundness.5

5The higher the F1, the lower the vowel; the higher
the F2, the more anterior the vowel; the lower the F3,
the rounder the vowel (Flanagan, 1955; Lindblom and
Studdert-Kennedy, 1967).

In terms of nasality, it can be quantified by
a1-p1 (for high vowels such as [i, u, y]) or
a1-p0 values (for non-high vowels such as [a,
o, ə, e]). Since most of the annotated non-
lexical items are realized and transcribed with
non-high vowels, only the a1-p0 values were
considered. While a1 stands for the ampli-
tudes (in dB) of F1, p0 stands for the ampli-
tude of the nasal peak below F1 (Chen, 1997;
Cho et al., 2017; Chiu and Lu, 2021).
Subsequently, to build up the most com-

prehensive acoustic properties, the values of
F1, F2, F3 frequencies and a1-p0 ampli-
tude for each annotated non-lexical item were
measured at 5 different time-points (i.e., the
10%, 30%, 50%, 70%, 90% time-points within
each item interval). The retrieved acoustic
data for 715 tokens6 were processed and mod-
ified into machine-readable forms using the
pandas package (The Pandas Development
Team, 2020) in Python 3.8.9 (Python Core
Team, 2021).

The statistical analysis was performed via
the lmerTest package (Kuznetsova et al.,
2017) in R 4.2.1 (R Core Team, 2022). Some
factors contain rare categories were there-
fore re-coded. Specifically in the candi-
dates of Role, DISFLUENCY and RESPONSE in
were merged into OTHER, considering their ex-
tremely few occurrences. As for the candidates
of Meaning, the items with multiple candidate
tags were recoded as complex. The OTHER and
complex were set as references in Role and
Meaning factors, respectively. Finally, Box-
Cox transformations (Box and Cox, 1964) were
applied to each response variable to reduce the
non-normalities in the distributions.

4.2 Evaluations
To explore the effect of discourse functions on
the acoustic properties, we conduct statistical
analyses with linear mixed-effects models and
classification tasks with SVM.

Statistical Modeling. Apart from the two
discourse functions (Role and Meaning), we
also take Transcriptions into consideration.
As Transcriptions, annotated for segment-
identification, reflects the annotators’ percep-
tion for each non-lexical item, it is likely a

6Each 143 annotated non-lexical items were mea-
sured at 5 different points, resulting in 715 tokens.
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Chiq Df p-value
Duration 83.79 9 <.001 ***
Pitch 124.66 9 <.001 ***
F1 10.12 9 .341
F2 20.32 9 .016 *
F3 7.62 9 .573
Nasality 15.29 9 .083

Table 1: Model comparisons of linear mixed-effects
in different response variables. The comparisons
are between the base model, which only contains
transcription and random intercepts, and the full
model, which additionally includes discourse func-
tion predictors. For brevity, only comparison
statistics are shown. * p < 0.05, ** p < 0.01, ***
p < 0.001.

control variable that poses significant effects
on the properties. Thus, for the evaluation
of each acoustic property, we actually com-
pare two models: one full linear mixed-effects
model (composed of Role, Meaning, and Tran-
scriptions) as well as one counterpart baseline
model (composed of only Transcriptions).
Table 1 illustrates the sequential (Type I)

ANOVA results for the linear mixed-effects
models, in which one specific acoustic property
is used as the dependent variable. Specifically,
the acoustic properties that reach statistical
significance among the model comparisons are
Duration, Pitch, and F2, suggesting that cer-
tain types of roles and meanings present addi-
tional effects on acoustic properties, after con-
trolled for the transcriptions. These results
imply acoustic properties help differentiate dis-
course functions.

To further examine such possibility, Table 2
compiles the fixed-effect results of the full lin-
ear mixed-effects models for the acoustic prop-
erties, where the discourse functions7 are the
predictors. We find that Pitch shows the most
significance when predicting both discourse
functions, which corresponds to the previous
works introduced in Sec. 2.2. Yet, Duration
and F2 are only capable of predicting certain
types of Meaning and without any overlap.

7Notice that the aforementioned BACKCHANNEL (as
Role) and concern (as Meaning) only exist in the sup-
plementary annotation for those non-lexical items pro-
duced by the administrative officers in opposition to
the legislators. Data are reserved for the future stud-
ies.

Not to mention the other three acoustic prop-
erties (i.e., F1, F3, and Nasality) which did
not show any statistical significance.
To sum up, the overall effectiveness of the

linear mixed-effects models for the acoustic
properties to predict the discourse functions
remain questionable. In the following section,
we go on to the implementation of the alter-
native model, the Support Vector Machines
(SVM).

