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Abstract

We choose random points in the hyperbolic
disc and claim that these points are already
word representations. However, it is yet to be
uncovered which point corresponds to which
word of the human language of interest. This
correspondence can be approximately estab-
lished using a pointwise mutual information
between words and recent alignment tech-
niques.

1 Introduction

Vector representations of words are ubiquitous in
modern natural language processing (NLP). There
are currently two large classes of word embedding
models: they build (1) static and (2) contextualized
word vectors correspondingly.

Static embeddings map each word type into a
vector of real numbers, regardless of the context in
which the word type is used. The most promi-
nent representatives of this class of models are
WORD2VEC (Mikolov et al., 2013b,a) and GLOVE
(Pennington et al., 2014). The obvious problem
with this approach is the representation of poly-
semous words, such as bank—it becomes unclear
whether we are talking about a financial institution,
or we are talking about the river bank.

Contextualized word embeddings, such as
ELMO (Peters et al., 2018) and BERT (Devlin
et al., 2019), solve this problem by mapping each
word token into a vector space depending on the
context in which the given word token is used, i.e.
the same word will have different vector represen-
tations when used in different contexts. The second
approach can nowadays be considered mainstream,
despite relatively few papers offering theoretical
justifications for contextualized word embeddings.

For static embeddings, on the contrary, there is a
number of theoretical works, each of which offers
its own version of what is happening when word
vectors are trained. An incomplete list of such
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works includes those of Levy and Goldberg (2014),
Arora et al. (2016), Hashimoto et al. (2016), Gittens
et al. (2017), Tian et al. (2017), Ethayarajh et al.
(2019), Allen et al. (2019), Allen and Hospedales
(2019), Assylbekov and Takhanov (2019), Zobnin
and Elistratova (2019). Other advantages of static
embeddings over contextualized ones include faster
training (few hours instead of few days) and lower
computing requirements (1 consumer-level GPU
instead of 8—16 non-consumer GPUs). Morevoer,
static embeddings are still an integral part of deep
neural network models that produce contextualized
word vectors, because embedding lookup matrices
are used at the input and output (softmax) layers of
such models. Therefore, we consider it necessary
to further study static embeddings.

Several recent works (Nickel and Kiela, 2017,
Tifrea et al., 2019) argue that static word embed-
dings should be better trained in hyperbolic spaces
than in Euclidean spaces, and provide empirical ev-
idence that word embeddings trained in hyperbolic
spaces need less dimensions to achieve the same
quality as state-of-the-art Euclidean vectors.! Usu-
ally such works motivate the hyperbolicity of word
embeddings by the fact that hyperbolic spaces are
better suited for embedding hierarchical structures.
Words themselves often denote concepts with an
underlying hierarchy. An example of such a hi-
erarchy is the WORDNET database, an excerpt of
which is shown in Fig. 1.

In the present paper we will investigate where
the hyperbolicity originates from. If we take the
state-of-the-art Euclidean embeddings, is it possi-
ble to establish a direct connection between them
and their counterparts from a hyperbolic word em-
bedding? This was answered positively by As-
sylbekov and Jangeldin (2020) who established a
chain of connections: from word embeddings to

!'The quality of word vectors is usually measured by the
performance of downstream tasks, such as similarity, analo-
gies, part-of-speech tagging, etc.
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Figure 1: An excerpt from the WORDNET database.

co-occurrence matrices, then to complex networks,
and, finally, to hyperbolic spaces. In this paper,
to provide an additional justification for the con-
structed chain, we propose a way to move from
the final point, hyperbolic spaces, to the initial one,
word embeddings. We show that drawing random
points from the hyperbolic plane results in a set
of points that reasonably well resembles word em-
beddings. In fact, we can match these points to
word embeddings. Contrary, the same trick does
not work with points drawn at random in the Eu-
clidean space. Thus, one can argue that the hyper-
bolic space provides the underlying structure for
word embeddings, while in the Euclidean space
this structure has to be superimposed.

Notation

We denote with R the real numbers. Bold-faced
lowercase letters (x) denote vectors, plain-faced
lowercase letters (x) denote scalars, bold-faced up-
percase letters (A) denote matrices, (x,y) is the
Euclidean inner product. We use A ..q to de-
note a submatrix located at the intersection of rows
a,a+1,...,band columns ¢,c+ 1,...,d of A.
‘1.i.d.” stands for ‘independent and identically dis-
tributed’, ‘p.d.f* stands for ‘probability distribution
function’. We use the sign o to abbreviate ‘propor-
tional to’, and the sign ~ to abbreviate ‘distributed
as’.

