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Abstract

Text retrieval has been widely-used in many
online applications to help users find rele-
vant information from a text collection. In
this paper, we study a new attack scenario
against text retrieval to evaluate its robust-
ness to adversarial attacks under the black-
box setting, in which attackers want their
own texts to always get high relevance scores
with different users’ input queries and thus
be retrieved frequently and can receive large
amounts of impressions for profits. Consider-
ing that most current attack methods only sim-
ply follow certain fixed optimization rules, we
propose a novel text rewriting attack (TRAt-
tack) method with learning ability from the
multi-armed bandit mechanism. Extensive ex-
periments conducted on simulated victim envi-
ronments demonstrate that TRAttack can yield
texts that have higher relevance scores with
different given users’ queries than those gen-
erated by current state-of-the-art attack meth-
ods. We also evaluate TRAttack on Ten-
cent Cloud’s and Baidu Cloud’s commercially-
available text retrieval APIs, and the rewrit-
ten adversarial texts successfully get high rele-
vance scores with different user queries, which
shows the practical potential of our method
and the risk of text retrieval systems.

1 Introduction

Text retrieval is a popular and important technol-
ogy for solving information explosion. In many
commercial systems, such as Baidu Knows1, An-
swer2 and StackExchange3, text retrieval is the key
to find relevant content and help search engines
to return the information that users want (Trot-
man et al., 2014). With the development of deep
neural networks, many deep learning-based mod-
els (Kalchbrenner et al., 2014; Devlin et al., 2018;
Sun et al., 2019) are proposed for measuring text

1https://zhidao.baidu.com/
2https://www.answers.com/
3https://stackexchange.com/

User Input Queries Ori. Adv.
怎么锻炼逻辑思维能力？
How to exercise logical thinking
skills?

✓ ✓

想提升理解能力和逻辑能力？
Want to enhance comprehen-
sion and logical skills?

× ✓

填字游戏能提高逻辑思维吗？
Can crosswords enhance logical
thinking?

× ✓

Ori.: 怎么锻炼逻辑思维能力,让自己更加有
效率的学习和工作？
How to exercise logical thinking skills to study
and work more efficiently?
Adv.: 怎么锻炼逻辑思维能力,让自己方为有
智用的自课和工作？

Table 1: The retrieval results of three different user in-
put queries on an original text (Org. for short) and the
adversarial rewritten text (Adv. for short), in which the
green words in Org. are replaced with the red words
for adversarial goals. ‘✓’ represents that the text is re-
trieved by the corresponding query.

relevance. Though the quality of retrieval results is
greatly improved, these deep learning-based mod-
els (Li et al., 2019a; Song et al., 2020) also bring
unexpected serious risks to the text retrieval sys-
tems due to their vulnerability.

In this paper, we study a new attack problem in
the text retrieval area, in which texts are ranked
based on their relevance scores with different user
queries. Previous researchers have studied adver-
sarial attacks on retrieval systems (Li et al., 2019a,
2021a). However, the attack goal is to completely
subvert the top-k retrieval results of a given single
query, with which attackers can deceive the target
information retrieval system into retrieving irrel-
evant content for evading the censorship of pro-
fessional monitors. Different from the above at-
tack problem, here we focus on a new attack goal
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where attackers aim to find adversarial texts that
can get high relevance scores with many differ-
ent user queries at the same, and thus there is a
high probability for their texts to be retrieved and
receive large amounts of impressions (Li et al.,
2019b).

This new text retrieval attack problem is realis-
tic as attackers always want more impressions and
get more profits than normal users. Table 1 illus-
trates an attack example, in which the adversarial
text is successfully retrieved by all three queries
while the original text can be retrieved by one of
them only. Attackers can obtain much more im-
pressions and thus get more profits from the text re-
trieval platform. To verify how serious this form of
attack is and facilitate the development of the cor-
responding countermeasures, we emphasize that it
is crucial to develop practical attack methods that
can find adversarial texts against existing text re-
trieval systems.

Query-based adversarial example generation
frameworks (Morris et al., 2020; Zeng et al., 2021)
could be a good solution for solving the above at-
tack problem under the black-box setting. These
methods continuously interact with the victim en-
vironment and then iteratively update the gener-
ated adversarial examples by received reward sig-
nals. However, most of them only simply follow
certain fixed optimization rules (Li et al., 2018;
Alzantot et al., 2018; Zang et al., 2019) to generate
adversarial examples. In other words, they only
optimize the adversarial results instead of the at-
tack policies, which greatly limits their attack per-
formance.

For launching attacks more effectively, we pro-
pose a novel text rewriting attack (TRAttack)
method that can optimize attack policies and ex-
amples at the same time by learning from the his-
torical attack knowledge. TRAttack follows the
word replacement framework so that it can pre-
serve semantic consistency and language fluency
of adversarial examples well. For learning from
attack knowledge, we choose reinforcement learn-
ing (Sutton and Barto, 2018) to carefully balance
the exploration and exploitation in the learning
process due to the small number of training sam-
ples and expensive interactive costs with the vic-
tim environments. Specifically, we choose the
well-known multi-armed bandit (MAB) (Kuleshov
and Precup, 2014; Lattimore and Szepesvári,
2020; Li et al., 2021b) method. With MAB, the

substitutes of each word are viewed as arms to
be selected and TRAttack iteratively updates their
sampling weights by evaluating the expected ad-
versarial rewards in following iterations for better
attack performance. Our main contributions are
summarized as follows:

• We discuss a new possible attack threat in text
retrieval and formulate the corresponding at-
tack problem to study its robustness to adver-
sarial attacks.

