
Proceedings of the 7th Workshop on Representation Learning for NLP, pages 167 - 172
May 26, 2022 ©2022 Association for Computational Linguistics

Binary Encoded Word Mover’s Distance

Christian Johnson
Universität Osnabrück, Institut für Kognitionswissenschaft

Wachsbleiche 27, 49074 Osnabrück, Germany
cjohnson@uni-osnabrueck.de

Abstract

Word Mover’s Distance is a textual distance
metric which calculates the minimum trans-
port cost between two sets of word embeddings.
This metric achieves impressive results on se-
mantic similarity tasks, but is slow and difficult
to scale due to the large number of floating
point calculations. This paper demonstrates
that by combining pre-existing lower bounds
with binary encoded word vectors, the metric
can be rendered highly efficient in terms of
computation time and memory while maintain-
ing competitive accuracy on several textual sim-
ilarity benchmarks.

1 Introduction

A textual distance metric which can be used to
accurately and quickly quantify the semantic dis-
similarity between documents is useful for many
natural language processing (NLP) tasks includ-
ing text classification, document clustering, and
document retrieval.

Word Mover’s Distance (WMD) proposed by
(Kusner et al., 2015) is a variant of the Earth
Mover’s Distance which measures the semantic dis-
tance between texts. Earth Mover’s Distance is a
well-studied transportation problem for measuring
the distance between two probability distributions
and was originally proposed for image retrieval
applications (Rubner et al., 1998).

WMD leverages semantic distance information
from pre-trained neural word embeddings to cal-
culate a minimum transportation cost needed to
’move’ the words from one text to those of an-
other (Kusner et al., 2015). Let c(i, j) represent
the Euclidean distance transport cost between word
embeddings i and j in documents d and d′, re-
spectively. The minimum cumulative (weighted)
transport cost differentiating the two documents
can then be summarized as,

min
T≥0

n∑

i,j=1

Tij c(i, j)

subject to:
n∑

j=1

Tij = di ∀ i ∈ {1, ..., n}

n∑

i=1

Tij = d′j ∀ j ∈ {1, ..., n}

(1)

where Tij represents how much of word embed-
ding i travels to word embedding j. Solving this
linear program given the above constraints provides
the WMD. When evaluated via a k Nearest Neigh-
bors (kNN) classification task on eight document
classification datasets, WMD is demonstrated to
outperform a variety of text similarity metrics such
as the Okapi BM25, TF-IDF vector distance, and
Latent Dirichlet Allocation (Kusner et al., 2015;
Blei et al., 2003).

Per Equation 1, embedding distances must be
computed for all pairs of unique tokens in the eval-
uated documents, scaling the time complexity for
solving the underlying optimization problem by
O(p3 log p), where p denotes the number of unique
words in a set of query documents. Given these
demands, the memory and online computation time
requirements for calculating WMD quickly dimin-
ish the potential to scale this metric in a production
environment, especially as vocabulary size grows.

Kusner et al. and others have introduced sev-
eral lower bounds to the WMD which reduce com-
putations by relaxing constraints on the original
transport problem, albeit with accompanying per-
formance trade-offs. The Relaxed Word Mover’s
Distance (RWMD) is obtained by removing the
second or third constraints from Equation 1, re-
ducing the number of distance calculations given
that all probability mass for each word in docu-
ment d is moved to its most similar word in d′.
On the aforementioned kNN classification task, the

167



RWMD produces an average error of 0.56, com-
pared to 0.42 for the original WMD (Kusner et al.,
2015).

Werner et al. (Werner and Laber, 2019) pro-
pose another lower bound which involves a prepro-
cessing phase for computing real-value distances
between vocabulary items. During this phase, dis-
tances are computed between each word’s r near-
est neighbors and stored in a distance matrix M
(Werner and Laber, 2019). These precomputed vec-
tor distances are retrieved when calculating trans-
port costs c(i, j) between words; if c(i, j) cannot
be found in M , a default maximum value cmax is
used instead. The Related Relaxed Word Mover’s
Distance (Rel-RWMD), which combines the pre-
processing phase with the relaxed conditions of the
RWMD, is significantly faster to compute while
suffering a modest drop in accuracy compared to
the WMD on text similarity tasks.

