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Abstract

Pre-trained language models (PLM) are ef-
fective components of few-shot named en-
tity recognition (NER) approaches when aug-
mented with continued pre-training on task-
specific out-of-domain data or fine-tuning on
in-domain data. However, their performance
in low-resource scenarios, where such data is
not available, remains an open question. We in-
troduce an encoder evaluation framework, and
use it to systematically compare the perfor-
mance of state-of-the-art pre-trained represen-
tations on the task of low-resource NER. We
analyze a wide range of encoders pre-trained
with different strategies, model architectures,
intermediate-task fine-tuning, and contrastive
learning. Our experimental results across ten
benchmark NER datasets in English and Ger-
man show that encoder performance varies
significantly, suggesting that the choice of
encoder for a specific low-resource scenario
needs to be carefully evaluated.

1 Introduction

Pre-trained language models (PLM) have been
shown to be very effective few-shot learners
for a wide range of natural language processing
tasks (Brown et al., 2020; Gao et al., 2021), as they
capture semantically and syntactically rich repre-
sentations of text via self-supervised training on
large-scale unlabeled datasets (Peters et al., 2018;
Devlin et al., 2019). Recent research in few-shot
named entity recognition (NER) has leveraged such
representations, e.g. for metric learning on task-
specific out-of-domain1 data (Fritzler et al., 2019;
Yang and Katiyar, 2020), optionally augmented by
continued pre-training with distantly supervised, in-
domain data (Huang et al., 2021). However, there
has been no systematic comparison of the NER per-
formance of such representations in low-resource
scenarios without task-specific out-of-domain data

1Out-of-domain and in-domain refer to NER-specific data
with disjoint label spaces, i.e. Yout 6= Yin.

and very limited in-domain data; a prevalent setting
in many practical applications.

In this paper we conduct a comparative study to
answer the following research questions: How well
do representations learnt by different pre-trained
models encode information that benefits these low-
resource scenarios? What can we observe for dif-
ferent categories of encoders, such as encoders
trained with masked language modeling, versus
encoders that are additionally fine-tuned on down-
stream tasks, or optimized with contrastive learn-
ing? How do they perform across different datasets
and languages? We present an evaluation frame-
work inspired by few-shot learning to evaluate
representations obtained via different pre-training
strategies, model architectures, pre-training data,
and intermediate-task fine-tuning in low-resource
NER scenarios of varying difficulty (see Figure 1).

We find that the choice of encoder can have sig-
nificant effects on low-resource NER performance,
with F1 scores differing by up to 25% between en-
coders, and simply picking an encoder of the BERT
family at random will usually not yield the best re-
sults for a given scenario. We observe that while
BERT in general performs adequately, ALBERT
and RoBERTa outperform BERT by a large mar-
gin in many cases, with ALBERT being especially
strong in very low-resource settings with only one
available labeled example per class.

The main contributions of this study are: (1)
a systematic performance evaluation of a wide
range of encoders pre-trained with different strate-
gies, such as masked language modeling, task-
specific fine-tuning, and contrastive learning on
the task of low-resource named entity recognition;
(2) an evaluation on ten benchmark NER datasets
in two languages, English and German; (3) an
encoder-readout evaluation framework that can be
easily extended with additional scenarios, encoders,
datasets, and readout approaches; which we release
at https://github.com/dfki-nlp/fewie.
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Figure 1: Encoder-readout evaluation framework. For each of the N classes, we randomly sample K support
tokens including their sentence context, and an unlabeled query token with sentential context. The encoder fθ(·)
provides an embedding (or representation) for each token, and the readout module g(·) assigns a class to a query
token by comparing its representation qj to the representations {z1, . . . ,zN×K} of the support tokens. Depending
on the readout approach, the c-th class in S is represented either by its prototype embedding (as shown in the
example) or by its set of associated token embeddings, e.g. for nearest neighbor classification. In this example q1
representing Merkel would be assigned the class PER based on the closest class prototype embedding (red circle).

2 Encoder Evaluation Framework

To simulate low-resource NER scenarios of varying
difficulty, we draw inspiration from the evaluation
of few-shot learning methods. We first give a for-
mal definition of the few-shot NER task, and then
introduce the encoder evaluation framework itself.

2.1 Few-shot NER task definition

NER is typically formulated as a sequence label-
ing problem, where the input is a sequence of to-
kens X = {x1, x2, · · · , xT } and the output is the
corresponding T -length sequence of entity type la-
bels Y = {y1, y2, · · · , yT }. In contrast, few-shot
learning is cast as an episodic N -way K-shot prob-
lem, where in each episode, N classes are sampled
with K examples each to construct a support set
S = {Xi,Yi}N×Ki=1 for learning, and K ′ exam-
ples per class are sampled to create a query set
Q = {Xj ,Yj}N×K

′
j=1 for evaluation (S ∩ Q = ∅).

In a sequence labeling problem like NER, samples
are typically sentences, due to the importance of
contextual information for token classification, but
care has to be taken to ensure that the sampled sen-
tences contain no other entities. In particular, there
should be no entity overlap between the support
and the query sets (Ding et al., 2021).

2.2 Encoder-Readout Framework

Our framework consists of two modules, an en-
coder f(·) and a readout module g(·), as shown
in Figure 1. The encoder provides an embedding
z = fθ(x) of a token x, where θ denotes the pa-

rameters of the encoder. The readout module is
responsible for assigning a class to each token x′ in
the query setQ given the support set S . Depending
on the readout approach, the c-th class in S is rep-
resented either by its prototype embedding or by its
associated set of token embeddings, e.g. for nearest
neighbor classification. The decision is made by
comparing the embedding q = fθ(x

′) with each of
the N class prototypes built from the support set S ,
or with each of the token-level embeddings.

3 Experiments

We illustrate the evaluation framework using a rep-
resentative set of encoders pre-trained with differ-
ent strategies. We then give details of the readout
approaches, the datasets we used, and all other ex-
perimental settings.