• We develop a novel reinforcement learning-
based query-efficient text rewriting attack
(TRAttack) method that can achieve high at-
tack performance against text retrieval under
the black-box setting.

• We compare TRAttack with existing popular
query-based methods and TRAttack achieves
much better attack performance. We also suc-
cessfully attack commercial APIs provided
by Tencent Cloud4 and Baidu Cloud5, which
shows the potential risks of text retrieval sys-
tems as APIs could be used in real online ap-
plications.

2 Related Work

Language Modeling With the development
of deep learning-based natural language process-
ing (Devlin et al., 2018; Cui et al., 2020; Xiao
et al., 2020), the quality of text retrieval has been
greatly improved in recent years. RNN (Chung
et al., 2014; Lipton et al., 2015) is a typical way to
encode sequential text information, while convo-
lutional neural networks (CNN) (Liu et al., 2018)
and attention-based modeling methods (Vaswani
et al., 2017; Zhou et al., 2018) are also used to
extract high-dimensional representations for texts.
BERT (Devlin et al., 2018; Cui et al., 2020) is a
transformer-based method that is bidirectionally
trained and has a deeper sense of language con-
text, presenting state-of-the-art results in a wide
variety of NLP tasks. Further, many variants based
on BERT are proposed and achieve better perfor-
mance, such as SpanBERT (Joshi et al., 2020),
ERNIE (Sun et al., 2019; Xiao et al., 2020), etc.
These language modeling methods can be adopted
in text retrieval and have boosted the quality of re-
trieval results (Sakata et al., 2019).

4https://cloud.tencent.com/
5https://ai.baidu.com/
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Adversarial Methods in NLP We consider the
most realistic and challenging black-box attack
scenario, where attackers have no prior knowl-
edge of the victim model. They can only inter-
act with the victim model to get useful informa-
tion and optimize their attacks (Zang et al., 2020;
Zeng et al., 2021; Morris et al., 2020). Li et al.
(2018) follow the idea of greedy word replacement
and propose TextBugger. TextFooler (Jin et al.,
2020) and PWWS (Ren et al., 2019) are similar
to TextBugger, but both of them make stricter re-
strictions on every single modification for gener-
ating plausible and semantically similar adversar-
ial examples. Alzantot et al. (2018) develop Ge-
netic via genetic algorithms. Zang et al. (2019)
further propose PSO based on a particle swarm
optimization-based search algorithm to generate
adversarial examples. BERT-Attack (Li et al.,
2020) and BAE (Garg and Ramakrishnan, 2020)
use pre-trained masked language models exempli-
fied by BERT to achieve adversarial goals while
the generated examples are fluent and semanti-
cally preserved.

3 Text Rewriting Attack

In this section, we first formally define the new at-
tack problem against text retrieval under the black-
box setting and then introduce the details of our
proposed text rewriting attack method.

3.1 Problem Definition
For a query input q, retrieval systems return a
list of texts: Xq = {x1, x2, ..., xk | f(q, xi) ≤
f(q, xj), s.t. i ≤ j} ordered by their relevance
scores (or similarities) with q where f(·) is the rel-
evance function and k is the size of Xq. As shown
in Table 1, attackers’ goal is to generate adversar-
ial texts that have ‘abnormally’ high relevance to
many given user queries meanwhile, so that there
is a high probability for their texts to be retrieved
and thus they can receive large amounts of impres-
sions.

For a text x, we use nx to represent the number
of impressions that it receives in a period of time.
Formally, it can be calculated as:

nx =
∑

q

s(q, x) (1)

where s(q, x) represents whether the text x is re-
trieved by the query q. Then, the attackers’ goal
is to find a text xadv that can get nxadv

as high as
possible.

To make nx computable in our experiments, we
set s(q, x) > 0 when x belongs to the top-k rel-
evance texts of the query q, otherwise we have
s(q, x) = 0. Considering that higher ranking or-
ders usually represent larger probabilities to be
exposed to users, we further specifically define
s(q, x) = (k−r+1)/k to assign higher values for
texts that have higher ranking orders r ∈ [1, k] un-
der a query q. We have s(q, x) ∈ [0, 1]. Besides,
we define Qx as the query set that a retrieval sys-
tem receives in a period of time where the queries
and x are on the same topic. Then the objective
function can be approximately written as:

arg maxxadv

Qt∑

q

s(q, xadv) (2)

where the adversarial goal is to find the text xadv
that can always receive high ranking orders un-
der given relevant queries in Qx and thus maxi-
mize nxadv

=
∑Qt

q s(q, xadv). Note, retrieval sys-
tems calculate relevance scores for ranking differ-
ent query-text pairs, but these scores are not avail-
able to attackers. They can only optimize their at-
tack goals with statistical signals. In our experi-
ments, we adopt the above approximated nxadv

in
Equation 2 as the adversarial goal under the black-
box setting, and also use it to guide the optimiza-
tion of adversarial attacks.