Assuming that words have already been con-
verted into indices, let W := {1, ..., n} be a finite
vocabulary of words. Following the setup of the
widely used WORD2VEC model (Mikolov et al.,
2013a,b), we use two vectors per each word 7: (1)
w; € R4 when i € Wis a center word, (2) ¢; € R?
when ¢ € W is a context word; and we assume that
d < n.

In what follows we assume that our dataset con-
sists of co-occurence pairs (i, j). We say that “the
words ¢ and j co-occur” when they co-occur in a
fixed-size window of words. Let #(i,7) be the
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number of times the words ¢ and j co-occur.

2 Background: From Word Embeddings
to Hyperbolic Space

Our departure point is the skip-gram with nega-
tive sampling (SGNS) word embedding model of
Mikolov et al. (2013b) that maximizes the follow-
ing objective function

o> #i i) logo((wiscy))

ieW jew
+ k- Ej/Np[log o(—(wj, Cj’>)]u (D

1
= =

where o(z) = 17— is the logistic sigmoid func-
tion, p is a smoothed unigram probability distribu-
tion for words,? and k is the number of negative
samples to be drawn. Interestingly, training SGNS
is approximately equivalent to finding a low-rank
approximation of a shifted pointwise mutual infor-
mation (PMI) matrix (Levy and Goldberg, 2014)
in the form

x

p(i, j)
p(i)p(4)

— logk: ~ <WZ‘, Cj>,

2

where the left-hand side is the shifted PMI between
7 and j, and the right-hand side is an ¢5-th element
of a matrix with rank < d since w;, c; € R?. This
approximation was later re-derived by Arora et al.
(2016), Zobnin and Elistratova (2019), Assylbekov
and Takhanov (2019), and Allen et al. (2019) un-
der different sets of assuptions. In a recent paper,
Assylbekov and Jangeldin (2020) showed that the
removal of the sigmoid transformation in the SGNS
objective (1) gives word embeddings comparable
in quality with the original SGNS embeddings. A
maximization of such modified objective results
in a low-rank approximation of a squashed shifted
PMI (o SPMI) matrix, defined as
p(i, j)

Aig =0 <1Og p(i)p(j) o k) '

Moreover, treating the c SPMI matrix as a connec-
tion probabilities matrix of a random graph, the
authors show that such graph is a complex network,
that is it has strong clustering and scale-free de-
gree distribution, and according to Krioukov et al.
(2010), such graph possesses an effective hyper-
bolic geometry underneath. The following chain

3)

2The authors of SGNS suggest p(i) oc #(i)%/*.
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Figure 2: Random hyperbolic graph.

summarizes this argument:

‘Word Embeddings‘ — —

‘Complex Network‘ — ‘Hyperbolic Space‘

In our work, we go from the final point (hyperbolic
space) to the starting one (word embeddings), and
the next section provides the details of our method.

3 Method: From Hyperbolic Geometry
to Word Embeddings

It is difficult to visualize hyperbolic spaces because
they cannot be isometrically embedded into any
Euclidean space.3 However, there exist models of
hyperbolic spaces: each model emphasizes differ-
ent aspects of hyperbolic geometry, but no model
simultaneously represents all of its properties. We
will consider here the so-called native model (Kri-
oukov et al., 2010), in which the hyperbolic plane
H? is represented by a disk of radius R, and we
use polar coordinates (r, #) to specify the position
of any point v € H?2, where the radial coordinate r
equals the hyperbolic distance of v from the origin.
Given this notation, the distance x between two
points with coordinates (r, ) and (1, 8’) satisfies
the hyperbolic law of cosines

cosh = cosh r cosh r’
— sinhrsinh 7’ cos(§ — '), (4)

for the hyperbolic space of constant curvature —1.#
A key property of hyperbolic spaces is that they

3This means that we cannot map points of a hyperbolic
space into points of a Euclidean space in such way that the
distances between points are preserved.

“Defining constant curvature is beyond the scope of our
paper. We just mention here that there are only three types of
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Figure 3: Distribution of PMI values (top) and of R — X.

expand faster than Euclidean spaces. E.g., a circle
with radius r has in the Euclidean plane a length
of 2mr O(r) and an area of mr? = O(r?),
while its length and area in the hyperbolic plane are
27 sinh(r) = ©(e") and 27 (coshr — 1) = ©(e")
correspondingly. It is noteworthy that in a balanced
tree with branching factor b, the number of nodes
that are r edges from the root grows as ©(b"), i.e.
exponentially with r, leading to the suggestion that
hierarchical complex networks with tree-like struc-
tures might be easily embeddable in hyperbolic
space.

