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Abstract
We propose novel structural-based approaches
for the generation and comparison of cross lin-
gual sentence representations. We do so by
applying geometric and topological methods to
analyze the structure of sentences, as captured
by their word embeddings. The key proper-
ties of our methods are: (a) They are designed
to be isometric invariant, in order to provide
language-agnostic representations. (b) They
are fully unsupervised, and use no cross-lingual
signal. The quality of our representations, and
their preservation across languages, are eval-
uated in similarity comparison tasks, achiev-
ing competitive results. Furthermore, we show
that our structural-based representations can be
combined with existing methods for improved
results.

1 Introduction

Word embeddings are driven by distributional con-
cepts, i.e. words can be described by their sur-
rounding words. For example, the words “dog”
and “cat” often occur in similar contexts, and there-
fore their embeddings are expected to be nearby,
and to have similar distances to other words. Such
similarities are inherent to the real world (e.g., a
dog is similar to a cat), and therefore should be
language-agnostic. For that reason, the embedding
spaces of different languages are expected to be
near-isomorphic (Miceli Barone, 2016). Notably,
Vulić et al. (2020) demonstrated that high degree of
isomorphism can be reached with sufficient mono-
lingual resources. This assumption has enabled
various applications at the word level, e.g. gener-
ating cross-lingual word embeddings by mapping
monolingual vector spaces (Artetxe et al., 2018;
Conneau et al., 2018).

In this paper, we take a step further, leveraging
the approximate isomorphism between monolin-
gual spaces at the sentence level. Considering each
sentence as a point cloud (made by its word em-
beddings), our key argument is that these point

clouds retain geometric and topological structures
that should be preserved across languages. There-
fore, they have the potential to enable language-
agnostic sentence representations.

We investigate different approaches for extract-
ing and utilizing such structures. Firstly, we devise
a geometric approach, based on the intra-distances
of the word embeddings in a sentence. Secondly,
we explore a topological approach, borrowing
methods from Topological Data Analysis (TDA).
Briefly, TDA provides algebraic-topological meth-
ods to extract global structural information from
shapes. These methods are coordinate free and
invariant to isometries (Carlsson, 2009; Zomoro-
dian, 2012), which is highly desired in our setting.
Our main goal is to employ these structure-based
features to generate novel cross-lingual sentence
representations, in a fully unsupervised manner.

In order to evaluate the cross-lingual nature of
our representations, we experiment with similarity
comparison tasks, including bilingual sentence re-
trieval (Guo et al., 2018) and machine translation
quality estimation (Specia et al., 2020).

Our contributions can be summarized as follows.
(1) Proposing the novel concept of exploiting the
isomorphism of word embedding spaces at the sen-
tence level. (2) Devising fully unsupervised meth-
ods for cross-lingual sentence representation, based
on geometric and topological approaches. (3) Pro-
viding measures of similarity for the new represen-
tations. (4) Evaluating the extent to which these
representations are preserved across languages, via
downstream similarity comparison tasks.

2 Isometry of Word Embedding Spaces

Measuring and utilizing the similarities between
word embedding spaces, is a well-studied topic
in NLP. In this context, a standard assumption is
that monolingual word embedding spaces are ap-
proximately isomorphic. A common use for such
near-isomorphism is to search for a linear trans-
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formation between the embedding spaces of differ-
ent languages (Artetxe et al., 2018; Mikolov et al.,
2013a; Glavaš et al., 2019). Other studies argue
that a better practice is to consider orthogonal trans-
formations (Xing et al., 2015; Smith et al., 2017).
These transformations have been used to induce
bilingual dictionaries (Xing et al., 2015; Artetxe
et al., 2018), as well as cross-lingual transfer learn-
ing (Ruder et al., 2019). In fact, mapping-based
approaches have become a prevalent way to learn
cross-lingual embedding spaces.