3.2 Text Rewriting Algorithm

Text rewriting can be implemented by directly
generating adversarial texts from scratch (Lipton
et al., 2015; Zang et al., 2020) or replacing partial
words in the original text only (Li et al., 2020).
Since the perturbation budget in the second word
replacement framework can be easily bounded to
preserve the fluencies and semantics of adversar-
ial texts (Li et al., 2020; Garg and Ramakrishnan,
2020), we also adopt it in TRAttack. The key
difference is that there is a particularly-designed
memory in TRAttack for caching historical’ attack
knowledge. Specifically, the memory learns ef-
fective word replacement policies that can greatly
boost the attack performance. We carefully launch
the solution based on MAB, which achieves a
good balance between exploration and exploita-
tion as the attack goes on. How to sample from
and update the memory are two important ques-
tions. In the following, we first introduce the core
idea and structure of the memory H in TRAttack,
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and then give the details of the solutions for the
above two questions.
Memory Design with MAB With the MAB
mechanism, we need to store some specific in-
formation for balancing the exploration and ex-
ploitation in the learning process. Specifically, we
choose the upper confidence bound (UCB) bandit
method in TRAttack. Equation 3 illustrate that
how UCB chooses actions (arms) based on exist-
ing knowledge:

a∗ = arg maxa r(a) + c

√
lnm

N(a)
(3)

where r(a) is the estimated reward of choosing the
arm a, N(a) is the number of times that arm a
has been selected before and m is the overall num-
ber of players done on the current bandit problem.
r(a) and c

√
lnm
N(a) represent the exploitation part

and the exploration part in UCB, respectively. c
is a hyper-parameter to control the level of explo-
ration. At the beginning, UCB encourages explo-
ration as c

√
lnm
N(a) is relatively large with a small

N(a) for each arm. With the learning process,
UCB will concentrate on exploitation, selecting
the arm with the highest estimated reward.

Memory in TRAttack TRAttack follows
the word replacement framework for generat-
ing adversarial examples, and we equip TRAt-
tack with MAB in the word replacement pro-
cess. Specifically, for a word w, the sub-
stitutes of it are viewed as arms to be
selected in MAB. We design the memory
Hw = [(s1, r(s1), N(s1)), ..., (sj , r(sj), N(sj))]
for each word w to store specific information
about its substitutes (arms), where sj represents
the j-th potential substitute. r(sj) and N(sj) are
the estimated reward of replacing w with sj and
the number of times that w has been replaced by
sj before. With Hw on every word w, we can con-
duct the word replacement policy similar to Equa-
tion 3. However, it is costly to fully explore the
search space as the standard UCB does because
there is a large number of potential substitutes for
each word in TRAttack.

To optimize the efficiency of convergence, we
further make two updates in TRAttack. First,
we manually set the maximum number of substi-
tutes for each word to L = 200 to reduce the
search space and thus speed up the model conver-
gence. Secondly, we use a function g(m) neg-

atively correlated with m to replace the original
hyper-parameter c in Equation 3, with which we
can actively reduce exploration in the learning pro-
cess and further accelerate the model convergence.
Though the above two updates may lead to sub-
optimal results, it is necessary for TRAttack be-
cause of the high learning costs against text re-
trieval systems in practice. Then, we have Equa-
tion 4 in TRAttack for selecting word substitutes:

arg maxs r(s) + g(m)

√
lnm

N(s)

s.t. s ∈ Hw and |Hw| ≤ L

(4)

To make sure that TRAttack will concentrate on
exploitation after a few iterations in practice, we
generally require that g(m)

√
lnm
N(s) tends to 0 with

the increase of m even that N(s) of a substitute s
is small. In other words, the word substitute selec-
tion in TRAttack can gradually totally depend on
the substitute reward so that TRAttack can achieve
high performance within the expected time frame.

Overall, for each word w, we use a list Hw

to store its substitutes with corresponding rewards
and accumulated numbers of times that they have
been selected. We have H = {Hw;w ∈ W}
where W represents the whole word set in a re-
trieval system. Besides, TRAttack adopts masked
language models to generate word substitutes
as (Li et al., 2020) for ensuring that the adversar-
ial text is fluent and semantically preserved. As a
result, we have an empty Hw for each word w at
the beginning. All word substitutes are gradually
collected and merged into H with the learning pro-
cess. More details about the substitute generation
and the maintenance of H will be introduced in
the following parts.

TRAttack with Memory Algorithm 1 shows
the complete text rewriting process of TRAttack
for a given text x and it mainly contains 3 steps.