Support Vector Machines Support Vec-
tor Machines (SVM) model is implemented for
the classification tasks, in which the acoustic
properties are used in prediction of discourse
functions. As we assume that the discourse
functions may reflect in the phonological vari-
ations of the non-lexical items, linear models
such as SVM are applicable.
We use random 70-30 splits for training and

testing data. While the training data comprise
500 tokens, the testing data comprise 215 to-
kens. A random guessing model, serving as a
the-most-frequent baseline, is also implemented
for comparison. It calculates the frequency dis-
tributions of all discourse functions, and then
it invariably predicts the most frequent class.
We use the accuracy, precision, recall, and F1-
score to evaluate the performance of the two
models.
Table 3 shows that both models, based on

the acoustic properties, find it harder to pre-
dict Meaning than Role. Specifically, the
acoustics achieved slightly better accuracy
(.48) and precision (.09) than the baseline (.38
and .04). In the prediction of Role, however,
the performance of the models was very sim-
ilar. It implies that the acoustics in fact
does not acquire much advantage in predicting
discourse functions. This observation is con-
sistent with the results of the previous liner
mixed-effects model, in which we found few
correlations between the acoustic properties
and the discourse functions. Therefore, we
attempt to find other presentations of phono-
logical variations that may better capture the
candidates of discourse functions with higher
accuracy.

5 Phone embeddings
As the conventional acoustic properties did
not show promising results of capturing the
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Duration Pitch F1 F2 F3 Nasality
(transcriptions) --

CFT 0.034 12.04∗∗∗ 35.68 6.28 10 169.4 4.03
FILLER 0.042 14.92∗∗∗ 2.67 1.22 10 913.4 5.67

authority −0.016 3.87∗∗ 3.98 2.29∗∗∗−6832.3 2.52
control −0.013 0.16 3.49 7.87 2345.1 0.18
dissatisfaction −0.052 −10.07∗∗∗ 45.70 3.16∗∗−9942.1 4.08
neutral −0.016 0.05 58.17 1.58∗ 1948.2 0.30
new information −0.267∗∗ 10.17∗∗∗−40.21 1.65 −5134.1 −2.71
old ground −0.003 0.82 −4.51 1.31 3383.3 0.13
thought −0.288∗∗∗ −2.36 97.46 1.55 2643.0 2.75

Table 2: Parameter estimates of discourse functions in the linear-mixed effect models. The variables of
transcriptions are included in all models, but their estimates are not shown in the table for brevity.
Response variables are Box-Cox transformed, the parameters are therefore in the transformed scale. * p
< 0.05, ** p < 0.01, *** p < 0.001.

Role Acc Pr Rc F1
acoustics .76 .15 .20 .17
acoustics-base .76 .15 .20 .17
Meaning Acc Pr Rc F1
acoustics .48 .09 .14 .11
acoustics-base .38 .04 .10 .06

Table 3: Evaluation of acoustic models

discourse functions, we reached out to pho-
netic vector representations, in which the
phonological variations of non-lexical items
might be encoded.
Instead of the common end-to-end models

trained on waveforms and language-specific
transcriptions in ASR tasks, we chose the Al-
losaurus model by Li et al. (2020)8 for retriev-
ing the phone embeddings. Specifically, the
Allosaurus is an universal phone recognizer in-
tegrating an ASR encoder with an allophone
layer, in which language-independent phone
distributions are directly recognized and
mapped into language-dependent phoneme
distributions.
We first examine the phone embeddings

learned by the phone recognition model. In
the video clips collected in Section 3, the
model automatically identifies 29,218 phones
in the conversations. To investigate the phone
organizations in the embedding space, we then

8https://github.com/xinjli/allosaurus

extract the bi-LSTM representations9 with
which model predicts the phones as phone em-
beddings. Next, we average these embeddings
by their predicted phones and obtain 34 phone
centroids in the embedding space. We follow
the literature (Cormac English et al., 2022)
and conduct hierarchical clustering with Ward
linkage based on the Euclidean distances be-
tween the centroids. The clustering results
are shown in Figure 1a and Figure 1b. We
not only observe clear clusters of vowels and
consonants but observe that the fricatives and
stops tend to be close to each other with simi-
lar phonetic properties. The patterns suggest
that the phone embeddings might reflect the
phonetic variations in our conversation data.
Moreover, we inspect the clustering struc-

ture of recognized phones that occurred in the
non-lexical items. Figure 1c shows the two-
dimensional t-SNE (Pedregosa et al., 2011) vi-
sualization of the 640-dimension phone embed-
dings obtained from Allosaurus. The same
phones tend to form distinct clusters, and the
general distinction between vowels and conso-
nants is still observed in the figure. It indicates
that the embeddings may represent their cor-
responding phonetic properties. As Li et al.
(2020) have shown in their studies, Allosaurus
has the advantage of multilingual phone recog-

9Referring to the comments from the reviewers, the
bi-LSTM representations are used as the phone embed-
dings considering their better performance than the
other representations (i.e., the 40-dimension MFCCs
and the phone logits) generated by Allosaurus.

