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Abstract

We present the outcome of the Post-Stroke Speech Transcription (PSST) challenge. For the challenge, we prepared a new
data resource of responses to two confrontation naming tests found in AphasiaBank, extracting audio and adding new phone-
mic transcripts for each response. The challenge consisted of two tasks. Task A asked challengers to build an automatic
speech recognizer (ASR) for phonemic transcription of the PSST samples, evaluated in terms of phoneme error rate (PER)
as well as a finer-grained metric derived from phonological feature theory, feature error rate (FER). The best model had a
9.9% FER /20.0% PER, improving on our baseline by a relative 18% and 24%, respectively. Task B approximated a down-
stream assessment task, asking challengers to identify whether each recording contained a correctly pronounced target word.
Challengers were unable to improve on the baseline algorithm; however, using this algorithm with the improved transcripts
from Task A resulted in 92.8% accuracy / 0.921 F1, a relative improvement of 2.8% and 3.3%, respectively.
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1 Introduction

Anomia, or word-finding difficulty, is the primary
feature of aphasia (Goodglass and Wingfield, 1997;
Raymer and Rothi, 2001), an acquired neurogenic lan-
guage disorder that affects 2.5-4 million people in the
US (Simmons-Mackie, 2018). The primary cause of
aphasia is stroke, and 21%—-40% of acute stroke pa-
tients are diagnosed with anomia by the time they are
discharged. Anomia is believed to be indicative of dis-
ruption in accessing a semantic description of the target
concept, and/or retrieving a fully phonologically spec-
ified representation (Dell, 1986} |Dell et al., 1997)).

Specifically, paraphasias, which are unintended word
production errors, typically result from reduced or in-
sufficiently persistent activation of target representa-
tions relative to competing non-target representations
and/or noise in the system (Dell et al., 1999} |Dell et
al., 1997). In some cases, people with aphasia produce
real word errors. For example, reduced activation of
lexical-semantic representations may result in seman-
tic errors (e.g., “dog” for the target “cat”) or unrelated
errors, sharing no obvious semantic or phonological
features with the target word (“chair” for “cat”). Ac-
tivation of inappropriate phoneme representations may
sometimes result in real word errors (e.g., “dog” for
the target “log”). However, breakdowns in phonologi-
cal processing may also lead to non-word productions
known as neologisms that may or may not be phono-
logically related to the target (e.g., “tat” for the target
“cat” and “blat” for the target “dog”, respectively).

Given the prevalence of anomia in the aphasic pop-
ulation and its tendency to persist even when other
symptoms of aphasia remit (Goodglass and Wingfield,
1997), professionals typically assess anomia using con-
frontation naming tests (Cho-Reyes and Thompson,
2012; |Roach et al., 1996; Kaplan et al., 2001), during
which a patient is presented with pictures of simple ob-
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jects and they are asked to name them. The overall ac-
curacy on such tests is an important clinical metric that
has been found to be a good indicator of overall apha-
sia severity (Schuell et al., 1964; Walker and Schwartz,
2012) and is predictive of the ability to convey infor-
mation during discourse production (Fergadiotis et al.,
2019). Furthermore, improvement in naming accuracy
has been linked to improvement in overall communica-
tive skills (Carragher et al., 2012; [Herbert et al., 2008)).

Further, in research settings, professionals develop
individualized profiles based on the different types
of errors elicited through confrontation naming tests
(e.g., phonological, semantic, non-word errors, etc.)
and then use these profiles to characterize patients’
cognitive-linguistic deficits. Such individualized er-
ror profiles have informed theoretical accounts of
the cognitive machinery underlying word production
(Dell, 1986; [Dell et al., 1997; Dell and O’Seaghdha,
1992); lesion-symptom mapping (Schwartz et al.,
2009; |Schwartz et al., 2012; |Walker et al., 2011)); per-
sonalization of treatments (Best et al., 2013)); treatment
efficacy studies (Brookshire et al., 2014} |Kendall et
al., 2003 |[Kendall et al., 2006; Kendall et al., 2008));
the understanding of cross-linguistic treatment gener-
alization (Edmonds and Kiran, 2006)); and cortical re-
organization investigations after a stroke (Fridriksson
et al., 2012)

Error profiles also have the potential to be highly in-
formative in clinical settings for developing individu-
alized intervention plans (Abel et al., 2007). However,
currently, developing a patient’s profile is prohibitively
time- and labor-intensive because it requires phonemic
transcriptions for determining response accuracy and
the nature of the errors. For naming tests with dozens
or hundreds of items, this is rarely feasible in fast-paced
clinical settings. As such, there is much interest in the
clinical community in automating this process.