Based on the above facts, we construct a random
hyperbolic (RHG) graph as in the work of Kiri-
oukov et al. (2010): we place randomly n points
(nodes) into a hyperbolic disk of radius R, and each
pair of nodes (i, 7) is connected with probability
o(R — x;;), where x;; is the hyperbolic distance
(4) between points ¢ and j. Angular coordinates of
the nodes are sampled from the uniform distribu-
tion: § ~ U[0, 27|, while the radial coordinates are
sampled from the exponential p.d.f.

(r) = asinh ar B
T = coshaR—1

The hyperparameters R and « are chosen based on
the total number of nodes n, the desired average
degree k and the power-law exponent ~ according
to the equations (22) and (29) of Krioukov et al.
(2010). An example of such RHG is shown in
Figure 2. Notice, that the connection probabilities
matrix of our graph is

O(e°").

Bij := o(R — i),

isotropic spaces: Euclidean (zero curvature), spherical (posi-
tively curved), and hyperbolic (negatively curved).



Method Word Similarity POS Tagging
WS353 MEN M. TURK | CONLL-2000 BROWN
SGNS .678 .656 .690 90.77 92.60
PMI + SVD .669 674 .666 92.25 93.76
oSPMI + SVD .648 .622 .666 92.76 93.78
RHG + SVD + Align 406 399 .509 92.23 93.19
Random + Align 165 117 11 81.89 89.39

Table 1: Evaluation of word embeddings on the similarity and POS tagging tasks. For the similarity tasks the eval-
uation metric is the Spearman’s correlation with human ratings, for the POS tagging tasks it is accuracy. Random
stands for random vectors that were obtained as i.i.d. draws from A (0, I).

Comparing this to (3), we see that if A and B
induce structurally similar graphs then the distribu-
tion of the PMI values log pfi()i;(;) should be similar
to the distribution of R — x;; values (up to a con-
stant shift). To test this empirically, we compute a
PMI matrix of a well-known corpus, text 8, and
compare the distribution of the PMI values with the
p.d.f. of R— X, where X is a distance between two
random points of a hyperbolic disk (the exact form
of this p.d.f. is given in Proposition A.1). The re-
sults are shown in Figure 3. As we can see, the two
distributions are similar in the sense that both are
unimodal and right-skewed. The main difference is
in the shift—distribution of R — X is shifted to the
left compared to the distribution of the PMI values.
We hypothesize that the nodes of the RHG
treated as points of the hyperbolic space are al-
ready reasonable word embeddings for the words
of our vocabulary W. The only thing that we do
not know is the correspondence between words
¢ € W and nodes of the RHG. Instead of align-
ing words with nodes, we can align their vector
representations. For this, we take singular value
decompositions (SVD) of A and B:

A=U,=,V], B=UzXpVL,

and then obtain embedding matrices by
1/2 d
Wy = UA,l:n,l:dEA/,Ld,l:d € R™
1/2 d
Wi i=Up i 108 1g 1.0 € R

as in the work of Levy and Goldberg (2014). An
i™ row in W 4 is an embedding of the word i € W,
while an i™ row in W is an embedding of the
RHG’s node . To align these two sets of embed-
dings we apply a recent stochastic optimization
method of Grave et al. (2019) that solves

min min ||W —PWgl?
QeOdPePnH AQ Bll2,
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where Oy is the set of d x d orthogonal matrices
and Py is the set of n X n permutation matrices.
As one can see, this method assumes that align-
ment between two sets of embeddings is not only a
permutation from one set to the other, but also an
orthogonal transformation between the two. Once
the alignment is done, we treat PW g as an embed-
ding matrix for the words in W.

4 Evaluation

In this section we evaluate the quality of word vec-
tors resulting from a RHG” against those from the
SGNS, PMI, and o0 SPMI. We use the text 8 cor-
pus mentioned in the previous section. We were
ignoring words that appeared less than 5 times (re-
sulting in a vocabulary of 71,290 tokens). We set
window size to 2, subsampling threshold to 1075,
and dimensionality of word vectors to 200. The
SGNS embeddings were trained using our custom
implementation.® The PMI and BPMI matrices
were extracted using the HYPERWORDS tool of
Levy et al. (2015) and SVD was performed using
the PYTORCH library of Paszke et al. (2019).