3.1 Encoders
We group encoders into four categories, depending
on their type of pre-training:

PLM These models are pre-trained on a large
general corpus in a self-supervised manner without
any task-specific fine-tuning. We consider six rep-
resentative encoders for English: BERT cased and
uncased (Devlin et al., 2019), SpanBERT (Joshi
et al., 2020), XLNet (Yang et al., 2019), AL-
BERT (Lan et al., 2020) and RoBERTa (Liu et al.,
2019), and three encoders for German: deepset’s
BERT, GottBERT (Scheible et al., 2020) and XLM-
RoBERTa (Conneau et al., 2020).2

2HuggingFace model identifiers for these and all other

47



Language Dataset Domain # Entity types Entity tag set

English

CoNLL-2003EN News 4 LOC,MISC,ORG,PER
OntoNotes 5.0 News, Dialogue 18 CARDINAL,DATE,EVENT,MONEY,...
Few-NERDcoarse General 8 art,building,event,product,...
Few-NERDfine General 66 art-film,product-car,other-law,...
WNUT-17 Social Media 6 corporation,creative-work,group,...
WikiAnn General 3 LOC,ORG,PER
WikiGold General 4 LOC,MISC,ORG,PER
Zhang et al. e-Commerce 4 ATTRIBUTE,BRAND,COMPONENT,PRODUCT

German
CoNLL-2003DE News 4 LOC,MISC,ORG,PER
GermEval 2014 General 12 LOC,LOCderiv,LOCpart,ORG,...
Smartdata News, General 16 DISASTER-TYPE,DISTANCE,LOCATION,...

Table 1: Statistics of the evaluated datasets

Fine-tuned PLM Recent research has shown
that intermediate-task training can result in signifi-
cant performance gains on the target task even in
low-resource settings (Vu et al., 2020; Poth et al.,
2021). We evaluate three BERT encoders that
are fine-tuned on token-level, sentence-level, and
document-level intermediate tasks, respectively:
BERTPOS for part-of-speech tagging, BERTMNLI,
fine-tuned on the MultiNLI dataset (Williams et al.,
2018), and BERTSQuAD for extractive question an-
swering (Rajpurkar et al., 2016). Evaluating these
encoders may allow us to observe whether the rep-
resentation granularity induced by the tasks they
were fine-tuned on has an effect on NER perfor-
mance: While token-level part-of-speech tag in-
formation is a staple feature of classic NER ap-
proaches (Finkel et al., 2005), it is less clear if
encoders trained on tasks that require conceptual
representations (and possibly understanding) of
sentence- and document-length context, learn en-
tity representations useful for NER.

PLM fine-tuned on NER We also experiment
with BERTCoNLL, a BERT model fine-tuned on the
CoNLL-2003 NER dataset. As this model’s hid-
den representations have been adapted to NER, we
expect it to exhibit better performance than the
other representations. The most interesting ques-
tion of using this model is whether its representa-
tions transfer to NER datasets with non-CoNLL
tagsets.

PLM with contrastive learning For each of the
English PLM encoders, we apply contrastive learn-
ing to learn representations with better separability.
The idea of contrastive learning is to pull positives
closer and push negatives away in the representa-
tion space during the pre-training phase (Rethmeier
and Augenstein, 2021). We use the loss function

models are listed in Appendix A.

proposed by Chopra et al. (2005):

LCL(xi, xj ;θ) := 1yi=yj · ‖fθ(xi)− fθ(xj)‖
+ 1yi 6=yj ·max

(
0, ε− ‖fθ(xi)− fθ(xj)‖

)
.

To guarantee that this label-aware contrastive learn-
ing conforms to the few-shot setting, we construct
positive/negative pairs from the support set: Given
an N -way K-shot support set, for each of the N
classes we construct 1 positive pair and K negative
pairs.3

3.2 Readout approaches

We analyze three variants for the readout ap-
proach:4 (1) Logistic Regression (LR), a lin-
ear classification algorithm that can be extended
to multinomial logistic regression to deal with
multi-class (N -way) settings, such as the one dis-
cussed here. (2) k-Nearest Neighbor (NN), a non-
parametric classification method adopted in metric
space. As proposed in STRUCTSHOT (Yang and
Katiyar, 2020), we set k = 1 to find the exact
nearest token in the support set. (3) Nearest Cen-
troid (NC) works similar to NN, but instead of
computing the distance between the query and ev-
ery instance in the embedding space, we represent
each class by the centroid of all token embeddings
belonging to this class, and assign the query to the
class with the nearest centroid.

3.3 Datasets

In order to provide a comprehensive evalua-
tion, we evaluate all encoders on a range of

3One extra example per class is needed for K = 1 to build
one positive pair for this class. This extra example is involved
only in the contrastive learning phase and not introduced to
the encoding and readout steps.

4Computational details of the readout approaches can be
found in Appendix B.
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datasets covering different languages and domains,
including seven English benchmarks: CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003),
Few-NERD (Ding et al., 2021), OntoNotes
5.0 (Weischedel et al., 2013), WikiAnn (Pan
et al., 2017), WNUT-17 (Derczynski et al., 2017),
WikiGold (Balasuriya et al., 2009), and the dataset
of Zhang et al. (2020). For German, we se-
lected the following three datasets: CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003),
Smartdata (Schiersch et al., 2018) and GermEval
2014 (Benikova et al., 2014). Table 1 lists the do-
mains and tagset details of each dataset.

3.4 Experimental settings / Hyperparameters

Datasets We use the BIO tagging schema by de-
fault and the IO schema only when BIO is not pro-
vided by the original dataset (in case of Few-NERD,
OntoNotes 5.0 and WikiGold). WikiGold and
the dataset of Zhang et al. (2020) do not provide
train/test splits, we therefore use the full dataset
to sample support and query sets. For all other
datasets, test splits are used for sampling.5

General settings For each dataset, we evaluate
our methods under three few-shot scenarios: 5-way
1-shot, 5-way 5-shot and 5-way 10-shot. To pro-
duce accurate performance estimates, we sample
600 episodes for each scenario and report the mean
token-level micro-F1 score over all episodes, av-
eraged over all positive classes, and excluding the
’O’ class.