Step 1: Text Expanding (Optional) Consider-
ing that there are usually some short texts consist-
ing of a few words only, word replacement may
easily result in adversarial examples with obvi-
ously different semantics. To overcome the above
problem, we propose to expand texts first and then
replace the words that are newly added only for
well-preserving the text semantic. To achieve this
goal, we choose existing famous pre-trained lan-
guage models (Radford et al., 2019; Zhang et al.,
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2020) to expand the original text directly. As lan-
guage models may generate long texts, we manu-
ally stop the text expanding process when meeting
the first question mark or full stop.

In such a way, xadv could be viewed as the con-
catenation of x and an additional expanded trigger
text xt and we have xadv = concat(x, xt). Then,
our attack goal can be formulated as replacing the
words in xt to improve the relevance scores be-
tween xadv and different users’ queries. In prac-
tice, attackers can even manually expand x instead
of adopting language models and thus this step is
optional in TRAttack. TRAttack can also directly
conduct attacks base on x as most existing meth-
ods (Zeng et al., 2021) without text expanding.

Step 2: Word Replacement with Memory
For an initialized adversarial text xadv =
concat(x, xt), we first decide the word replace-
ment order in xt, and then choose specific word
substitutes with the help of the memory H for gen-
erating effective adversarial examples.

For the word importance, there have been many
solutions for estimating it (Li et al., 2020; Garg
and Ramakrishnan, 2020). Here we calculate the
word importance of each w in a text xt by delet-
ing it from xadv and computing the average de-
crease in the probability of predicting the correct
relevance label y with the corresponding queries
in Qx. Then we sort the words in xt by their im-
portance and get I = [w1, w2, ..., w|xt|] for further
word replacement.

For a selected word w to be replaced, we then
need to decide the word substitute set Sw for it and
conduct the word replacement operation for bet-
ter attack performance. Following the idea in (Li
et al., 2020), we generate word substitutes for a
word w by masking it in xadv and feeding the
masked xadv into a well-trained masked language
model, in which the genuine nature of the masked
language model makes sure that the texts with the
generated substitutes are relatively fluent and also
preserve most semantic information. Each time,
we use the top-M predictions from a masked lan-
guage model to initialize Sw first, and then update
Sw with learned Hw for better word replacement
choices. On the one hand, for the substitutes that
are new and do not appear in Hw before, we use
S∗
w to represent them and make sure all the sub-

stitutes in S∗
w are selected by default, which helps

us to continuously enrich the candidate substitutes
of different words. On the other hand, we select

Algorithm 1 Text Rewriting Attack

Input: Text x, query set Qx, memory H =
{Hw;w ∈ W}, number of substitutes M ,
number of memory size L

Output: Adversarial text xadv
1: Expand x and get the initialized xadv ←

concat(x, xt)
2: Sort the words in xt by their estimated impor-

tance and get I ← [w1, w2, ..., w|xt|]
3: for i← 1 to |xt| do
4: Generate the top-M substitutes for wi using

masked language models and use them to
initialize Swi

5: S∗
wi
← Swi \ (Swi ∩Hwi)

6: Select M − |S∗
w| words from Hwi as S∗∗

wi

according to Equation 4
7: Swi ← S∗

wi
∪ S∗∗

wi

8: for j ← 1 to |Swi | do
9: Get x′adv by replacing wi with sj

10: Calculate the reward r′(sj)
11: if r′(sj) > 0 then
12: xadv ← x′adv
13: Update Hwi

14: return Adversarial text xadv

the other M − |S∗
w| substitutes from the learned

memory Hw for the current word w and get S∗∗
w .

Finally, we reconstruct Sw ← S∗
w ∪ S∗∗

w .
The selection of substitutes from Hw is based

on Equation 4. For r(s), we define it based
on the attack performance improvement between
x

′
adv and xadv where x

′
adv is obtained by replac-

ing w with s in xadv. Specifically, we set r(s) =
(nx′

adv
− nxadv

)/|Qx|, where 1/|Qx| is used for
normalization, and we have r(s) ∈ [−1, 1]. With
the learning process, a word substitute s with bet-
ter historical attack performance will have a larger
r(s) and thus have a larger chance to be selected in
the future, which can boost the attack performance
of TRAttack. For g(m), we define g(m) = c

m and

c = 50 is a constant. In this setting, g(m)
√

lnm
N(w)

tends to 0 with the increase of m and thus we
can successfully actively reduce exploration for
achieving high attack performance within limited
attack attempts and costs.

Step 3: Memory Update For each substitute
s ∈ Sw with the newly calculated reward r′(s) in
the current iteration, we update Hw following the
below rules. If s is new to Hw, we directly merge
it into Hw. If s already appears in Hw, we use the
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following Equation 5 to update r(s) of s in Hw:

r(s) =
r(s) ∗N(s) + r′(s)

N(s) + 1
(5)

And then we set N(s) ← N(s) + 1. Besides, if
the size of Hw exceeds L, we additionally remove
the substitutes with relatively low r(·) in Hw and
make sure that |Hw| does not exceed L.