Of final note is the Word Centroid Distance
(WCD), which is computed as the distance between
the unweighted average of each text’s word em-
bedding vectors (Kusner et al., 2015). Although
not an alignment-based distance metric, WCD is a
competitive metric which likewise leverages neural
word embedding vectors.

One pain-point of the original WMD which mo-
tivates the use of lookup tables by Werner et al.
is the large amount of floating point calculations
needed to resolve the underlying transport prob-
lem. Floating point arithmetic CPU instructions
are generally slower than integer or bit operations.
Tissier et al. (Tissier et al., 2019) have proposed
an autoencoding methodology for computing bi-
nary embeddings as encoded representations of
an original, real-valued embedding space. With
normalized XOR Hamming distance calculations,
these binary vectors allow one to circumvent CPU-
intensive floating point arithmetic while also re-
ducing the working memory footprint of the word
vectors by up to 97% (Tissier et al., 2019).

This paper contributes a methodology for inte-
grating the binary vectors of Tissier et al. with the
existing Rel-RWMD lower bound as the Binary En-
coded Word Mover’s Distance (BEWMD). It is hy-
pothesized that by replacing the default cmax value
of the Rel-RWMD with normalized binary vector
Hamming distances, the proposed metric will pro-
duce a more accurate lower-bound to the original
WMD while maintaining competitive computation
times and, importantly, low memory requirements.

2 Methodology

The proposed lower bound is realized via neu-
ral network encoding of real-valued word vectors
and manipulation of the Rel-RWMD calculation.
An autoencoder network is trained with resort to
a novel regularization parameter, while the Rel-
RWMD calculation is modified to accommodate
the binary-encoded vectors and render it bidirec-
tional.

2.1 Autoencoder Architecture

An autoencoder is a neural network composed of
an encoder and a decoder. The encoder forces an
input into a representation which is then decoded
into a reconstruction of the original input. By com-
paring the original and reconstructed inputs via a
loss function which minimizes their difference, the
autoencoder learns an encoded representation of
the input data which is assumed to preserve the
structure of the original embedding space. Per the
methodology of (Tissier et al., 2019), a neural au-
toencoder with a specialized loss function is em-
ployed to produce the binary word vectors which
support the proposed lower bound.

The autoencoder is implemented in Python 3.x
via Tensorflow 2.x, consisting of an encoder with
two hidden layers and a decoder with a single hid-
den layer. The encoder’s input layer is the same
size as a single real-valued vector (300 dimensions),
while the subsequent hidden layers and the input
to the decoder are adaptable to a desired encoded
vector size.

2.2 Correlation Based Regularization

This paper’s approach deviates from that of (Tissier
et al., 2019) in that the loss function used to min-
imize the difference between inputs and recon-
structed vectors contains an additional correla-
tion based regularization term. A standard mean
squared error loss function is insufficient to pre-
serve the original vector space’s semantic relation-
ships in the encoded vectors, as the network will
learn to discard ’too much similarity information
from the original space in favor of the reconstruc-
tion’ (Tissier et al., 2019). Tissier et al. exploit the
encoder’s weight matrix W , along with its trans-
position W T and corresponding identity matrix I
to derive an additional differentiable regularization
term lreg which is added to the mean square error
loss function, as demonstrated in Equation 2.

168



lreg =
1

2
∥W TW − I∥2 (2)

where the loss function, including the mean squared
error as lrec, amounts to

L = lrec + λreg lreg (3)

where λreg is a regularization hyperparameter be-
tween 1 and 4. Implementing this regularization
parameter per the methodology of (Tissier et al.,
2019), it was found that the adjusted loss function
indeed improves training, but still results in com-
pressed vectors which discard much of the semantic
information contained in the original vector space.
Thus, the loss function used in this paper includes
an additional regularization parameter determined
via correlation analysis of batch-pairwise distance
matrices.

Let B denote a single training batch of size m.
In all experiments, a batch size of m = 75 is used.
Considering an m× n input batch matrix, where n
denotes the original vector size of 300 dimensions,
the corresponding, binarized code batch matrix will
be an m × k matrix, where k denotes the size of
the reduced vectors.