Encoders Max-length is fixed at 128. We use
randomly initialized, static embeddings as the base-
line encoder (Random). For contrastive learning,
we use the Adam optimizer and set the learning
rate to be 5× 10−5 and the number of epochs to be
1 across all encoders.

Readout approaches We L2-normalize the en-
coder embeddings before feeding them to the read-
out model. For NN and NC classification, Eu-
clidean distance serves as the similarity metric be-
tween tokens. For LR, an L2-penalty is applied to
the coefficients. All reported results use LR as the
default readout method, unless specified otherwise,
as we found LR to perform best on average (see
Section 4.4).

Framework implementation We implement
our low-resource NER encoder evaluation frame-
work using the HuggingFace Transformers li-

5For Few-NERD, we use the test data from the "super-
vised" split.

brary (Wolf et al., 2020), Hydra (Yadan, 2019),
and PyTorch (Paszke et al., 2019). Additional sce-
narios, encoders, and datasets can be easily added
simply by creating new experiment configurations.
Adding new readout methods is also a simple mat-
ter of a few lines of code.

4 Results and Discussion

4.1 Comparison of PLM encoders

We first analyze PLM encoders which have not
been fine-tuned on any task.

English results Table 2 presents the experimen-
tal results of English-language encoders for differ-
ent scenarios and datasets. For all scenarios and
datasets, the PLM encoders outperform the ran-
domly initialized baseline by a large margin. As ex-
pected, the NER classification performance of the
encoders increases with higher K, i.e. with more
instances per class in the support set. Overall, the
level of performance across various datasets of this
encoder-only approach to low-resource NER is sur-
prisingly good: We observe that ALBERT achieves
a token-level F1 score of F1 = 72.8 on CoNLL-
2003, XLNet a score of F1 = 85.7 on Few-NERD
fine-grained, and RoBERTa a score of F1 = 83.8
on OntoNotes 5.0. While these results are not di-
rectly comparable to those of state-of-the-art, fully
supervised approaches due to the differences in the
evaluation setup, they are achieved essentially fine-
tuning-free, and with much fewer labeled instances
per class.

Encoder analysis The best-performing en-
coders, on average and across datasets, are AL-
BERT, RoBERTa, and BERT. ALBERT is by far
the best encoder for K = 1, but the other encoders
achieve comparable performance or outperform
ALBERT for K ≥ 5. Even though ALBERT is
an order of magnitude smaller in terms of its num-
ber of parameters than either BERT or RoBERTa,
it provides very competitive embeddings in our
evaluation setup. As can be expected, BERTcased
consistently outperforms BERTuncased for datasets
with tag sets where casing provides useful informa-
tion for NER (e.g. CoNLL, WikiGold), but does not
necessarily perform better if the tag set contains en-
tity types whose instances use lower-case spelling.
XLNet achieves mixed results, mainly depending
on the dataset – on CoNLL-2003, WikiAnn and
WNUT-17, its F1 scores are significantly lower for
all scenarios than those of the best encoder, while
on Few-NERD fine-grained, XLNet achieves the
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Dataset K Random BERT↓ BERT↑ ALBERT↓ RoBERTa↑ SpanBERT↑ XLNet↑

CoNLL-2003EN

1 9.52 21.96 22.04 33.03† 21.71 18.39 18.49
5 12.53 60.94 62.17 68.33† 64.49 43.22 44.82

10 13.71 66.11 68.79 72.76 72.09 49.79 52.43

OntoNotes 5.0
1 18.66 42.71 45.09 50.45† 42.74 34.30 38.40
5 19.73 74.68 77.70 77.66 78.70 65.64 72.60

10 18.88 80.92 82.70 82.10 83.80† 74.14 78.38

Few-NERDcoarse

1 12.12 25.99 28.52 35.67† 28.12 23.34 25.93
5 15.59 53.85 56.04 59.14 58.66 45.50 52.32

10 16.04 59.44 63.20 63.30 65.52† 52.65 61.94

Few-NERDfine

1 21.14 49.74 48.50 54.27† 51.27 39.13 47.02
5 21.00 80.12 79.26 78.08 81.70 71.93 82.73

10 20.62 84.07 83.21 81.17 84.95 78.39 85.73

WNUT-17
1 18.86 25.71 25.67 28.47† 25.43 23.14 24.36
5 19.11 51.56 50.58 55.12 54.59 42.29 42.26

10 18.52 58.77 60.37 60.41 63.93† 48.84 49.74

WikiAnn
1 12.07 24.53 25.92 32.63† 24.80 22.67 22.06
5 15.64 48.33 52.29 53.11† 51.34 40.60 36.81

10 16.95 54.84 59.48 59.10 60.83 46.44 44.19

WikiGold
1 3.71 18.40 21.30 32.30† 20.63 14.90 18.01
5 10.02 49.19 55.54 55.87 56.08 41.07 45.44

10 11.62 55.85 63.91 61.23 64.84 48.09 53.85

Zhang et al.
1 13.49 37.39 36.82 41.23† 38.79 25.83 31.25
5 17.08 63.19 62.17 62.73 66.44† 49.08 57.69

10 16.21 67.45 67.09 66.61 70.16† 54.80 63.79

Table 2: Token-level micro-F1 scores of PLM encoders and a random baseline for 5-way K-shot scenarios, with
logistic regression readout. † denotes scores with significant difference to the next-best encoder’s score (α = 0.05).
↑ and ↓ indicate cased and uncased models.

Dataset K Random BERT↑ Gott-
BERT↑

XLM-R↑

CoNLL-
2003DE

1 12.53 29.42 26.27 30.65
5 15.38 65.98 58.37 65.22
10 16.00 71.43 64.77 71.18

GermEval
2014

1 17.52 25.89 24.08 27.24
5 20.70 61.79† 54.06 58.51
10 18.33 71.18† 60.30 65.37

Smartdata
1 26.12 51.12 49.96 53.17
5 23.52 82.50† 79.30 80.89
10 21.55 86.01 83.10 85.66

Table 3: Token-level micro-F1 scores of German PLM
encoders and a random baseline under 5-way K-shot
scenarios, with logistic regression readout. † denotes
scores with a significant difference to the next-best en-
coder’s score (α = 0.05). ↑ indicates cased models.

best score of all encoders. SpanBERT on aver-
age shows the worst performance of all encoders,
with F1 scores in most scenarios several percent-
age points lower than even those of XLNet. This
suggests that SpanBERT’s span-level masking and
training with a span boundary objective produce
token-level embeddings that are less well separable
by the logistic regression classifier.