To this end, we introduce the Post-Stroke Speech Tran-
scription Challenge (PSST). The Challenge is a shared
task consisting of two sub-tasks, one for phonemic
transcription (Task A), one for binary classification
(Task B). The goals of the PSST Challenge are three-
fold: first, to produce an accessible dataset relating
to these clinical tasks for use by the machine learning
community; second, to establish benchmarks for these
tasks; and third, to lay the groundwork for a community
of practice for machine learning researchers interested
in aphasia and other similar disorders.

2 Background
2.1 Orthographic vs. Phonemic ASR

An automatic speech recognizer (ASR) typically im-
plies an orthographic system (e.g. one that produces
words written in the English alphabet). Phonemic
ASR, by contrast, uses symbols like ARPABet or the
International Phonetic Alphabet (IPA) to indicate how
the utterance was pronounced. Unlike their ortho-
graphic counterparts, phonemic ASRs might transcribe
the same word several different ways, capturing lin-
guistic variability (e.g. dialect, coarticulation) or iden-
tifying errors (e.g. mispronunciations, paraphasias).

The previous generation of orthographic ASRs used a
layered architecture, with an intermediate layer map-
ping phoneme sequences to words using a pronunci-
ation dictionary (Mohri et al., 2001). However, the
last decade saw a push toward so-called “end-to-end”
systems to directly predict orthographic sequences, en-
abled by deep neural networks, unassisted and unbound
by phoneme-to-word constraints (Graves and Jaitly,
2014])). This period coincided with the introduction of
Librispeech (Panayotov et al., 2015)), a corpus extracted
from the collection of public domain audiobooks Lib-
riVox. With 1,000 hours of training data available as
a free download, LibriSpeech not only became a stan-
dard resource in research toolkits, it also came to serve
as a primary benchmark for orthographic ASR. In a
flurry of activity, the word error rate (WER) for Lib-
riSpeech’s test—-clean dropped from 5.5% (estab-
lished with its introduction) to under 1.5% just five
years later (Zhang et al., 2020). By comparison, the
go-to benchmark for phonemic ASR, TIMIT (Garofolo
et al., 1993), was less competitive, though phoneme er-
ror rates (PER) still halved: an early end-to-end system
had a PER of 17.7% (Graves et al., 2013)) compared to
8.3% more recently (Baevski et al., 2020).

2.2 ASR for Aphasic Speech

End-to-end ASRs rely heavily on statistical methods,
learning acoustic and linguistic patterns from large
speech corpora. By definition, aphasic speech breaks
from typical linguistic patterns, with highly variable
error patterns exacerbating the difficulty of the ASR
task. Previous work with AphasiaBank reflects these
difficulties. |Le and Provost (2016) reported 47%—76%

42

PER when grouped by severity of aphasia[] Perez et al.
(2020) improved on this with a PER of 33%-61%. Le
et al. (2018)) reported results in terms of WER: 37.4%
overall, ranging 34%—63% per severity group.

Small datasets are another hindrance to aphasic ASR,
though recent innovations enabled ASRs to be trained
on far less data. Similar to recent work in natu-
ral language processing (Mikolov et al., 2013 [Rad-
ford and Narasimhan, 2018; [Devlin et al., 2019), the
self-supervised methods behind wav2vec 2.0 (Baevski!
et al., 2020) use large amounts of unlabeled speech
data, pretraining a model to predict its own abstract
feature representations using a contrastive loss func-
tion (van den Oord et al., 2018). These pretrained
models are intended to be fitted with new output lay-
ers and fine-tuned for specific tasks like ASR, and are
readily available for download. Using this technique,
Baevski et al. (2020) showed how a viable ASR could
be trained with as little as 10 minutes labeled data,
highlighting its utility for low-resource languages. Ap-
plying this to aphasic ASR, [Torre et al. (2021)) achieved
a22.3-55.5% WER on English AphasiaBank, depend-
ing on severity. Remarkably, the authors also trained an
ASR using only 1 hour of Spanish AphasiaBank, with
a42.8 WER and a character error rate (CER) of 24.8%.