Computing the pairwise m×m Euclidean dis-
tance matrices BX and BY for both the input and
encoded vector spaces, respectively, one converts
the matrices into ranks rBX and rBY to compute
the Spearman rank correlation coefficient rs as

rs =
cov(rBX , rBY )

σrBX
σrBY

(4)

where cov(rBX , rBY ) denotes the covariance of
the rank variables, while σrBX

and σrBY
are the

standard deviations of the rank variables. This
calculation of the Spearman correlation coefficient
is used because it allows for tie rank values, which
is conceivable given the limited range of Hamming
distances possible with the binary vectors. This
coefficient is then integrated into the loss function
as

L = lrec + λreg(lreg + rs) (5)

The additional regularizer rs is summed with
lreg such that its contribution to the loss is also mod-
ulated by the hyperparameter λreg. Given that both
regularization terms serve the same purpose with
respect to the reconstruction loss (preserving dis-
tance information from the original vector space),
it is sensible to combine them in this way and avoid

the need for an additional regularization hyperpa-
rameter. With this new parameter, the adjusted
objective function results in faster convergence and
improves the binary embeddings’ performance on
downstream tasks, presumably by preserving more
distance information from the original vector space.
This improved loss function suggests that local-
ized distance correlations are a valuable training
objective.

2.3 Proposed Lower Bound Calculation
The resultant binary encoded word embeddings
are integrated into a modified version of the Rel-
RWMD, where they are used to compute a normal-
ized Hamming distance in cases where the cosine
distance between two word embeddings cannot
be found in a precomputed lookup table (cache)
C, defining the transport cost c(i, j) between two
words as:

c(i, j) =





0, if i = j

cosine(i, j) if cosine(i, j) ∈ C

Hamming(i, j) otherwise
(6)

As mentioned, the RWMD removes either the
second or third constraint from Equation 1 to cre-
ate the two relaxed solutions ℓ1(d, d′) and ℓ2(d

′, d).
These solutions require only the identification of
each word’s nearest neighbor from the other doc-
ument in either of the two directions, given that
each word’s mass will be transferred entirely to its
most similar word in the other document. Rather
than opting for one of the two lower bounds (Rel-
RWMD uses the maximum of the two), the solution
presented in this paper computes both lower bounds
and combines them via summation to render the
distance calculation bidirectional. This summation
approach is supported by the fusion methodology
evaluated by (Hamann, 2018). Thus, the Binary
Encoded Word Mover’s Distance (BEWMD) is de-
fined as

BEWMD =
α + β

2

where: α =
1

n
· min

n∑

i,j=1

c(i, j)

β =
1

n
· min

n∑

j,i=1

c(j, i)

(7)

Note that the summed costs are divided by the
document length n, in order to constrain the metric
to a value between 0 and 1; the sum of the pendant

169



unidirectional transport costs α and β is likewise
divided by 2. Cosine distance is employed rather
than Euclidean given that angular distance is theo-
retically more-resilient to variations in vector mag-
nitude which are semantically-irrelevant artifacts of
the vector-training process, as in the methodologies
of (Mikolov et al., 2013; Zhang et al., 2018).

3 Results

Per the methodology of (Werner and Laber, 2019;
Dai et al., 2015), BEWMD performance on a down-
stream semantic-similarity task is evaluated via the
Stanford Triplets Wikipedia benchmark1. Metrics
are assessed according to their ability to distin-
guish for a triplet of documents D1, D2, D3, which
pair of documents is most-related. Success for a
single triplet is achieved if a metric computes the
lowest distance score for the most-related docu-
ment pair, namely D1 and D2. Triplet documents
are Wikipedia articles which were preprocessed to
remove non-alphanumeric characters and tokens
which are not embedded under the attested models,
in order to maintain computation time comparabil-
ity across all tested metrics.