The isomorphism assumption is also used in
fully unsupervised settings, including unsupervised
bilingual lexicon induction (Artetxe et al., 2018;
Conneau et al., 2018) and unsupervised machine
translation (Lample et al., 2018; Artetxe et al.,
2019). Here, the alignment between the mono-
lingual embedding spaces cannot be achieved by
mapping pre-existing bilingual dictionaries. In-
stead, it is achieved either by using adversarial
training (Conneau et al., 2018) or by comparing the
distribution of similarities or distances of the word
embeddings across languages (Artetxe et al., 2018;
Alvarez-Melis and Jaakkola, 2018).

As explained by Xu and Koehn (2021), the iso-
morphism of embedding spaces can be extended to
isometry, using normalization techniques. As the
isometry of word embedding spaces becomes the
premise for a large variety of methods, the follow-
ing question arises: can we leverage the isometry
of word embeddings at the sentence level?

Our approach is to take the embedding of a sen-
tence to be the word-by-word embedding, resulting
in a point-cloud (finite collection of points). As-
suming nearly-isometric word embeddings, one
would expect that the geometric and topological
structures of these point clouds are preserved across
languages to some extent. For this reason, we de-
vised methods to extract such structural informa-
tion from sentences and provide means to compare
the structures of different sentences.

3 Related Work

Various studies of unsupervised cross-lingual sen-
tence representations rely on aggregation of either
mapped word embeddings or contextualized word
embeddings from pre-trained multilingual models
(Smith et al., 2017; Conneau et al., 2018; Xu and
Koehn, 2021; Kvapilíková et al., 2020). These
studies often rely (implicitly or explicitly) on the
isometry assumption between word vector spaces,

for constructing cross lingual mappings. However,
they do not utilize the isometry for generating sen-
tence representations.

Closer to our work are studies using struc-
tural similarities between languages. Both Aldar-
maki et al. (2018) and Alvarez-Melis and Jaakkola
(2018) exploit the preservation of geometric struc-
tures between monolingual vector spaces for cross
lingual mapping of word embeddings. However,
neither refer to geometric structures of sentences.

Finally, several studies have used topological ap-
proaches in NLP related tasks, such as word sense
disambiguation (Jakubowski et al., 2020) and text
visualization (Sami and Farrahi, 2017). TDA meth-
ods were also used to generate sentence and docu-
ment representations. Zhu (2013) was the first to
introduce the concept of topological text represen-
tation. Built on this idea, recent studies designed
various methods for document representations by
computing persistent homology (see Section 6.2)
over their word embeddings. These methods were
evaluated on tasks such as document classifica-
tion and discourse analysis (Tymochko et al., 2020;
Gholizadeh et al., 2020; Savle et al., 2019). Most
related to our work is Michel et al. (2017), where
persistence diagrams were used to represent docu-
ments and sentences. Their final representation and
comparison of sentences are quite different than
ours, and achieved negative results in classification
and clustering tasks. To the best of our knowl-
edge, no previous study used topological-based
approaches in cross-lingual tasks.

4 Sentence Distance Matrix

In this section we present the fundamental element
of our pipeline – the Sentence Distance Matrix
(SDM). Representing sentences by point clouds,
the geometric information about the sentence can
be encoded by the pairwise distances between the
words. Formally, let X = (x1, ..., xn) be a col-
lection of word embeddings. We define SDMX

to be the n× n matrix whose entries are given by
(SDMX)i,j = dist(xi, xj), where dist can be any
metric in the embedding space.

The motivation for using SDMs, is that in the
hypothetical case where X and Y represent equal-
length sentences1, with parallel words, and in lan-
guages with perfectly-isometric word embeddings,
we have SDMX = SDMY . Realistically, while
translated words are not always parallel, they are ex-

1We will treat non-equal sentence lengths in Section 6.1.
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(a) ‘dog’, ‘stood’, ‘floor’,
‘cat’, ‘sat’, ‘mat’

(b) ‘perro’, ‘paró’, ‘suelo’,
‘gato’ , ‘sentó’, ‘alfombra’

Figure 1: SDMs for an English sentence (a) and its
Spanish translation (b), stopwords removed. Note the
pairs dog-cat and stood-sat are close in both languages.

pected to be semantically related. In addition, while
perfect-isometry does not exist, we do expect to
have near-isometric embeddings. Thus, we expect
translated sentences to have SDMX ≈ SDMY ,
implying that the SDM is a good candidate to rep-
resent and compare the structure of sentences.