Dataset analysis On a per-dataset basis, we can
observe the following from Table 2: On CoNLL-
2003, ALBERT outperforms the next-best encoder
BERTcased for K = 1 by 11% F1, and achieves a
best score of F1 = 72.8 for K = 10, closely fol-
lowed by RoBERTa. XLNet’s and SpanBERT’s
F1 scores are more than 20% lower than those
of ALBERT for K = 5 and K = 10. On Few-
NERD with coarse labels, ALBERT is again the
best encoder at K = 1. For K = 10, RoBERTa
achieves F1 = 65.5, but the other encoders ex-
cept for SpanBERT perform almost as well. Us-
ing the fine-grained labels of Few-NERD, all en-
coders achieve around 80% F1 score. The over-
all picture is similar for OntoNotes 5.0 and the
dataset of Zhang et al., with ALBERT being the
best encoder at K = 1 and RoBERTa outperform-
ing the other encoders at K = 10. BERT and
XLNet show competitive performance to ALBERT
and RoBERTa, yielding slightly lower F1 scores
in all scenarios. This trend is also confirmed for
the remaining datasets, WikiAnn, WNUT-17 and
WikiGold, with ALBERT and RoBERTa being the
strongest contenders, and BERT often catching up
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Dataset K BERT↓ BPOS↓ BMNLI↓ BSQuAD↓

CoNLL-
2003EN

1 21.96 43.01† 22.29 35.05
5 60.94 65.72 61.34 65.94
10 66.11 68.46 64.71 68.50

OntoNotes
5.0

1 42.71 50.85† 42.99 47.83
5 74.68 66.17 75.29 76.37
10 80.92 68.02 80.94 79.68

Few-
NERDcoarse

1 25.99 34.70 26.08 35.07
5 53.85 49.88 52.52 59.77†
10 59.44 52.78 58.17 63.09†

Few-
NERDfine

1 49.74 43.97 46.71 51.17
5 80.12† 63.08 77.14 78.58
10 84.07† 66.43 81.26 81.58

WNUT-
17

1 25.71 32.04† 25.12 29.04
5 51.56 44.90 48.50 51.05
10 58.77† 49.11 56.30 54.58

WikiAnn
1 24.53 32.92 23.35 33.33
5 48.33 43.54 46.94 55.93†
10 54.84 45.70 53.47 63.37†

WikiGold
1 18.40 37.46† 20.33 30.80
5 49.19 55.54† 50.86 53.96
10 55.85 55.62 55.81 57.99†

Zhang et
al.

1 37.39 45.67† 37.29 40.90
5 63.19 59.58 62.98 61.01
10 67.45 60.61 66.23 61.95

(a) Micro-F1 scores of BERT, and fine-tuned BERTPOS, BERTMNLI
and BERTSQuAD.

Dataset Overlap K BERT↓ BCoNLL↓

CoNLL-
2003EN

1.00
1 21.96 90.46†
5 60.94 94.73†
10 66.11 94.40†

WikiGold 1.00
1 18.40 68.83†
5 49.19 81.40†
10 55.85 84.68†

WikiAnn 0.75
1 24.53 55.15†
5 48.33 67.22†
10 54.84 71.34†

Few-
NERDcoarse

0.50
1 25.99 53.25†
5 53.85 70.04†
10 59.44 72.66†

WNUT-
17 0.25

1 25.71 44.96†
5 51.56 63.99†
10 58.77 69.76†

OntoNotes
5.0 0.16

1 42.71 58.99†
5 74.68 76.21†
10 80.92† 77.75

Few-
NERDfine

0
1 49.74 59.36†
5 80.12 79.70
10 84.07† 82.00

Zhang et
al. 0

1 37.39 49.22†
5 63.19 65.40†
10 67.45 66.13

(b) Micro-F1 scores of BERT and BERTCoNLL. The
datasets are listed in descending order of tag set over-
lap with CoNLL-2003, as measured by Jaccard Index.

Table 4: Token-level micro-F1 scores of fine-tuned encoders under 5-way K-shot scenarios, with LR readout. †
denotes scores with significant difference to the next-best encoder’s score (α = 0.05). ↓ indicates uncased models.

in terms of F1 scores with increasing K.

German results Table 3 shows the results of
German-language encoders and the random base-
line on three evaluation datasets. Similar to the En-
glish results, we observe that: (i) BERT, GottBERT
and XLM-RoBERTa all benefit from more support
instances, i.e. achieve a better performance with
a larger training set, and outperform the random
baseline by a large margin. (ii) XLM-RoBERTa
shows the best performance across datasets in one-
shot settings, whereas BERT outperforms the other
encoders for K ≥ 5. (iii) GottBERT’s encodings
yield features that are less useful for low-resource
NER, resulting in worse performance than the other
two encoders in all scenarios.

On CoNLL-2003, BERT achieves a micro-F1
score of 71.4 at K = 10, XLM-R a competi-
tive score of 71.2, while GottBERT only achieves
F1 = 64.8. Similar performance differences be-
tween the three encoders can be observed for the
other two datasets at K = 5 and K = 10. At
K = 1, XLM-R consistently outperforms BERT

and GottBert, with GottBERT showing the worst
performance. The results show that BERT, a model
trained with less, but likely quality training data
(Wikipedia, OpenLegalData, News) produces rep-
resentations that are more suited for low-resource
NER in most of the evaluated settings, compared
to GottBERT (145GB of unfiltered web text), and
XLM-RoBERTa (≈100GB filtered CommonCrawl
data for German).