The autoencoder model used to produce the en-
coded vectors was fitted to pretrained word vectors
from FastText (Bojanowski et al., 2016) (Common
Crawl, 600B tokens)2. Consequently, all other dis-
tance metrics which rely on pretrained word embed-
dings used the same vectors. The autoencoder is fit-
ted to the first 300,000 word vectors, which, given
that the vectors are sorted by frequency, are as-
sumed to be highly-representative of the full vector
space. Training lasted for ten epochs with λreg = 4.
Original real-valued vectors of 300 floating-point
dimensions are encoded to 512-bit representations,
per the register sizes of AVX-512 CPUs. Although
the WMD was originally defined with Euclidean
distances, cosine rather than Euclidean distance is
used to compute the cost c(i, j) for all metrics, so
as to avoid spurious comparisons with BEWMD.

Tables 1, 2, and 3 demonstrate metric perfor-
mance in terms of test error, offline, and online
computation time, respectively. Table 4 documents
the memory requirements of any vector models
or lookup tables used during online computations.
Online computation time is recorded as average
time per evaluation iteration, or seconds required
to evaluate a single triplet during online distance

1http://cs.stanford.edu/ quocle/triplets-data.tar.gz
2https://fasttext.cc/docs/en/english-vectors.html

calculation. Offline computation time is defined as
the amount of computation time in minutes to per-
form any one-time preprocessing such as the fitting
of neural network models or calculation of lookup
tables. Results are reported from Python imple-
mentations of the relevant metrics, where identical
vector models or cache lookup tables are, where
possible, used to maintain comparability across
the metrics. The RWMD and Rel-RWMD lower
bounds are interpreted as the maximum of the two
possible relaxed solutions ℓ1(d, d

′) and ℓ2(d
′, d)

(Kusner et al., 2015). The cmax value used when
calculating Rel-RWMD is set to 0.8. All metrics
are evaluated against the same 300 triplets. Calcu-
lations were performed on a machine with an Intel
i7-8565U CPU and 8GB RAM.

BEWMD WCD WMD RWMD Rel-RWMD

0.393 0.436 0.389 0.594 0.641

Table 1: Triplets test error as a value between 0 and 1

BEWMD WCD WMD RWMD Rel-RWMD

283.50 0.00 0.00 0.00 88.85

Table 2: Offline computation time (min)

BEWMD WCD WMD RWMD Rel-RWMD

1.68 0.006 23.18 19.39 0.52

Table 3: Online computation time (sec/iter)

BEWMD WCD WMD RWMD Rel-RWMD

836 4409 4409 4409 790

Table 4: Online memory requirements (MB)

Additionally, this paper compares metric perfor-
mance on three of the kNN benchmarks from (Kus-
ner et al., 2015): BBC Sport contains sports articles
between 2004-2005, Classic contains sets of sen-
tences from academic papers, and Ohsumed is a col-
lection of medical abstracts categorized by disease
groups. Datasets are retrieved from the repository
associated with the original paper3. Each dataset
is subsampled to 100 randomly-selected samples
(80 train, 20 test) across 5 sampling iterations. Ta-
ble 5 shows the evaluated datasets and mean kNN

3https://github.com/mkusner/wmd

170



test classification error across all 5 random sub-
samplings for each metric. In all cases, a value of
k = 5 is used. The same preprocessing techniques
employed during the aforementioned Triplets evalu-
ation were also used when performing the distance
calculations which support the kNN evaluation. Al-
though the reported results cannot address those
from the original paper, they provide an additional
indication of the proposed metric’s performance
relative to its peers.

BEWMD WCD WMD RWMD Rel-RWMD

BBC Sport 0.12 0.07 0.16 0.23 0.45
Classic 0.11 0.25 0.14 0.21 0.42

Ohsumed 0.58 0.6 0.6 0.65 0.7

Table 5: Mean test error on kNN classification task

4 Discussion

Results on these limited tasks demonstrate that
the proposed metric is competitive with the orig-
inal WMD in terms of test error while offering
respectable online computation time improvements
and a lower memory footprint.

Comparing BEWMD Triplets performance to
that of the other metrics, it can be ascertained that
for this task it is the most accurate lower bound
to the original WMD. Notably, the BEWMD of-
fers a clear improvement upon the Rel-RWMD,
assumedly by utilizing normalized binary vector
Hamming distances as opposed to a default cmax

value (Werner and Laber, 2019). Furthermore, BE-
WMD test error is highly-competitive with the orig-
inal WMD, confirming the accuracy of the encoded
vectors as compared to their real-valued counter-
parts.