4 Experiments

4.1 Experimental Settings

Dataset LCQMC (Liu et al., 2018) is a large-
scale Chinese question matching corpus collected
from Baidu Knows. BQ-Corpus (Chen et al.,
2018) contains question pairs from online bank
custom service logs. We use these 2 publicly-
available datasets for text retrieval in our experi-
ments. Overall, there are 256433 and 35395 differ-
ent texts in LCQMC and BQ-Corpus, respectively.

Evaluation Metric We adopt 4 metrics for eval-
uating different attack methods comprehensively.
For the attack performance, we define R(xadv) =
nxadv

/|Qx| to represent the attack performance of
a generated adversarial text xadv where 1/|Qx|
is used for normalization. For the quality of ad-
versarial examples, we adopt the common metric
perplexity (PPL) (Li et al., 2020) as (Zang et al.,
2019), and use the cosine similarity between text
embeddings as an approximation for the semantic
consistency (Jin et al., 2020). As only xt in xadv
is modified, we test PPL and semantic consistency
on it by default. Besides, we report the number
of interactions of each method, which is another
important metric for evaluating the attack costs.

Text Retrieval Systems Given a user query q,
the text retrieval system computes relevance be-
tween q and existing texts in the system and then
returns the most relevant texts to the user. Due
to a large number of the corpus in real-world sys-
tems, there are usually two stages for text retrieval:
candidate generation and ranking (Yang et al.,
2019). In our experiments, we simulate different
retrieval systems. Specifically, we adopt the popu-
lar BM25 (Trotman et al., 2014) for selecting 100
texts as candidates each time and then use different
ranking models to rank them by calculating their
relevance scores with different given queries. We
choose 4 different representative language mod-
els as the ranking model, including LSTM, CNN,
BERT (Cui et al., 2020) and ERNIE-Gram (Xiao

et al., 2020). Most of the above ranking models
have been introduced in Section 2 and their imple-
mentation details can be found in Appendix A.

Overall, we use the 4 text retrieval models and
the 2 datasets to construct 8 different simulated
text retrieval environments as the testbeds for ex-
perimental evaluation. If a generated adversar-
ial text xadv frequently receives large relevance
scores with different user queries, it will have high
ranking orders in users’ retrieval results most of
the time, leading to a high R(xadv). In order to
fully demonstrate the changes of the ranking re-
sults of generated adversarial examples, we set
k = 100 that is the number of candidates by de-
fault when calculating R(·).

4.2 Comparison with Query-based Attack
Baselines

We compare TRAttack with 4 popular query-based
adversarial methods that work well under the
black-box setting, including TextBugger (Li et al.,
2018), PWWS (Ren et al., 2019), Genetic (Alzan-
tot et al., 2018), PSO (Zang et al., 2019) and
BERT-Attack (Li et al., 2020). TextBugger and
PWWS are greedy methods, in which they first
sort words in given texts by importance and then
replace them with carefully selected substitutes
for achieving adversarial goals. Genetic and PSO
are representative population-based search algo-
rithms. For generating effective adversarial exam-
ples, both of them first initialize a text set (the
size is set to 20 in our experiments) and then
iteratively update them with different evolution-
ary algorithms. For BERT-Attack, it is also a
greedy word replacement method and we replace
the masked language model in it with Chinese-
BERT-wwm (Cui et al., 2019) for conducting ad-
versarial attacks in Chinese. As for our method
TRAttack, we adopt Chinese-BERT-wwm as the
masked language model for generating word sub-
stitutes as well. For the parameters, we set M =
36 and L = 200 by default. Besides, for a fair
comparison, we adopt the optional text expanding
process with CPM (Zhang et al., 2020) in all attack
methods.

The comparison results6 are illustrated in Ta-
ble 2. In each testbed, we randomly choose 500
texts to generate adversarial examples and calcu-
late the average results. As we can see, TRAt-

6We discuss the experimental results on the LCQMC
dataset in Section 4.2 and the results on the BQ-Corpus
dataset are reported in Appendix due to the page limitation.
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Method Num. Per. PPL Sem.
TextBugger 151 0.8126 1106 0.5117

PWWS 197 0.7115 565 0.6625
Genetic 807 0.5599 432 0.8233

PSO 306 0.4705 432 0.8781
BERT-Attack 137 0.7533 995 0.9129

TRAttack 141 0.8341 1159 0.9015

(a) The simulated text retrieval system with LSTM

Method Num. Per. PPL Sem.
TextBugger 151 0.6519 917 0.4868

PWWS 197 0.5581 532 0.7162
Genetic 807 0.4423 404 0.8252

PSO 306 0.4089 403 0.8852
BERT-Attack 137 0.6514 795 0.9177

TRAttack 141 0.6772 1104 0.9079

(b) The simulated text retrieval system with CNN

Method Num. Per. PPL Sem.
TextBugger 151 0.6891 841 0.7062

PWWS 197 0.6369 722 0.7059
Genetic 807 0.5436 512 0.8178

PSO 310 0.5028 362 0.8229
BERT-Attack 137 0.6492 971 0.9078

TRAttack 141 0.6636 1355 0.9014

(c) The simulated text retrieval system with BERT

Method Num. Per. PPL Sem.
TextBugger 151 0.7506 797 0.6819

PWWS 197 0.7107 475 0.7216
Genetic 807 0.6290 335 0.8414

PSO 307 0.5891 321 0.8361
BERT-Attack 137 0.6831 914 0.9126

TRAttack 141 0.7037 1375 0.9086

(d) The simulated text retrieval system with ERNIE-Gram

Table 2: Attack results on different simulated text retrieval systems on the LCQMC dataset. Num., Per. and Sem.
represent the number of interactions, the attack performance R(·) and the semantic consistency, respectively.