We demonstrate the resemblance between the
SDMs of sentences in different languages in the
following example. The Spanish sentence:

El perro se paró en el suelo y el gato se
sentó en la alfombra,

is a translation of the following English sentence:
The dog stood on the floor and the cat
sat on the mat.

The SDMs of these sentences are presented in
Figure 1. The resemblance between the English
sentence and its Spanish translation is apparent
through their SDMs.

Defining suitable metrics to compare between
SDMs (see Sections 5 and 6), will enable us mea-
sure similarity between sentences in different lan-
guages, without any supervised or bilingual sig-
nal. This measurement can be useful in many NLP
tasks, such as Machine Translation Quality Estima-
tion (Specia et al., 2020), Parallel Corpus Filtering
(Koehn et al., 2020), Parallel Corpus mining (Guo
et al., 2018) and Cross-Lingual Plagiarism Detec-
tion (Danilova, 2013). In addition, such multilin-
gual representations can be useful in cross lingual
transfer learning (Ruder et al., 2019).

5 Toy Example

To demonstrate the potential of SDMs, we start
with a simple experiment. As we argued earlier,
the SDMs of sentences and their translations should
be similar, especially if the translation uses paral-
lel words (word-by-word translation). This sug-
gests that SDMs can achieve high performance in a

Figure 2: Distances between SDMs of English sentences
and SDMs of parallel Italian sentences.

Accuracy En-It It-En
P@1 0.939± 0.008 0.902± 0.006
P@5 0.979± 0.003 0.957± 0.006

P@10 0.987± 0.003 0.969± 0.05

Table 1: Results of bilingual sentence retrieval, based on
word-by-word translations, using SDMs as the distance
measure between sentences.

suitable bilingual sentence retrieval setting, which
measures the accuracy on retrieving the translation
of a sentence from a given bilingual corpus.

The experiment settings are as follows. We use
the English-Italian dataset provided by Dinu et al.
(2014) and Artetxe et al. (2016). The dataset con-
tains monolingual word embeddings trained with
word2vec using the CBOW method with negative
sampling (Mikolov et al., 2013a)2. We apply length
normalization and mean centering to all embed-
dings. In addition to the embeddings, the dataset
also contains a bilingual dictionary, split into a
training set of 5,000 word pairs and a test set of
1,500 word pairs, both are uniformly distributed in
frequency bins. We use the training bilingual dic-
tionary, and removed repetitions3, which resulted
in a dictionary of 3,281 word pairs. We generate a
bilingual corpus of 1,000 artificial sentence pairs
using random sampling from the bilingual dictio-
nary, such that each sentence is made of a sequence
of 20 random words, and its parallel sentence is
made of the translations of these words.

Next, we calculate the SDM of each sentence
(a 20 × 20 distance matrix), using the Euclidean
distance. In order to measure the distance between
the English and Italian sentences, we use the Frobe-
nius norm of the difference between their respective
SDMs. This results in a 1000× 1000 distance ma-
trix, the first 100×100 block of which is presented

2The hyper-parameters and corpora used to create the
dataset are described in Artetxe et al. (2016).

3Words which appear more than once in the dictionary.
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in Figure 2. The sentences have the same order in
both languages. Therefore, the distance between
each sentence and its translation appears in the di-
agonal. One can easily notice that the diagonal
tends to contain the lowest values, supporting our
intuition that translations should have the closest
SDM to their source sentences.

To provide quantitative evaluation we used the
mean accuracy measure. We count how many
times the correct translation of a source sentence
is retrieved, and report mean precision@k for
k = 1, 5, 10, by repeating the experiment 10 times.
The results are provided in Table 1. Note that even
though the SDMs do not rely on any supervised
or bilingual signal, the results are near-perfect.
This demonstrates the potential of SDMs in cross-
lingual settings, and the preservation of the geomet-
ric structure of sentences across languages.