The 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)  
Taipei, Taiwan, November 21-22, 2022. The Association for Computational Linguistics and Chinese Language Processing

141

https://github.com/xinjli/allosaurus


(a)

(b) (c)

Figure 1: (a) The dendrogram of the hierarchical clustering with Ward linkage. The links are color-coded
for visual references. Generally, the top left and right branches loosely correspond to consonants and
(semi-)vowels. The leftmost branch (orange) are mostly fricatives (e.g., s, ʂ, ɕ); the one on the right
(green) includes stops (e.g., k, t, p). (b) The distance matrix shows a consistent pattern with the one in
the dendrogram. (c) The t-SNE projection of the phones in non-lexical items. Only the most-frequent
15 phones are shown for clarity. IPA symbols mark the median points of each category.

nition and involves more phonological knowl-
edge. It is thus appropriate for us to lever-
age these phone embeddings, by which the dis-
course functions of non-lexical items may be
encoded.

5.1 Classification Task

The output data by Allosaurus (i.e., the phone
embeddings and phoneme transcriptions) are
aligned with our annotations of discourse func-
tions for non-lexical items. It is noted that
only the phoneme, whose timestamp matches

the 715 tokens of non-lexical items, are kept
for the classification tasks. The data is
split randomly 70-30 into training and testing
datasets as in Section 4.2.
We also implement a linear SVM model

and a random guessing model serving as a
the-most-frequent baseline for the classification
tasks.10 The only difference here is that we
replace use the acoustic properties with the
phone embedding vectors to predict the candi-
dates of the discourse functions.

10Regarding the comments from the reviewers, the
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Role Acc Pr Rc F1
phone emb. .92 .96 .87 .91
baseline .78 .16 .20 .18
Meaning Acc Pr Rc F1
phone emb. .77 .84 .68 .72
baseline .42 .05 .11 .07

Table 4: Evaluation of classifiers based on phone
embeddings

5.2 Evaluation Results
As shown in the upper part of Table 4, phone
emb. stands out with the highest accuracy
(.92) and precision (.96) in prediction of Role.
While baseline presents the accuracy of .78,
the acoustic models (see Table 3) show even
lower accuracies (.76) and precision (.15). As
for predicting Meaning, phone emb. signifi-
cantly outperforms its baseline and remains
the highest in accuracy (.77) and precision
(.84) among all models. In general, phone
emb. presents superior performance than the
other models in prediction of both discourse
functions.
Moreover, both models (i.e., acoustics and

phone emb.) are better at predicting Role
than Meaning, likely due to the fact that
Meaning comprises more types of candidates
and internally more equal distribution. In
this case, the gap between the accuracies of
phone emb. (i.e., between .92 and .77) is still
the smallest among the models. This suggests
that our model is better at capturing the dis-
course functions by using the phone embed-
dings, the phonetic realizations, than the sta-
tistical acoustic properties.

6 Conclusion

This paper focuses on the phonetic-pragmatic
interrelationship of non-lexical discourse mark-
ers in Taiwan Mandarin. As we assume that

linear SVM model and the model baseline are adopted
to not only display the data distributions but high-
light the results of Allosaurus, as we mainly focus on
whether the phone representations really help us ex-
plore non-lexical items. Based on the results, we did
find the the model using phonetic realizations performs
better in predicting the discourse functions, and we ex-
pect future research to develop better representations
and state-of-the-art models that allow us to describe
non-lexical items more appropriately.

the discourse functions may be captured by
the phonological variations, we firstly analyzed
on the common acoustic properties (i.e., dura-
tion, nasality, mean pitch, F1, F2, and F3),
followed by the classification tasks consider-
ing the 640d-phone embeddings. In compari-
son with the conventional acoustic properties,
the model using phonetic realizations performs
better in prediction of the functional Role and
pragmatic Meaning of the non-lexical items.
The result is consistent with our hypothe-
ses that the phonetic realizations, embeddings
via deep learning, encode certain phonological
variations of non-lexical items and correlate
with their discourse functions.
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