tack achieves the best results on the whole. In
TextBugger, it defines some ‘bug’ generation ways
for adversarial attacks. Though it achieves high
attack performance, most of its generated adver-
sarial texts are less fluent and semantically con-
sistent compared with other methods. PWWS
follows the greedy word replacement framework.
As the synonym-based word substitute generation
method with thesauri like WordNet (Miller, 1995)
always provides very limited synonyms for many
words, we use the embedding-based word substi-
tute generation method as TextBugger in it for
better attack performance. In our experiments,
PWWS receives lower Per. than TextBugger while
PPL and Sem. are usually better.

Genetic and PSO are population-based meth-
ods. For PSO, as the sememe-based word sub-
stitute generation method (Zang et al., 2019) also
greatly reduces the number of potential word sub-
stitutes, we adopt the embedding-based word sub-
stitute generation method in it as well. In our
experiments, both of these two methods receives
relatively low attack performance compared with
other methods, which may be due to the fact that
they usually need a long period of evolution (large
Num.) to achieve satisfying results.

BERT-Attack adopts masked language models
to generate adversarial examples and receives rel-
atively high Per. and Sem. in our tests at a
low attack cost. TRAttack follows the similar
framework with it and can further get an obvious

improvement on Per., while PPL and Sem. are
slightly worse than BERT-Attack. This is due to
that we always choose words that can achieve high
attack performance from the learned memory in
TRAttack, but these newly selected words may
slightly damage the fluency and semantic consis-
tence sometimes. Here, to illustrate the advantages
of our method more comprehensively, we conduct
additional experiments for TRAttack. Specifically,
We test TRAttack by reducing different numbers
of words that can be replaced by substitutes in
it. The results conducted on the simulated text re-
trieval system based on LSTM and the LCQMC
dataset are reported in Table 3.

Value Num. Per. PPL Sem.
1 127 0.7923 836 0.9153
2 114 0.7478 691 0.9250
3 101 0.7139 557 0.9281
4 88 0.6674 496 0.9395

Table 3: Attack results with different reduced numbers
of words that can be replaced.

As we can see, with a larger reduced number
of words that can be replaced, TRAttack gradu-
ally receives better PPL and Sem. while Per. be-
comes smaller. An important experimental result
is that TRAttack achieves better performance on
all the 4 metrics than BERT-Attack when the re-
duced number is set to 1, which clearly shows
the advantages of TRAttack. Overall, we can
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say that TRAttack achieves the best performance
among all compared methods by optimizing the at-
tack policies (memory) and examples meanwhile.
Besides, it is worth mentioning that the learned
knowledge in TRAttack is general and can be con-
tinuously updated with new attack results, which
is the key advantage and foundation for TRAt-
tack to further achieve better attack performance
in the future. We also illustrate an adversarial ex-
ample generated by TRAttack in Table 9 in Ap-
pendix, which can successfully receive high rele-
vance scores with 10 different queries.

4.3 Parameter Analysis
Tables 4 and 5 show the test results of TRAttack re-
garding two different hyper-parameters on the sim-
ulated text retrieval system based on LSTM and
the LCQMC dataset: the number of substitutes M
and the memory size L.

Value Num. Per. PPL Sem.
6 42 0.7206 868 0.9040
12 74 0.7710 966 0.9080
24 113 0.8117 1053 0.9065
36 141 0.8341 1159 0.9015
48 171 0.8429 1233 0.9038

Table 4: Attack results with different M .

Value Num. Per. PPL Sem.
50 141 0.8175 1138 0.9110
200 141 0.8341 1159 0.9015
500 141 0.8369 1190 0.9067

2000 141 0.8329 1193 0.9033

Table 5: Attack results with different L.

Intuitively, TRAttack can receive better attack
performance with a larger M . As we can see in
Table 4, the performance improvement gradually
becomes insignificant. For balancing the attack
performance and other metrics, M = 36 could
be a good choice for conducting adversarial at-
tacks in practice. As for L, the attack performance
can generally be increased along with it increas-
ing. However, as we actively speed up the conver-
gence of TRAttack by g(m) for achieving good
performance within limited attack costs, the word
replacement policy with a large memory may not
be learned well, thus leading to a worse result. As
we can see in Table 5, TRAttack receives a rela-
tively good result with L = 200.

4.4 Attack Commercial APIs
We have shown that TRAttack can effectively
attack simulated text retrieval systems in Sec-
tion 4.2. Here, we show that TRAttack can also
successfully create adversarial texts on commer-
cial text retrieval APIs provided by Tencent Cloud
and Baidu Cloud. Due to the QPS limitation, we
randomly test 10 samples for both APIs in our ex-
periments.