6 Methods

In this section, we describe how to utilize SDMs for
sentence representation in the realistic case, where
parallel sentences in different languages may differ
in length and word ordering. Section 6.1 describes
a direct approach – interpolating the SDMs of par-
allel sentences to have the same size, enabling a
direct matrix comparison. Section 6.2 describes a
vastly different approach – extracting topological
structure information from the SDMs using TDA.

6.1 A Geometric Approach

In Section 5 we showed that the Frobenius norm
is an effective method to measure similarity be-
tween SDMs of sentences in different languages.
However, this procedure requires that the compared
sentences share the same length and order. In re-
ality however, this is often not the case. In this
section we propose a framework that generalizes
this procedure to the most generic setting.

The first challenge to address is different sen-
tence lengths. To this end, we propose to rescale
the SDM matrices. Matrix rescaling is a funda-
mental challenge in the field of image processing,
e.g. when zooming in (upscaling) or zooming out
(downscaling). We use the well-known B-spline
interpolation method introduced by Hou and An-
drews (1978), and refined by Unser et al. (1991).
Briefly, in order to upscale an SDM we find the
piecewise polynomial function that best approxi-
mates the original matrix values, and then sample
this function at the desired resolution. The result-

Figure 3: Interpolated SDMs pipeline. The word em-
beddings of each sentence are used to generate an SDM.
The smaller SDM is then interpolated to match the size
of the larger one. Using Frobenius norm we can now
measure the distance between the sentences.

ing pipeline is presented in Figure 3, and is referred
to as interpolated SDM (ISDM).

The next challenge we need to address is the
different word ordering between parallel sentences.
Intuitively, we propose to match words based on
their geometric representation (encoded by the
SDM) rather than their position within the sentence,
without any bilingual signal. Given two sentences,
we take the columns of their interpolated SDMs
(vaguely representing words) and search for the op-
timal matching that minimizes the Frobenius norm.
This variation of the pipeline is referred to as order-
aware interpolated SDM (OSDM).

6.2 A Topological Approach
In this section, we propose a vastly different
method to represent and compare sentences, by
extracting robust information from the SDMs, de-
scribing the topological structure of sentences.

6.2.1 Topological Data Analysis
Topological Data Analysis (TDA) promotes the
use of mathematical topology in analyzing data
and networks (Carlsson, 2009; Zomorodian, 2012;
Zhu, 2013). The key idea is that topology can be
used to study the shape of data in a qualitative way
that is isometric invariant and robust to continuous
deformations. In this section we briefly introduce
the relevant concepts and tools of TDA, and discuss
how to adapt them for sentence analysis.
The Vietoris-Rips complex. A simplicial complex
is a high-dimensional generalization of a graph,
consisting of vertices, edges, triangles, tetrahedra,
and higher dimensional faces. In order to extract
structural information from point clouds (word em-
beddings in our setting), a common practice in TDA
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Figure 4: VR complexes of word embeddings, for an increasing diameter r (using the Euclidean distance). For
instance, VR(r=5.6) includes two 1-dimensional faces (edges), since there are two subsets of size 2, whose diameter
is less than 5.6. The embeddings were extracted using GloVe (Pennington et al., 2014), and transformed to R2 using
PCA, for visualization purposes. Note that the last step introduces two 2-dimensional faces (triangles).

Figure 5: Persistence diagram for the sequence of VR
complexes in Figure 4. The red points mark connected
components (0-cycles), and their deaths occur when
two components merge. For example, at r ≈ 3.3 a 0-
dimensional cycle dies, as the components of “man” and
“woman” merge. The blue point marks a hole (1-cycle),
appearing at r ≈ 7 and later filled in at r ≈ 8.

is to first construct a simplicial complex known as
the Vietoris-Rips (VR) complex. Given a point
cloud P , the vertex set of VRr(P ) is just P , and
its k-dimensional faces are all subsets S ⊂ P of
size k+1, whose diameter is less than r. In Figure
4 we present a sequence of VR complexes, for a
point cloud P made by the word embeddings of
the well-known word set “king”, “queen”, “man”,
and “woman”.