Results for the three kNN benchmark tasks
further substantiate BEWMD as a consistently-
effective lower bound. BEWMD consistenly out-
performs RWMD, Rel-RWMD, and even the origi-
nal WMD. These results pose the hypothesis that
the encoded vectors can offer a more-effective word
representation for certain tasks. However, rigorous
evaluation of the potential representation advan-
tages offered by the encoded vectors is outside the
scope of this paper.

Regarding computation and memory demands,
BEWMD compares favorably with RWMD and
Rel-RWMD, offering a reasonable computation
time trade-off against the Rel-RWMD when BE-
WMD’s improved test error is considered. All met-
rics which employ the real-valued vectors demand

some 4GB of memory, while BEWMD and Rel-
RWMD benefit from the reduced memory footprint
of precomputed lookup tables and binary encoded
vectors. Optimization of the BEWMD calculation
so as to remove the need for precomputed lookup
tables altogether remains a promising next step for
further reducing the memory demands of the pro-
posed metric.

It is worth noting the efficacy of WCD given
that, in terms of Triplets test error alone, this met-
ric outperforms all WMD lower bounds except the
BEWMD. Furthermore, kNN benchmark evalua-
tions place WCD consistently ahead of RWMD and
Rel-RWMD, even surpassing WMD on the BBC
Sport dataset. Although WCD requires more mem-
ory than either BEWMD or Rel-RWMD, its low
computation time coupled with a relatively low test
error on several evaluations pose this metric as a
pragmatic alternative to WMD and the proposed
metric for many use-cases.

These evaluations suggest that the BEWMD of-
fers a balanced alternative to the original WMD,
improving speed up to 14x while achieving com-
petitive test error on several tasks. Furthermore,
BEWMD’s reduced memory footprint makes it suit-
able for low-resource compute environments. The
demonstrated benefits of the BEWMD are, how-
ever, offset by its considerable offline computations,
which demand, under the experimental parame-
ters used in this paper, some 4 hours to compute
both the encoded vectors and the nearest neighbor
lookup table. For applications under constrained
hardware where an upfront computation investment
is tolerable, the BEWMD offers a consistently op-
timal lower bound to the original WMD.

As an ethical aside, it must be mentioned that
optimized libraries for several of the lower bounds
presented here outperform the evaluated BEWMD
Python implementation in terms of online compu-
tation time, and it is not this paper’s intent to evade
these performance discrepencies. The evaluations
presented here aim only to compare lower bound
performance using comparable software implemen-
tations.

This paper suggests that binary encoded word
vectors are valuable towards improving the scala-
bility of WMD-derived distance metrics. The pre-
sented lower bound may be enhanced by optimiz-
ing the distance calculation in order to circumvent
WMD approximation or the need for precomputed
lookup tables.

171



References
David Blei, Andrew Ng, and Michael Jordan. 2003. La-

tent dirichlet allocation. Journal of Machine Learn-
ing Research, 3:993–1022.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5.

Andrew Dai, Christopher Olah, and Quoc Le. 2015.
Document embedding with paragraph vectors.

Felix Hamann. 2018. A neural embedding compressor
for scalable document search. page 0.

Matt Kusner, Y. Sun, N.I. Kolkin, and Kilian Weinberger.
2015. From word embeddings to document distances.
Proceedings of the 32nd International Conference on
Machine Learning (ICML 2015), pages 957–966.

Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. pages 1–12.

Yossi Rubner, Carlo Tomasi, and Leonidas Guibas.
1998. Metric for distributions with applications to
image databases. pages 59–66.

Julien Tissier, Amaury Habrard, and Christophe Gravier.
2019. Near-lossless binarization of word embed-
dings. In AAAI.

Matheus Werner and Eduardo Laber. 2019. Speeding up
word mover’s distance and its variants via properties
of distances between embeddings.

Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu, and
Xueqi Cheng. 2018. Aggregating Neural Word Em-
beddings for Document Representation, pages 303–
315.

172

https://doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1007/978-3-319-76941-7_23
https://doi.org/10.1007/978-3-319-76941-7_23