API Num. Per. PPL Sem.
Tencent 1761 0.5570 1014 0.8878
Baidu 1712 0.6619 556 0.8951

Table 6: Attack results of TRAttack on the Tencent
Cloud’s and Baidu Cloud’s APIs.

The results are reported in Table 6, in which
we iteratively optimize the generated adversarial
texts by 10 iterations in TRAttack for better at-
tack performance. As a result, TRAttack suc-
cessfully generates effective adversarial examples
that can increase Per. from 0.3686 to 0.5570 and
from 0.4085 to 0.6619 on the Tencent Cloud’s and
Baidu Cloud’s commercial APIs with only about
2000 times of interactions, respectively. Tables 10
and 11 in Appendix show specific attack cases of
TRAttack on the commercial APIs. The experi-
ments in this part are conducted as of November
2021.

5 Conclusion

In this paper, we discuss a new realistic attack
problem against text retrieval. We follow the
word replacement framework and propose TRAt-
tack. Extensive experiments show that benefiting
from the the learning ability of MAB, TRAttack
achieves better performance than existing meth-
ods. The generated adversarial texts by TRAt-
tack can successfully mislead both offline text re-
trieval models and online commercial APIs, which
demonstrates the potential risks of real-world text
retrieval systems.

6 Broader Ethical Impact

We explore the potential security issues of text re-
trieval systems in this paper and propose TRAt-
tack that is experimentally verified to be effective
to many text retrieval models. Hope that our ap-
proach and discussions could inspire more explo-
rations and designs of advanced defense methods
and security policies.
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A Accuracy of Text Retrieval Models

In both LSTM and CNN, We use an embedding
layer to encode words firstly. And then we directly
use one LSTM layer to extract the text representa-
tion in LSTM while using the CNN structure for
CNN. With the representations of a given query
and a candidate text, the relevance is predicted by
feeding concatenated features of both texts into a
2-layer deep neural network (DNN) with Softmax
for calculating probabilities. In BERT and ERNIE-
Gram, we directly concatenate the two texts in-
puts, and use BERT and ERNIE-Gram to get the
final representation. The results are also predicted
by feeding the representation into a 2-layer DNN
with Softmax. The size of word embeddings and
the DNN in each model is set to be 128. We adopt
CrossEntropy as the loss function and use Adam
as the optimizer. For the learning rate, we use
α = 2e − 3 in LSTM and CNN, and α = 2e − 5
in BERT and ERNIE-Gram.

Models LCQMC BQ-Corpus
LSTM 0.7864 0.6780
CNN 0.7597 0.6671
BERT 0.8888 0.8529

ERNIE-Gram 0.9054 0.8610

Table 7: Accuracy of different models on 2 datasets.

For the model training, we adopt the popular
early stopping mechanism for better performance,
and Table 7 reports the accuracy of different mod-
els on the 2 datasets.
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Method Num. Per. PPL Sem.
TextBugger 145 0.9374 993 0.5286

PWWS 191 0.9296 822 0.5576
Genetic 808 0.7316 681 0.7749

PSO 297 0.6374 353 0.8642
BERT-Attack 127 0.9008 1027 0.9281

TRAttack 132 0.9299 1200 0.9234

(a) The simulated text retrieval system with LSTM

Method Num. Per. PPL Sem.
TextBugger 145 0.7863 1229 0.5212

PWWS 191 0.7485 749 0.6981
Genetic 808 0.6352 524 0.8233

PSO 298 0.5881 481 0.8842
BERT-Attack 127 0.7969 1110 0.9215

TRAttack 132 0.8383 1452 0.9106

(b) The simulated text retrieval system with CNN

Method Num. Per. PPL Sem.
TextBugger 145 0.6160 1026 0.5817

PWWS 191 0.5800 921 0.6826
Genetic 808 0.5247 643 0.7900

PSO 298 0.5042 353 0.8591
BERT-Attack 127 0.5916 1703 0.9079

TRAttack 132 0.6004 2294 0.9075

(c) The simulated text retrieval system with BERT

Method Num. Per. PPL Sem.
TextBugger 145 0.6616 885 0.5553

PWWS 191 0.6271 900 0.6932
Genetic 808 0.5643 641 0.8115

PSO 296 0.5473 554 0.8687
BERT-Attack 127 0.6448 1546 0.9029

TRAttack 132 0.6539 2184 0.9057

(d) The simulated text retrieval system with ERNIE-Gram

Table 8: Attack results on different simulated text retrieval systems on the BQ-Corpus dataset. Num., Per. and
Sem. represent the number of interactions, the attack performance R(·) and the semantic consistency, respectively.