Homology is an algebraic topological structure that
characterizes the shape of topological spaces. If X
is a topological space (e.g., the VR complex), we
attach to it a sequence of vector spaces (or groups)
denoted H0(X), H1(X), H2(X), etc. The basis el-
ements of H0(X) correspond to the connected com-
ponents (referred to as 0-cycles) of X , H1(X) – to
loops surrounding holes in X (1-cycles), H2(X) –
to closed surfaces enclosing “bubbles” in X (2-
cycles). Generally, Hk(X) represents informa-
tion about “k-dimensional cycles”, which can be
thought of as k-dimensional surfaces that are empty
from within. For more details, see (Hatcher, 2002).

Persistent Homology (PH) is the core method used
in TDA, whose goal is to extract robust multi-scale
topological information from data. Consider the
VRr(P ) complex described above. Increasing the
value of r, k-cycles may form at various times (r),
and later terminate (merge with another component
or fill in). The k-th persistent homology, denoted
PHk, tracks this birth-death process. The informa-
tion provided by PHk is often summarized by a per-
sistence diagram, which is a collection of points in
the plane, where the x and y coordinates represent
the birth and death times of a cycle, respectively.
In Figure 5 we present the persistence diagram
extracted from the sequence of VR complexes in
Figure 4. This example demonstrates the unique
information captured by PH, which in this exam-
ple highlights the circular relationship between the
words king→queen→woman→man→king.
Wasserstein Distance is the most commonly used
metric to compare between persistence diagrams,
based on an optimal matchings of their points. For
every two diagrams D1, D2 we denote by D̂1, D̂2

their augmented versions that include the diagonal
line (death=birth). This allow for matchings that
add or remove points from each diagram, by as-
signing them with the nearest point on the diagonal.
The p-Wasserstein distance is then

Wp(D1, D2) := inf
ϕ:D̂1→D̂2

( ∑

x∈D̂1

∥x−ϕ(x)∥p
)

1/p

,

where ϕ goes over all possible bijections.

6.2.2 Order-Aware Persistence Diagrams
We wish to use persistent homology to extract and
compare the structural information of sentences. In
order to do so, we take our point clouds to be the
word embeddings of a sentence, and compute the
persistent homology for the VR complex, using the
distances calculated by the SDM. To measure sim-
ilaity between two sentences, we use the Wasser-
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Figure 6: Topological distance pipeline. The word em-
beddings of each sentence are used to generate an SDM.
The SDMs are used to generate the persistence diagrams
for the VR complex. The Wasserstein distance is used
to measure the similarity between the diagrams.

stein distance of their corresponding persistence
diagrams. See Figure 6 for the complete pipeline.

Note that each step of the pipeline is isometric
invariant, and therefore allows for cross-lingual
representation and similarity measurement. In ad-
dition, while the proposed method compares struc-
tural information of sentences, it does not require
them to have the same length (as opposed to the
comparison of raw SDMs). One drawback of this
pipeline is that it is oblivious to the word ordering
within sentences. Next, we wish to present two
possible solutions to address this issue.

The first solution is to enrich the diagrams with
the positions of the words within a given sentence.
Note that in the case of the VR complex, each death
event in PH corresponds to an edge e∗ entering the
complex, as the parameter value r increases. De-
note by pos1, pos2 the positions of the words that
are the end-points of e∗. We create an augmented
diagram, where each cycle is represented by four
coordinates (birth, death,pos1,pos2). We refer
to the result as the order-aware persistence dia-
gram (OPD). To compare between two such dia-
grams, D1 and D2, we devised an adaptation of the
Wasserstein distance, where the diagonal of D1 is
augmented by taking the pos1, pos2 values to be
the average word positions of all cycles in D2, and
vice verse.