2.3 Automating Aphasia Assessment Tasks

As discussed earlier (§I), the development of a ro-
bust ASR system for aphasic speech has the poten-
tial to transform clinical practice for the assessment
of aphasia. Currently, our group has been developing
novel methods to automatically classify clinically rele-
vant types of paraphasias in confrontation picture nam-
ing tests (Fergadiotis et al., 2016; |Cowan et al., 2021}
Casilio et al., 2019; McKinney-Bock and Bedrick,
2019). Our algorithms determine the lexical status of
erroneous productions using a word frequency model,
use grapheme-to-phoneme analysis to assess phonolog-
ical similarity between productions and target words,
and employ a neural network to measure semantic sim-
ilarity. Then, information across these three dimen-
sions is combined automatically to classify paraphasias
in clinically relevant categories. However, automated
analyses of this sort still require that language samples
be manually transcribed which represents a major bar-
rier to their translation into practice. Without the ability
to automatically produce accurate phonemic transcripts
an ASR system, human experts must perform this la-
borious and error-prone task. For a naming test with
dozens or hundreds of items, this is rarely feasible in a
clinical setting. As a first step in evaluating the poten-
tial of an ASR system for aphasic speech to be used in
such a pipeline, Task B in this challenge is focused on

! Although they report PER, AphasiaBank’s transcripts are
(mostly) orthographic. |Supplementary materialscontained
transcripts tokenized as words (not phonemes) and a pronun-
ciation dictionary, suggesting their ASR targeted a fixed vo-
cabulary instead of free-form phoneme prediction.


https://librivox.org/
https://librivox.org/
http://www-personal.umich.edu/~ducle/code.html

a simpler task: assess the ability of the ASR system to
generate phonemic transcriptions not for error classifi-
cation but rather to determine response accuracy.

3 Preparing the PSST Corpus

Funding for the dataset preparation and baseline model
development activities, and for the shared task itself,
originated from the National Institutes of Health’s Of-
fice of Data Science Strategy, under the “Adminis-
trative Supplements to Support Collaborations to Im-
prove the AI/ML-Readiness of NIH-Supported Data”
program (NOT-OD-21-094). The goal of this funding
mechanism was to support efforts to promote and fa-
cilitate the use of existing biomedical datasets by the
AI/ML community.

The PSST Corpus is comprised of short speech seg-
ments from English AphasiaBank (MacWhinney et al.,
2011), specifically responses to the Boston Naming
Test Short Form (BNT-SF) (Mack et al., 1992) and
Verb Naming Test (VNT) (Thompson, 2012) portions
of the protocol. Participants included 107 individuals
with aphasia who completed both BNT-SF and VNT
as retrieved from English AphasiaBank on Septem-
ber 1, 2021. We defined aphasia as an Aphasia Quo-
tient (AQ) of <93.8 on the Western Aphasia Battery -
Revised (Kertesz, 2007) or <11 on the BNT-SFE. Par-
ticipants were right-handed, predominantly English-
speaking, with a history of a single, left-hemispheric
stroke, adequate hearing and vision, and no significant
comorbid neurological or psychiatric illness. Individu-
als with concomitant motor speech disorders were also
included. The extracted segments averaged 3.9 seconds
in length, include 3291 utterances from 107 speakers,
and total approximately 3.5 hours of audio.

Ground truth phonemic transcriptions for the BNT-SF
and VNT were derived from two previous studies and
adapted for the purposes of this ASR project. Naming
attempts were originally identified and phonemically
transcribed by trained research assistants and disagree-
ments resolved by a licensed speech-language pathol-
ogist. Transcriptions were entered and time-aligned to
audiovisual recordings using ELAN (Max Planck Insti-
tute for Psycholingustics, 2022). Using the time align-
ments, we automatically extracted audio from the full
AphasiaBank videos, applying filters for loudness and
clarity (see Appendix [B.2). A trained research assis-
tant and licensed speech-language pathologist updated
transcriptions to reflect the present study’s conventions,
then the transcripts were normalized and mapped to
ARPAbet for ASR purposes (see Appendix [B.3). Cor-
rectness labels were assigned to all responses by a li-
censed speech-language pathologist, followed by an
audit and resolution process by consensus. We defined
correctness as the presence of the target word anywhere
within the segmented response. Pronunciation varia-
tions of the target word that could be explained by an
individual’s dialectal pattern and/or typical patterns of
coarticulation were scored as correct.
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Train Validation Test
Hours 2.59 (73%) 0.36 (10%) 0.59 (17%)
Segments 2173 (70%) 325 (10%) 624 (20%)
Speakers 74 (69%) 11 (10%) 22 (21%)

Table 1: Quantities of data for each split of the PSST
dataset in terms of hours of audio, number of segments,
and number of speakers.