The embeddings were evaluated on word similar-
ity and POS tagging tasks. For word similarity we
used WORDSIM (Finkelstein et al., 2002), MEN
(Bruni et al., 2012), and M.TURK (Radinsky et al.,
2011) datasets. For POS tagging we trained a sim-
ple classifier’ by feeding in the embedding of a
current word and its nearby context to predict its
part-of-speech (POS) tag:

@t = softmax(c(A[wi_go;...;Wipa] + b))

50ur code is available at https://github.com/
soltustik/RHG

®https://github.com/zh3nis/SGNS

"feedforward neural network with one hidden layer and
softmax output layer


https://github.com/soltustik/RHG
https://github.com/soltustik/RHG
https://github.com/zh3nis/SGNS

where [x;y] is concatenation of x and y. The
classifier was trained on CONLL-2000 (Tjong
Kim Sang and Buchholz, 2000) and BROWN
(Kucera et al., 1967) datasets.

The results of evaluation are provided in Table 1.
As we see, vector representations of words gen-
erated from a RHG lag behind in word similarity
tasks from word vectors obtained by other standard
methods. Note, however, that the similarity task
was designed with Euclidean geometry in mind.
Even though our RHG-based vectors are also ul-
timately placed in the Euclidean space (otherwise
the alignment step would not have been possible),
their nature is inherently non-Euclidean. Therefore,
the similarity scores for them may not be indica-
tive. So, for example, when RHG vectors are fed
into a nonlinear model for POS tagging, they are
comparable with other types of vectors.

We notice that random vectors—generated as
i.i.d. draws from N (0, ) and then aligned to the
embeddings from o SPMI—show poor results in
the similarity tasks and underperform all other
word embedding methods in the POS tagging tasks.
This calls into question whether multivariate Gaus-
sian is a reasonable (prior) distribution for word
vectors as was suggested by Arora et al. (2016),
Assylbekov and Takhanov (2019).

5 Conclusion and Future Work

In this work we show that word vectors can be ob-
tained from hyperbolic geometry without explicit
training. We obtain the embeddings by randomly
drawing points in the hyperbolic plane and by find-
ing correspondence between these points and the
words of the human language. This correspon-
dence is determined by the relation (hyperbolic
distance) to other words. This method avoids the,
often expensive, training of word vectors in hyper-
bolic spaces as in Tifrea et al. (2019). A direct
comparison is not what this paper attempts—our
method is cheaper but produces word vectors of
lower quality. Our method simply shows that word
vectors do fit better into hyperbolic space than into
Euclidean space.

Finally, we want to sketch a possible direction
for future work. The hyperbolic space is a special
case of a Riemannian manifold. Are Riemannian
manifolds better suited for word vectors? In par-
ticular which manifolds should one use? At the
moment, there is only limited empirical knowledge
to address these questions. For instance, Gu et al.
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(2019) obtained word vectors of better quality, ac-
cording to the similarity score, in the product of
hyperbolic spaces, which is still a Riemannian man-
ifold but not a hyperbolic space anymore. We are
hopeful that future work may provide an explana-
tion for this empirical fact.
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A Auxiliary Results

Proposition A.1. Let X be a distance between
two points that were randomly uniformly placed in
the hyperbolic disk of radius R. The probability
distribution function of X is given by

//

sinh(z)p(r1)p(re)dridre 5)
7\/1 — A(ry, 79, 2) sinh(ry) sinh(rs)’
where A(rs, ra ) = o) o) g
asinh ar
p(r) = CoshaR—1°

Proof. Let us throw randomly and uniformly
two points (r1,60;) and (re,62) into the hy-

perbohc disk of radius R, i.e. ri,79 Lk p(r),

o160, X " Uniform[0, 27). Let X be the distance
between these points (X is a random variable).
Let v be the angle between these points, then
v = 7w — |7t — |61 — 62]| ~ Uniform[0, ) and
thus

1

fcos'y(t) = ﬁa

te[-1,1].
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Since the distance in our model of hyperbolic plane
is given by

X = cosh™! [cosh 71 cosh rg—sinh 71 sinh 9 cos 7]

we have
Pr(X <x)
—pr | cosny > coshry coshry — coshx

sinh r1 sinh r9

A(ry,r2,x)

= Pr(cosy > A(ry,r2,))

A
B A(ri,ro,x) T 1—t2

sin™t A(ry, o, x)

and therefore

2 ™
_ sinh x

Com/1- A(r1,re, x) sinh(ry) sinh ro

for x+ € (Jr1 — ro|,r1 + r2). Integrating
Ix|ry o () p(r1)p(r2) with respect to r1 and 72 we
get (5). ]

d [1 sin ! A(ry,re, )
fX‘Tl,TQ(x) = 5= |:
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