The second method is inspired by the “time
skeleton” concept suggested by Zhu (2013). The
key idea is to encode the flow of the sentence into
the VR complex, by placing an edge between every
two words at adjacent positions in the sentence (at
r = 0), independently of the distance between their
embeddings. We refer to these edges as sequence

edges. This method increases the expressiveness of
H1 (i.e., holes), since all adjacent words are con-
nected immediately, enabling early appearances of
holes. On the other hand, note that the resulting VR
complex is always connected, hence H0 is trivial.

7 Experiments and Results

In this section we want to examine the preservation
of our new representations across languages, by
evaluating their performance in real-world tasks.
In particular, we will focus on tasks that are based
on similarity between parallel sentences. Note that
the proposed methods are fully unsupervised, in the
sense that they do not use any task-specific training
or cross-lingual data. We will evaluate the effective-
ness of our methods as well as their combination
with other unsupervised methods (i.e. without in-
creasing the level of supervision).

7.1 Bilingual Sentence Retrieval

The objective of bilingual sentence retrieval is to
find the translation of sentences in a source lan-
guage from a list of candidates in the target lan-
guage. In this section we want to show that our
methods can be used to enhance the performance
of existing semantic-based methods for the fully
unsupervised version of this task.

We evaluate on the English-Spanish and English-
Russian language pairs of the UN parallel corpus
(Ziemski et al., 2016). We consider 2,000 source
sentences queries and 20,000 possible target sen-
tences for each direction4. For the monolingual
word representations, we use pre-trained fasttext
word embeddings (Grave et al., 2018).

For the baseline, we use the fully unsupervised
version of Vecmap (Artetxe et al., 2018) to map
monolingual word embeddings into a cross-lingual
space. We aggregate the word embeddings by
mean-pooling, in order to represent sentences. The
pipeline we examine has two steps: (1) use the
baseline to list the top 10 nearest neighbours of
each source sentence. (2) Re-rank this list using
our novel representations.

For the first step, we score all possible sentence
pairs using the cosine distance between their em-
beddings. We mitigate the hubness problem of em-
bedding spaces using the margin-based approach
of Artetxe and Schwenk (2019)5. We then create

4We considered sentences with at least 5 words, and
stripped punctuation as a pre-processing step.

5We used the Ratio variant with parameter k = 10.
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English-Spanish English-Russian
En→Es Es→En En→Ru Ru→En

P@1 P@5 MAP P@1 P@5 MAP P@1 P@5 MAP P@1 P@5 MAP
Vecmap 45.4 64.0 .535 56.2 73.3 .634 36.3 55.9 .448 45.1 65.0 .535
ISDM 39.4 58.0 .480 56.6 71.7 .634 37.1 55.6 .449 42.5 61.1 .511
OSDM 40.3 60.1 .490 4.93 70.9 .586 42.7 58.7 .494 35.2 57.7 .452
OPD0 52.7 68.5 .593 60.5 76.1 .671 40.5 58.2 .480 51.1 69.7 .589
OPD1 51.5 67.3 .583 59.7 76.1 .665 39.2 58.0 .469 50.8 68.4 .583

OPD0+1 53.6 68.5 .599 60.7 76.4 .672 40.6 58.4 .480 51.5 69.7 .592
OPD2 46.7 64.8 .545 57.0 74.1 .641 38.1 56.6 .461 46.1 66.6 .546

OPD0+1+2 51.7 67.2 .584 58.9 74.8 .657 40.3 59.1 .479 49.7 68.7 .578

Table 2: Results for the fully unsupervised bilingual sentence retrieval, as described in Section 7.1. OPDa+b stands
for a linear combination between the baseline, OPDa and OPDb. We highlight the best result for each direction.

an ordered list of the top 10 nearest neighbours of
each source sentence.