Data splits targeted train, valid, and test proportions
of 70%, 10%, and 20% respectively, with quantities
measured as hours of audio. As shown in Table
the final proportions were approximately 73%, 10%,
and 17%. Each speaker was included in no more
than one of the splits. To stratify the splits by over-
all severity of aphasia, we categorized each participant
as mild (75 < AQ), moderate (50 < AQ < 75), se-
vere (25 < AQ < 50), or very severe (AQ < 25) per
the criteria from the WAB (Kertesz, 2007). To find the
optimal split, 1000 candidate configurations were com-
puted, then we chose the configuration with the lowest
average KL divergence for duration of audio across the
three splits (with a value of about 0.007). Table[I|shows
the hours of audio, number of segments, and number of
speakers in each split.

4 Task A: ASR for Aphasic Speech

Task A asked participants to automatically transcribe
the phonemes in each segment of recorded audio. We
provided ARPAbet transcripts for the train and valida-
tion splits described in §3] We provided code to com-
pute FER and PER for these splits, and we made avail-
able our baseline model’s source code and pretrained
weights. Shortly before the deadline, we released the
audio from the test split with the transcripts withheld.
Challengers submitted the transcripts their models pro-
duced for the test set, and we used the same scripts to
compute final metrics. We received entries from two
challengers (Yuan et al., 2022; |Moé€l et al., 2022)), who
submitted transcripts for 7 models apiece.

4.1 Evaluation

Task A was evaluated in terms of PER and FER. To
calculate PER, we computed the Levenshtein distance
(phoneme errors, i.e. the minimum insertions, dele-
tions, and replacements) between target and ASR tran-
scripts. PER is defined as this distance divided by the
total length (in phonemes) of the target transcripts.

Like PER, the FER was computed as the errors (in
terms of feature distance) divided by the expected
length (number of phonemes x 24 features). Our im-
plementation of feature distance is very similar to one
found in panphon (Mortensen et al., 2016), specifi-
cally the feature_edit_distance () algorithm.
As discussed in Appendix phonological features
specified as present/absent ([+feature] / [—feature])


https://github.com/PSST-Challenge/pssteval
https://github.com/PSST-Challenge/pssteval
https://github.com/PSST-Challenge/psstbaseline
https://github.com/PSST-Challenge/psstbaseline
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Figure 1: An error analysis generated by the
pssteval-viewer tool we provided with the chal-
lenge materials. The tool shows the PSST tran-
script (top) aligned to an ASR’s output, the FER and
PER for the utterance, and then the feature analy-
sis used to compute the FER. This example is utter-
ance id ACWT01a-VNT20-shove as transcribed by
Moéll/O’Regan et al.’s MO4 model.

or unspecified ([Ofeature]). If two phonemes differed
and the feature was specified in both, that feature er-
ror had a cost of 1; if the feature was unspecified
in one phoneme, it cost ¥2. Insertions and deletions
were treated as if each feature of missing phoneme
was unspecified. The values for each feature align
with |Hayes (2009), with the exception of diphthongs.
While English diphthongs are usually represented by
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two letters, they behave more like a single sound (Lade-
foged and Johnson, 2015); further, each diphthong
has only one ARPAbet token. Neither Hayes (2009)
nor panphon defines features for diphthongs, so we
synthesized these definitions, prompting some special
rules for feature error calculation. See Appendix [A]for
more details, including the full table of features.

4.2 Models

Baseline Model (PSST-A) For the PSST base-
line ASR model (PSST-A), we began with a pre-
trained wav2vec2.0 acoustic model downloaded from
fairseq (Ott et al., 2019), specifically the BASE model
described in Baevski et al. (2020). This model con-
tains 95m parameters pretrained on 960 hours from the
LibriSpeech dataset (Panayotov et al., 2015). We fit-
ted the model with an output layer corresponding to
the phoneme inventory of the PSST transcripts, then
fine-tuned the model targeting a connectionist tempo-
ral classification (CTC) loss. Details on the fine-tuning
process can be found in Appendix [C]

Yuan et al. (Y1-Y7) The approach taken by Yuan
et al. focused on data augmentation, exploring out-
side data sets prepared in a variety of ways. For the
challenge, they submitted 7 configurations for our sum-
mary, which we will call Y1 through Y7. Each model
used a wav2vec2.0 approach comparable to PSST-A,
but began with the LARGE variant, which uses 315 mil-
lion parameters, and is trained on 60,000 hours of unla-
beled audio from Librivox (from which LibriSpeech is
extracted). Y5 was trained only with PSST data, serv-
ing as a baseline for their augmentation experiments.

Y2 augmented PSST with 3.9 hours of TIMIT. Adher-
ing to convention, the 61 labels in TIMIT were col-
lapsed to 39 phonemes (Lopes and Perdigao, 2011aj
Lee and Hon, 1989), resulting in labels similar to
those provided for the PSST challenge, except /r/ was
merged with /d/, and /3/ was merged with /[/.