User Input Queries Ori. Adv.
怎样自己制作文字图片？
How to make text pictures? 0.5930 / 0.69 0.9972 / 0.97
谁会自己制作文字图片？
Who can make text pictures by yourself? 0.9506 / 0.93 0.9996 / 1.00
哪个网站可以自己制作图片？
Which website can we use to make pictures? 0.8650 / 0.35 0.9957 / 0.96
怎样在手机上制作自己的文字图片？
How to make my own text pictures on the mobile phone? 0.7229 / 0.26 0.9993 / 0.99
怎么制作自己的网页？
How to create my own webpage? 0.1236 / 0.54 0.9962 / 0.94
如何自己制作带音乐、多张图片和文字的电子贺卡？
How to make an e-card with music, multiple pictures, and
text by myself?

0.9658 / 0.26 0.9996 / 0.99

怎么可以制作自己的网页？
How can I make my own webpage? 0.2927 / 0.49 0.9982 / 1.00
火车票图片制作
Train ticket picture making 0.5336 / 0.44 0.9895 / 0.94
自己怎么制作冰淇淋？
How to make ice cream by myself? 0.9889 / 0.22 0.9997 / 0.98
读书卡怎样制作？
How to make a reading card? 0.9242 / 0.32 0.9999 / 0.98
Ori. : 怎样自己制作文字图片？有哪些软件可以帮助我们制作文字图片 ?
How to make text pictures? Which software can help us make text pictures?
Adv.: 怎样自己制作文字图片？有那种软件支帮帮助我们制做文本图图 ?

Table 9: A generated adversarial example by TRAttack that successfully receives high f(·) / s(·) under 10 different
queries meanwhile on the simulated text retrieval system based on LSTM and the LCQMC dataset.
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User Input Queries Ori. Adv.
守护甜心第四季什么时候播？
When will the fourth season of "Shugo Chara!" be
broadcast?

0.5592 / 0.62 0.6417 / 0.64

破产姐妹什么时候播第四季
When will the "Broke Girls" broadcast the fourth sea-
son

0.5519 / 0.48 0.6151 / 0.78

活佛济公第四部到底什么时候播
When will the fourth season of "The Legend of Crazy
Monk" be broadcast

0.5665 / 0.54 0.6194 / 0.67

爱情回来了什么时候播
When will "Love is Back" be broadcast 0.4966 / 0.07 0.6612 / 0.59
美人制造什么时候播
When will "Cosmetology High" be broadcast 0.4986 / 0.15 0.6627 / 0.69
叶罗丽精灵梦第三季什么时候播？
When will the third season of "Yeloli" be broadcast? 0.5067 / 0.28 0.5099 / 0.28
世界上另一个我什么时候播
When will "Another Me in the World" be broadcast 0.5375 / 0.42 0.6524 / 0.72
终极宿舍什么时候播
When will "THE X-DORMITORY" be broadcast 0.4980 / 0.21 0.7200 / 0.78
新少年四大名捕电视剧什么时候播
When will "The Four" be broadcast 0.5294 / 0.44 0.5477 / 0.51
不一样的美男子什么时候播？
When will "Special Different Man" be broadcast? 0.4825 / 0.04 0.6579 / 0.76
Ori. : 守护甜心第四季什么时候播？《老友记》里有哪些经典台词 ?
When will the fourth season of "Shugo Chara!" be broadcast? What are the classic lines in "Friends"?
Adv.: 守护甜心第四季什么时候播？（小友記秀里有谁多经经台辞 ?

Table 10: A generated adversarial example by TRAttack that successfully receives high f(·) / s(·) under 10 differ-
ent queries meanwhile on the Tencent Cloud’s commercial API.
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User Input Queries Ori. Adv.
在家可以做的兼职有什么？
What are the part-time jobs that can be done at home? 0.8460 / 0.60 0.9553 / 0.95
在家电脑兼职可以做什么
What are the part-time jobs that can be done on the
computer at home

0.7734 / 0.61 0.8474 / 0.88

有没有什么在家就可以做的兼职？
Are there any part-time jobs that can be done at home? 0.7795 / 0.51 0.9009 / 0.92
可在家做的兼职？
Part-time jobs can be done at home? 0.8129 / 0.55 0.9304 / 0.92
在家兼职的工作有哪些
What are the part-time jobs that can be done at home 0.8449 / 0.65 0.8706 / 0.75
有没有在家能做的兼职？
Are there any part-time jobs that can be done at home? 0.7280 / 0.32 0.8558 / 0.83
如何在家做淘宝客服兼职
How to be a part-time Taobao customer service at home 0.6210 / 0.24 0.6793 / 0.51
有什么可以在家做的工作
What work can be done at home 0.7704 / 0.39 0.7848 / 0.46
有没有在家做兼职的工作？
Are there any part-time jobs that can be done at home? 0.7321 / 0.46 0.7558 / 0.57
有什么工作在家就可以做
What work can be done at home 0.7736 / 0.25 0.7973 / 0.44
Ori. : 在家可以做的兼职有什么？有什么工作是必须要做的?
What are the part-time jobs that can be done at home? What work must be done?
Adv.: 在家可以做的兼职有什么？有什么职作是固必要 ? 的?

Table 11: A generated adversarial example by TRAttack that successfully receives high f(·) / s(·) under 10 differ-
ent queries meanwhil on the Baidu Cloud’s commercial API.
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