In the second step, we wish to enhance the base-
line ranking by applying our new geometric and
topological methods. The methods we examine
are: (1) interpolated SDM (ISDM), (2) order-aware
interpolated SDM (OSDM), and (3) order-aware k-
cycles persistence diagrams (OPDk)6. We use each
of these methods to compute the distance between
every source sentence and its 10 nearest neighbors,
found in step 1. We note that the calculations in this
step are applied directly to the monolingual word
embeddings (rather than the Vecmap embeddings).
Next, we create new scores for each sentence pair
by a linear combination of the baseline distance
(from step 1) and the structure-based distances7.
Finally, we re-rank the top nearest neighbours lists
according to the new scores. As this is a retrieval
task, we follow Glavaš et al. (2019) and use the
Mean Average Precision (MAP), in addition to pre-
cision@k (with k ∈ {1, 5}) for the evaluation.

We report the average results (across all sen-
tence queries) in Table 2. As can be seen, using
our structure-based methods improves the results
of the baseline on all fronts. Remarkably, the im-
provement (15% on average for P@1, and 10% on
average for MAP), does not rely on any additional
data or training. In most cases, the combination
between OPD0 and OPD1 yields the best results,
except for one case in which the OSDM triumphs.
It is also interesting to note that the distance pro-
vided by OPD2 improves the results as well. While
the structural information provided by 2-cycles is
less intuitive (and consequently is uncommonly
used in applications), our results indicate that such

6For the OPD1 we utilize the sequence edges method.
7The weights of the linear combination were chosen ac-

cording to preliminary experiments, and were usually bal-
anced, slightly favoring our methods.

high-dimensional topological structures do carry
significant information in language processing.

7.2 Machine Translation Quality Estimation

The goal here is to predict quality scores for trans-
lated sentences, in a way that is consistent with
human perceived scores, referred to as direct as-
sessment. Since the objective is to compare parallel
sentences, this is a suitable scenario to test our
novel representations across languages.

The implementation details are as follows.
We generate monolingual word representations,
based on pre-trained BPEmb subword embeddings
(Heinzerling and Strube, 2018). These embeddings
were chosen in order to properly deal with out-
of-vocabulary words. For words that consist of
multiple subwords, we take average of the subword
vectors. This common practice outperforms other
aggregation methods (Bommasani et al., 2020).

We use the monolingual embeddings to calculate
the structural-based distances between every source
sentence and its translation8, using the methods
proposed in Section 6. We take the inverse of the
distance as the predicted quality score. We tested
our methods separately as well as combined (taking
linear combinations of the respective scores9). We
note that for the topological approach, we always
used OPD0 and OPD1 together, as this method
demonstrated superior results.

We tested this pipeline on the language pairs
English-German (en-de) and Sinhala-English (si-
en), of the WMT2020 Quality Estimation shared
task (Specia et al., 2020). Each language pair in-
cludes 1,000 source sentences and their transla-
tions, produced by state-of-the-art NMT models.

8As a pre-processing step, we remove stopwords and
stripped punctuation.

9The coefficients were optimized manually in preliminary
experiments.
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We compare the results of our methods to the su-
pervised baseline of the shared task, which uses
LSTM-based Predictor-Estimator approach (Kim
et al., 2017), and to the following competitors.
TransQuest (Ranasinghe et al., 2020) is the winner
method of the shared task. The method uses an
ensemble of two architectures, which rely on pre-
trained XLM-R large transformer models, and are
fine-tuned on quality estimation datasets.
FVCRC (Zhou et al., 2020) is an unsupervised
method based on a BERTScore (Zhang et al., 2020).
The method relies on pre-trained transformer-based
models (mBert, XLM) to extract word (or subword)
embeddings. It aligns the embeddings using cosine
similarity based greedy matching, and predicts the
quality score as the sum of the respective simi-
larities. It enhances the alignments using explicit
cross-lingual knowledge from external models.
Bergamot-LATTE, glass-box (Fomicheva et al.,
2020) is an unsupervised method that assumes ac-
cess to the machine translation model. It extracts
features from the model output and uses uncertainty
quantification to predict the translation quality.