4.2 Fine-tuned encoders
Fine-tuned PLM The next group of encoders we
analyze are encoders fine-tuned on an intermedi-
ate task, in our case POS tagging, NLI, and QA.
Results are shown in Table 4a. We can see that
using a BERT encoder fine-tuned on POS tagging
significantly improves F1 scores at K = 1 for all
datasets except Few-NERD fine-grained, on av-
erage by about 9 points. However, for K ≥ 5,
BERTPOS’s performance is significantly worse than
that of BERT for the majority of datasets, except
CoNLL-2003 and WikiGold.

The BERTMNLI model’s performance is compet-
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itive with the base BERT model’s, with no statis-
tically significant differences. Fine-tuning on this
sentence-level task, which is rather unrelated to
NER, hence seems to have neither negative nor
positive effects on the resulting token embeddings.

Embeddings obtained from BERTSQuAD, fine-
tuned on document-level span extraction, outper-
form BERT in most settings, often with statisti-
cal significance. However, on some datasets (e.g.
WNUT-17, Few-NERDfine), BERTSQuAD’s scores
are lower than BERT’s forK ≥ 5. Compared to the
other fine-tuned encoders, BERTSQuAD performs
better in general for K ≥ 5. Its good performance
may be attributed to the fact that approximately
41.5% of the answers in the SQuAD dataset corre-
spond to common entity types, and another 31.8%
to common noun phrases (Rajpurkar et al., 2016).

The observations for these three encoders coin-
cide with the intuition, that the more relevant the
knowledge encoded by the intermediate task is w.r.t.
the target task, the more likely an improvement on
the target task becomes.

PLM fine-tuned on NER Table 4b shows the
results obtained for BERTCoNLL, an encoder that
was fine-tuned on CoNLL-2003. As can be ex-
pected, this encoder performs very well on the
CoNLL-2003 test set, with large F1 gains in all
scenarios. For most of the other datasets, F1 scores
are also significantly improved for all settings of
K, especially with a large tagset overlap. These re-
sults coincide with the intuition that the higher the
tagset overlap, the larger the improvement. How-
ever, we note that some of these datasets are con-
structed from other data sources, e.g. web and so-
cial media texts, which indicates some transfer-
ability of the CoNLL-2003-tuned representations.
Even for datasets where there is little or no overlap
(OntoNotes 5.0, Zhang et al.), there are at least
some gains at K = 1. However, at K = 10,
the performance of the embeddings obtained from
BERTCoNLL is significantly worse than that of the
base BERT model.

4.3 PLM with contrastive learning

Table 5 compares the results of English encoders
before and after contrastive learning. In general,
results are mixed: For ALBERT and SpanBERT,
using CL improves F1 scores in most cases, of-
ten with significant differences, whereas for BERT,
RoBERTa and XLNET, the base encoders mostly
exhibit (marginally) better performance.

Encoder analysis We observe that ALBERT
benefits the most from contrastive learning, with
significant F1 gains in 5 out of 12 comparisons,
followed by SpanBERT (3), XLNet (1), BERT (1)
and RoBERTa (0). Surprisingly, it achieves slightly
higher F1-scores on Few-NERD coarse-grained
and significantly higher F1-scores on WikiGold in
all three scenarios. For 1-shot scenario on CoNLL-
2003, ALBERT also gets a large F1 increase by
3.68%, the best improvement among all encoders.

Dataset analysis Few-NERD coarse-grained
and WikiGold show better compatibility with con-
trastive learning, with 11 and 8 F1 improvements
out of 15 comparisons after contrastive learning,
respectively, compared with CoNLL-2003 (6) and
OntoNotes 5.0 (4). Specifically, all five encoders
have F1 gains on Few-NERD dataset in the one-
shot scenario.

4.4 Readout approaches

Finally, Table 6 compares the different readout ap-
proaches on the CoNLL-2003 and OntoNotes 5.0
datasets, using ALBERT. For K >= 5, Logis-
tic Regression outperforms Nearest Centroid and
Nearest Neighbor classification, while for one-shot
scenarios Nearest Neighbor performs best. NC is
outperformed by LR and NN in all scenarios but
5-shot on OntoNotes 5.0. This suggests that with
very few samples, the raw token embedding infor-
mation, as used by NN, is a better representation of
a class than the averaged embeddings as produced
by LR and CN, but with more samples, weighted
embeddings obtained with LR are more useful.

5 Related Work

Few-shot NER Recent work on few-shot NER has
primarily focused on integrating additional knowl-
edge to support the classification process. Fritzler
et al. (2019) are the first to use pre-trained word
embeddings for this task. Yang and Katiyar (2020)
extend a Nearest Neighbor token-level classifier
with a Viterbi decoder for structured prediction
over entire sentences. Huang et al (2021) propose
to continue pre-training of a PLM encoder with
distantly supervised, in-domain data, and to inte-
grate self-training to create additional, soft-labeled
training data. Recently, Gao et al. (2021) and
Ma et al. (2021) investigate methods for making
PLMs better few-shot learners via prompt-based
fine-tuning. While these approaches extend stan-
dard few-shot learning algorithms in promising di-
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Dataset K
BERT↓ ALBERT↓ RoBERTa↑ SpanBERT↑ XLNet↑

w/o CL CL w/o CL CL w/o CL CL w/o CL CL w/o CL CL

CoNLL-
2003EN

1 21.96 23.87† 33.03 36.71† 21.71 22.57 18.39 17.61 18.49 18.25
5 60.94 60.55 68.33 66.85 64.49 62.45 43.22 44.23 44.82 45.93

10 66.11 65.03 72.76 70.66 72.09 70.17 48.79 49.82 52.43 49.25

OntoNotes
5.0

1 42.71 42.89 50.45 51.38 42.74 41.66 34.30 32.95 38.40 38.64
5 74.68 74.02 77.66 76.65 78.70 75.29 65.64 64.29 72.60 70.66

10 80.92 80.36 82.10 81.47 83.80 82.51 74.14 74.72 78.38 75.99

Few-
NERDcoarse

1 25.99 27.42 35.67 38.16† 28.12 29.10 23.34 23.40 25.93 26.35
5 53.85 52.97 59.14 59.71 58.66 55.75 45.50 46.03 52.32 54.91†

10 59.44 59.89 63.30 64.53 65.52 62.86 52.65 55.47† 61.94 61.45

WikiGold
1 18.40 16.85 32.30 34.05† 20.63 19.90 14.90 15.39 18.01 19.13
5 49.19 49.19 55.87 57.67† 56.08 53.91 41.07 42.92† 45.44 44.21

10 55.85 56.87 61.23 62.68† 64.84 63.05 48.09 50.93† 53.85 52.26

Table 5: Token-level micro F1-scores of PLM encoders without and with contrastive learning (CL) for 5-way K-
shot scenarios, with logistic regression readout. † denotes scores with a significant (α = 0.05) improvement after
contrastive learning. ↑ and ↓ indicate cased and uncased models.

Dataset K LR NC NN

CoNLL-2003EN

1 33.03 35.21 40.76†
5 68.33† 61.53 62.24

10 72.76† 62.65 67.79

OntoNotes 5.0
1 50.45 51.52 52.72
5 77.66† 72.46 71.04

10 82.10† 73.49 76.11

Table 6: Micro-F1 scores of ALBERT for 5-way K-
shot scenarios, comparing Logistic Regression (LR),
Nearest Centroid (NC) and Nearest Neighbor (NN)
readout approaches.

rections, none of them directly investigate the con-
tribution of different pre-trained representations.
As such, our analysis complements these works.
Das et al. (2021) present a contrastive pre-training
approach for few-shot NER that uses in-domain
data to fine-tune token embeddings before few-shot
classification. In contrast, we only consider con-
trastive examples from the sampled few-shot set to
conform to the low-resource setting.

Encoder comparisons In parallel to our work,
Pearce et al. (2021) compare different Transformer
models on extractive question answering and, sim-
ilar to our results, find RoBERTa to perform best,
outperforming BERT. However, they did not re-
produce the strong performance we achieved with
ALBERT and, unlike our results, found XLNet to
be consistently outperforming BERT. Cortiz (2021)
compare Transformer models for text-based emo-
tion recognition and also found RoBERTa to per-
form best with XLNet being (shared) second, again
outperforming BERT.

There are several studies that investigate the per-

formance and transferability of PLM representa-
tions that have been fine-tuned with task-specific
NER data (Pires et al., 2019; Wu and Dredze, 2020;
Adelani et al., 2021; Ebrahimi and Kann, 2021;
Ács et al., 2021). For example, Wu and Dredze
(2020) analyze multilingual mBERT representa-
tions, with a focus on low-resource languages,
i.e. languages that are not well represented in the
original mBERT training data. They observe that
mBERT’s NER performance is worse for very high-
and very low-resource languages, and that per-
formance drops significantly with less pretraining
and supervised data. Adelani et al. (2021) find
that fine-tuned XLM-R-large representations out-
perform fine-tuned mBERT representations in 7
of 10 evaluated African languages, which they at-
tribute to the larger pretraining data size of XLM-R.
Ebrahimi and Kann (2021) find that continued pre-
training with Bible data from over 1600 languages
improves zero-shot NER performance of XLM-R
representations.

Our work can also be viewed as a kind of prob-
ing task (Conneau et al., 2018; Belinkov and Glass,
2019; Tenney et al., 2019; Petroni et al., 2019; Kass-
ner et al., 2021), since we analyze how much in-
formation about named entities is preserved in the
pre-trained representations, as measured by a linear
classifier.

6 Conclusion

We presented a systematic, comparative study of
pre-trained encoders on the task of low-resource
named entity recognition. We find that encoder
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performance varies significantly depending on the
scenario and the mix of pre-training and fine-tuning
strategies. This suggests that the choice of en-
coders for a particular setting in current state-of-
the-art low-resource NER approaches may need to
be carefully (re-)evaluated. We also find that PLM
encoders achieve reasonably good token classifica-
tion performance on many English and German
NER datasets with as little as 10 examples per
class, in a fine-tuning-free setting. In particular,
ALBERT turned out to be a very strong contender
in one-shot settings, whereas RoBERTa often out-
performs other PLMs in settings with more exam-
ples. For German, BERT shows the best average
performance across scenarios, with XLM-R being
more useful in one-shot settings.

One obvious direction for future work is to eval-
uate additional encoders, in particular models that
are pre-trained in an entity-aware manner (Peters
et al., 2019; Zhang et al., 2019), and PLMs for
low-resource languages that are trained on much
smaller corpora or underrepresented in multilin-
gual PLMs. While our analysis is limited to NER,
another future direction would be to adapt the
encoder-readout framework in order to evaluate
other low-resource classification tasks.

Acknowledgments

We would like to thank Nils Feldhus, David Har-
becke, and the anonymous reviewers for their valu-
able comments and feedback on the paper. This
work has been supported by the German Federal
Ministry for Economic Affairs and Climate Ac-
tion as part of the project PLASS (01MD19003E),
and by the German Federal Ministry of Education
and Research as part of the project CORA4NLP
(01IW20010). Christoph Alt is supported by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence
Strategy – EXC 2002/1 "Science of Intelligence" –
project number 390523135.

References
Judit Ács, Dániel Lévai, and Andras Kornai. 2021.

Evaluating transferability of BERT models on uralic
languages. In Proceedings of the Seventh Interna-
tional Workshop on Computational Linguistics of
Uralic Languages, pages 8–17, Syktyvkar, Russia
(Online). Association for Computational Linguis-
tics.