As most of the competing methods rely on pre-
trained transformer-based models, we also wish
to evaluate the merge between these models and
our framework. We do so in a way that keeps the
combined pipeline fully unsupervised (avoiding
fine-tuning and bilingual knowledge). To this end,
we adapted the FVCRC approach to be fully unsu-
pervised, replacing their alignment procedure with
optimal transportation matching10. We refer to this
fully unsupervised transformer-based method as
cross lingual matching (CLM)11.

Following the shared task guidelines, we present
the Pearson correlation between the predicted and
the manually annotated scores in Table 3. Note that
both of our approaches (geometric and topological)
provide meaningful and competitive results, even
though they are fully unsupervised and do not rely
on any cross-lingual signal or external model. Inter-
estingly, the combinations between our geometric
and topological approaches has yielded superior
results. More specifically, the results reveal that
our methods outperform the supervised baseline
as well as the unsupervised methods in the en-de
direction. In addition, in the si-en direction, the
combination between CLM and our methods per-
forms better than its competitor – the unsupervised

10Specifically we use the Sinkhorn distance (Cuturi, 2013).
11As FVCRC, our implementation also uses BERTScore.

Method Supervision en→de si→en
TransQuest Sup. 0.55 0.68

Baseline 0.15 0.37

FVCRC Unsup.* 0.11 0.39
Bergamot-LATTE Unsup.** 0.26 0.51

ISDM

Fully Unsup.

0.12 0.26
OSDM 0.27 0.16
OPD 0.20 0.19

ISDM + OPD 0.19 0.29
OSDM + OPD 0.27 0.18
CLM + OPD 0.13 0.45

CLM + OSDM 0.14 0.45

Table 3: Pearson correlation with direct assessment
scores for the WMT2020 Machine Translation Qual-
ity Estimation shared task. The ‘+’ sign stands for a
linear combination between methods. Unsupervised re-
sults improving the supervised baseline are highlighted.
*FVCRC uses explicit bilingual signal. **Bergamot-
LATTE relies on the MT model scores.

Figure 7: Comparing word embeddings of English and
Sinhala. To demonstrate the inferior quality of the Sin-
hala word embeddings, we present the distance matrices
for six words in English and their translations in Sin-
hala. We observe that similar meaning corresponds to
short distances between the word embeddings in En-
glish. However, the same is not true for Sinhala.

FVCRC, and better than the supervised baseline.
We attribute the relative lower performance of

our methods in the si-en direction to the poor rep-
resentation of the monolingual word embeddings
for Sinhala, as a low resource language. The rep-
resentation capability and the expressiveness of
the distances between the pre-trained word embed-
dings are demonstrated at Figure 7. Generally, the
performance of our methods will be improved if the
degree of isomorphism between the relevant word
vector spaces is increased. This can be achieved,
for example, by training the word embeddings with
additional monolingual data, as suggested by Vulić
et al. (2020). This is left as future work.

8 Conclusion and Future Work

We introduced the concept of leveraging the isom-
etry of word embedding spaces at the sentence
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level. This enabled us to propose geometric and
topological approaches that facilitate fully unsuper-
vised generation of cross-lingual sentence represen-
tations, together with suitable similarity measures.

We conducted cross-lingual experiments, where
our standalone methods have achieved competi-
tive results on different tasks. Moreover, we ob-
served that combining our methods with traditional
ones has led to notable enhanced performance. We
should emphasize that this was achieved without
any additional data or training. We conclude that
geometric and topological structures of sentences
are preserved to a significant level across languages.
Interestingly, our experiments show that the shapes
we extract have complex structures. For example,
in many cases we found meaningful homological
cycles in various degrees. We note that these repre-
sentations are weaker on scenarios with low degree
of isomorphism, e.g. due to lack of monolingual
data (Vulić et al., 2020).

A promising direction for future work is to uti-
lize the proposed representations in cross-lingual
transfer learning (training a model on one language
and using it on another language).

Finally, we note that the main motivation for
this work was to promote the use of geometric and
topological approaches in core NLP tasks, and espe-
cially cross-lingual tasks. We believe that the ideas
and methods we presented here will contribute to
the future development of this line of research.
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