David Ifeoluwa Adelani, Jade Abbott, Graham Neu-

big, Daniel D’souza, Julia Kreutzer, Constantine
Lignos, Chester Palen-Michel, Happy Buzaaba,
Shruti Rijhwani, Sebastian Ruder, Stephen May-
hew, Israel Abebe Azime, Shamsuddeen H. Muham-
mad, Chris Chinenye Emezue, Joyce Nakatumba-
Nabende, Perez Ogayo, Aremu Anuoluwapo,
Catherine Gitau, Derguene Mbaye, Jesujoba Al-
abi, Seid Muhie Yimam, Tajuddeen Rabiu Gwad-
abe, Ignatius Ezeani, Rubungo Andre Niyongabo,
Jonathan Mukiibi, Verrah Otiende, Iroro Orife,
Davis David, Samba Ngom, Tosin Adewumi, Paul
Rayson, Mofetoluwa Adeyemi, Gerald Muriuki,
Emmanuel Anebi, Chiamaka Chukwuneke, Nkiruka
Odu, Eric Peter Wairagala, Samuel Oyerinde,
Clemencia Siro, Tobius Saul Bateesa, Temilola
Oloyede, Yvonne Wambui, Victor Akinode, Deb-
orah Nabagereka, Maurice Katusiime, Ayodele
Awokoya, Mouhamadane MBOUP, Dibora Gebrey-
ohannes, Henok Tilaye, Kelechi Nwaike, Degaga
Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named entity
recognition for African languages. Transactions
of the Association for Computational Linguistics,
9:1116–1131.

Dominic Balasuriya, Nicky Ringland, Joel Nothman,
Tara Murphy, and James R. Curran. 2009. Named
entity recognition in Wikipedia. In Proceedings of
the 2009 Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources
(People’s Web), pages 10–18, Suntec, Singapore. As-
sociation for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Darina Benikova, Chris Biemann, and Marc Reznicek.
2014. NoSta-D named entity annotation for Ger-
man: Guidelines and dataset. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2524–
2531, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

54

https://aclanthology.org/2021.iwclul-1.2
https://aclanthology.org/2021.iwclul-1.2
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1162/tacl_a_00416
https://aclanthology.org/W09-3302
https://aclanthology.org/W09-3302
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages
539–546. IEEE.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Germán Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single \backslash$&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2126–2136, Melbourne,
Australia. Association for Computational Linguis-
tics.

Diogo Cortiz. 2021. Exploring transformers in emo-
tion recognition: a comparison of bert, distillbert,
roberta, xlnet and electra. CoRR, abs/2104.02041.

Sarkar Snigdha Sarathi Das, Arzoo Katiyar, Rebecca J.
Passonneau, and Rui Zhang. 2021. Container: Few-
shot named entity recognition via contrastive learn-
ing. CoRR, abs/2109.07589.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-NERD: A few-shot named entity
recognition dataset. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3198–3213, Online. Associa-
tion for Computational Linguistics.

Abteen Ebrahimi and Katharina Kann. 2021. How to
adapt your pretrained multilingual model to 1600

languages. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 4555–4567, Online. Association for Computa-
tional Linguistics.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Informa-
tion into Information Extraction Systems by Gibbs
Sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
ACL ’05, pages 363–370, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in Named
Entity Recognition Task. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing -
SAC ’19, pages 993–1000. ArXiv: 1812.06158.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few-
shot named entity recognition: An empirical base-
line study. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10408–10423, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Nora Kassner, Philipp Dufter, and Hinrich Schütze.
2021. Multilingual LAMA: Investigating knowl-
edge in multilingual pretrained language models. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3250–3258, Online.
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

55

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://arxiv.org/abs/2104.02041
http://arxiv.org/abs/2104.02041
http://arxiv.org/abs/2104.02041
http://arxiv.org/abs/2109.07589
http://arxiv.org/abs/2109.07589
http://arxiv.org/abs/2109.07589
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.248
https://doi.org/10.18653/v1/2021.acl-long.248
https://doi.org/10.18653/v1/2021.acl-long.351
https://doi.org/10.18653/v1/2021.acl-long.351
https://doi.org/10.18653/v1/2021.acl-long.351
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS


Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Ruotian Ma, Xin Zhou, Tao Gui, Yiding Tan, Qi Zhang,
and Xuanjing Huang. 2021. Template-free prompt
tuning for few-shot ner. CoRR, abs/2109.13532.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Kate Pearce, Tiffany Zhan, Aneesh Komanduri, and
Justin Zhan. 2021. A comparative study of
transformer-based language models on extractive
question answering. CoRR, abs/2110.03142.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54, Hong Kong, China. Associ-
ation for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna
Gurevych. 2021. What to pre-train on? Efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10585–10605, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Rethmeier and Isabelle Augenstein. 2021. A
primer on contrastive pretraining in language pro-
cessing: Methods, lessons learned and perspectives.
CoRR, abs/2102.12982.

Raphael Scheible, Fabian Thomczyk, Patric Tippmann,
Victor Jaravine, and Martin Boeker. 2020. Got-
tbert: a pure german language model. CoRR,
abs/2012.02110.

Martin Schiersch, Veselina Mironova, Maximilian
Schmitt, Philippe Thomas, Aleksandra Gabryszak,
and Leonhard Hennig. 2018. A German Corpus for
Fine-Grained Named Entity Recognition and Rela-
tion Extraction of Traffic and Industry Events. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019. What do you learn from
context? Probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 7882–7926, Online. Associa-
tion for Computational Linguistics.

56

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2109.13532
http://arxiv.org/abs/2109.13532
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2110.03142
http://arxiv.org/abs/2110.03142
http://arxiv.org/abs/2110.03142
http://aclweb.org/anthology/N18-1202
http://aclweb.org/anthology/N18-1202
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/P19-1493
https://aclanthology.org/2021.emnlp-main.827
https://aclanthology.org/2021.emnlp-main.827
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://arxiv.org/abs/2102.12982
http://arxiv.org/abs/2102.12982
http://arxiv.org/abs/2102.12982
http://arxiv.org/abs/2012.02110
http://arxiv.org/abs/2012.02110
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://doi.org/10.18653/v1/2020.emnlp-main.635


Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadel-
phia, PA, 23.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.

Omry Yadan. 2019. Hydra - a framework for elegantly
configuring complex applications. Github.

Yi Yang and Arzoo Katiyar. 2020. Simple and effective
few-shot named entity recognition with structured
nearest neighbor learning. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6365–6375,
Online. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. Advances in neural infor-
mation processing systems, 32.

Hanchu Zhang, Leonhard Hennig, Christoph Alt,
Changjian Hu, Yao Meng, and Chao Wang.
2020. Bootstrapping named entity recognition in E-
commerce with positive unlabeled learning. In Pro-
ceedings of The 3rd Workshop on e-Commerce and
NLP, pages 1–6, Seattle, WA, USA. Association for
Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1441–1451, Florence, Italy. Association
for Computational Linguistics.

57

http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.ecnlp-1.1
https://doi.org/10.18653/v1/2020.ecnlp-1.1
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139


A Additional Training Details

We used a single RTXA6000-GPU for all experi-
ments. The average runtime per scenario (dataset,
encoder) for 600 episodes was approximately 1
minute (1-shot), 3 minutes (5-shot) and 6 minutes
(10-shot). Constrastive pre-training was also per-
formed on the same single RTXA6000-GPU, and
took approximately 1 hour of GPU-time, including
hyperparameter search.

For contrastive pre-training, the following hy-
perparameters were manually tuned: learning rate
in [2× 10−5, 5× 10−5], the number of epochs in
[1, 2, 5]. We used the most occurrences of F1-gains
across all encoders and scenarios on CoNLL-2003
dataset as criterion for hyperparameter selection.

All pre-trained models evaluated in this study
were used as they are available from Hugging-
Face’s model hub, without any modifications. Ta-
ble 7 lists the model identifiers. We used Hugging-
Face’s dataset hub for all datasets except the dataset
by Zhang et al. (2020), which is used here with the
permission of the authors.

Model HuggingFace ID

BERT↓ bert-base-uncased
BERT↑ bert-base-cased
ALBERT albert-base-v2
RoBERTa roberta-base
SpanBERT SpanBERT/spanbert-base-cased
XLNET xlnet-base-cased

BERT DE bert-base-german-cased
GottBERT uklfr/gottbert-base
XLM-R xlm-roberta-base

BERTPOS vblagoje/bert-english-uncased-finetuned-pos
BERTMNLI textattack/bert-base-uncased-MNLI
BERTSQuAD csarron/bert-base-uncased-squad-v1
BERTCoNLL dslim/bert-base-NER-uncased

Table 7: HuggingFace model identifiers of evaluated
encoders

B Readout approaches

Logistic Regression (LR) is a linear classification
algorithm that can be extended to multinomial lo-
gistic regression to deal with multi-class (N -way)
settings, such as the one discussed here. The prob-
ability that query token x′ belongs to the c-th class
is given by:

Pr(y = c) =
score(x′, c)

∑N
i=1 score(x′, i)

score(x′, i) := exp(Wi · fθ(x′)),
(1)

where W is a matrix of N rows learned from the
support set S, and Wi denotes the i-th row of W .
score(·) serves as the metric to measure the affinity
between token x′ and the prototype of class c, and
the prediction is given by

y∗ = arg max
c∈{1,··· ,N}

score(x′, c).

k-Nearest Neighbor (NN) is a non-parametric
classification method adopted in metric space. As
proposed in STRUCTSHOT (Yang and Katiyar,
2020), we set k = 1 to find the exact nearest token
in the support set. Given a query token x′,

y∗ = arg min
c∈{1,··· ,N}

dc(x
′)

dc(x
′) := min

x∈Sc
d
(
fθ(x

′), fθ(x)
)
,

(2)

where Sc is the set of support tokens whose tags
are c, and d denotes the distance between two em-
beddings in the representation space.

Nearest Centroid (NC) works similar to NN. In
contrast, for each query token x′, instead of comput-
ing the distance between fθ(x′) and every instance
in the embedding space, we represent each class
by the centroid cc of all embeddings belonging to
this class, and assign token x′ to the class with the
nearest centroid:

y∗ = arg min
c∈{1,··· ,N}

d
(
fθ(x

′), cc
)

cc =
1

|Sc|
∑

x∈Sc
fθ(x).

(3)

C Entity tag sets of English datasets

We list the full entity tag sets for all English bench-
marks. Overlap entity tags with CoNLL-2003EN
are highlighted with underline.

C.1 CoNLL-2003EN

LOC, MISC, ORG, PER.

C.2 OntoNotes 5.0
CARDINAL, DATE, EVENT, FAC, GPE, LAN-
GUAGE, LAW, LOC, MONEY, NORP, ORDI-
NAL, ORG, PERCENT, PERSON, PRODUCT,
QUANTITY, TIME, WORK_OF_ART.

C.3 Few-NERDcoarse

art, building, event, location, organization, other6,
person, product.

6Few-NERDcoarse sets non-entity as ’O’ and various entity
types as ’other’. Therefore, we treat ’other’ as ’MISC’ in this
case.
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C.4 Few-NERDfine

art-broadcastprogram, art-film, art-music, art-
other, art-painting, art-writtenart, building-
airport, building-hospital, building-hotel,
building-library, building-other, building-
restaurant, building-sportsfacility, building-
theater, event-attack/battle/war/militaryconflict,
event-disaster, event-election, event-other,
event-protest, event-sportsevent, location-
GPE, location-bodiesofwater, location-island,
location-mountain, location-other, location-
park, location-road/railway/highway/transit,
organization-company, organization-education,
organization-government/governmentagency,
organization-media/newspaper, organization-other,
organization-politicalparty, organization-religion,
organization-showorganization, organization-
sportsleague, organization-sportsteam, other-
astronomything, other-award, other-biologything,
other-chemicalthing, other-currency, other-
disease, other-educationaldegree, other-god,
other-language, other-law, other-livingthing,
other-medical, person-actor, person-artist/author,
person-athlete, person-director, person-other,
person-politician, person-scholar, person-soldier,
product-airplane, product-car, product-food,
product-game, product-other, product-ship,
product-software, product-train, product-weapon

C.5 WNUT-17
corporation, creative-work, group, location, person,
product.

C.6 WikiAnn
LOC, ORG, PER.

C.7 WikiGold
LOC, MISC, ORG, PER.

C.8 Zhang et al.
ATTRIBUTE, BRAND, COMPONENT, PROD-
UCT.
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