Y4, Y6, and Y7 augmented PSST with LibriSpeech
data in various quantities. To prepare LibriSpeech
for use with phonemic ASR, Yuan et al. automati-
cally generated pseudo-labels from the orthography us-
ing a grapheme-to-phoneme (G2P) model, which had a
phoneme inventory nearly aligned with the PSST cor-
pus, although like the TIMIT experiment, the flap sym-
bol /r/ was unused.

Y1 and Y3 augmented PSST with 47 hours of Aphasi-
abank, taking care to exclude the speakers assigned to
the PSST test set. To prepare the (mostly) orthographic
corpus for phonemic ASR, Yuan et al. used a technique
of iterative self-labeling. First, they produced a set of
phonemic labels using a model trained on only PSST
data. Then they trained a new model, augmenting
PSST with the AphasiaBank samples that exceeded an
experimentally determined confidence threshold. Con-
fidence scores were computed in two ways: (a) un-
weighted, using a standard CTC loss; and (b) weighted,



adjusting confidence with probabilities found during
the pseudo-labeling step. This process was repeated
until the model no longer improved. Y1 was un-
weighted with a 0.9 threshold, trimming 47.0 hours of
AphasiaBank to the best 33.3. Y3 was weighted, with
a 0.7 threshold, yielding 44.0 hours of AphasiaBank.

Moéll/O’Regan et al (MO1-MO7)
Moéll/O’Regan et al.  (2022) also explored data
augmentation strategies for their submissions to the
ASR challenge. We refer to their 7 configurations as
MOI1 through MO7. The authors used two off-the-
shelf wav2vec2.0 architectures: BASE, which has 95m
parameters, which was pretrained on 960 hours of
unlabeled audio; and the LS-960 variant of LARGE,
with 315m parameters, which was pretrained on the
same 960 hours as BASE. Of those we received,
only MO3 and MO7 used BASE, while the rest used
LARGE. For MOG6, they established an unaugmented
baseline with the LARGE architecture.

Much of Moéll/O’Regan et al. focused on expand-
ing PSST and the other datasets with audio perturba-
tion techniques. In MO2 and MOS5, they synthesized
new PSST data by adjusting the pitch of the audio
(while preserving time). In MO4, they synthesized new
PSST data by time-stretching the audio (while preserv-
ing pitch). For MOG6, they augmented PSST by adding
Gaussian noise to the signals.

In MO1, MO3, and MOS5, Moéll/O’Regan et al. aug-
mented PSST with TIMIT data. They chose to
omit utterances that conflicted with the PSST corpus’
phoneme inventory, resulting in only 1.1 hours of aug-
mentation data drawn from TIMIT’s train and test
splits. Noting an acoustic mismatch between the dry,
studio-quality recordings of TIMIT and the untreated
academic environments of the PSST recordings, the au-
thors experimented with artificial reverb on the TIMIT
data: using room impulse response (RIR) convolution,
they simulated random rooms by applying filters found
in online collections.

4.3 Results

Results for the Task A models are shown in Table 2
PSST-A showed an FER of 12.1% and a PER of
26.4%. Only two models failed to outperform these
metrics: Y6 and Y7, the models using 100 and 960
hours of LibriSpeech. MO1 through MO7 improved on
PSST-A. Their best-performing model in terms of FER
was MOI1, which augmented both PSST and TIMIT
data using RIR augmentation. MO2 (pitch-shift aug-
mentation) yielded their best PER at 25.1%. The
worst-performing models from Mogll/O’Regan et al.
were MO6 and MO7 (LARGE, with vs. without noise
augmentation) with an FER of 12% each, and a re-
spective PER of 25.9% and 26.1%. Y1 through Y5
were the five best-performing models. The stand-out
best was the unweighted pseudo-labeling configura-
tion of the AphasiaBank experiment at 9.9% FER and
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20.0% PER. Y2, augmented with TIMIT, was the next
best, at 10.3% FER / 21.1% PER. Y3, the weighted
AphasiaBank configuration, followed closely behind at
10.4% FER / 21.5% PER. Y5 (no augmentation) had an
FER of 11.3% and a PER of 22.3%, and Y4 (3.9 hours
of LibriSpeech) improved on this only slightly.

4.4 Discussion

Both challengers were primarily focused on augmen-
tation of the PSST dataset, a sensible approach con-
sidering the small size of the corpus. Each empha-
sized a different augmentation strategy: Yuan et al.
explored the effects of domain shift and data quanti-
ties, while Moé€ll/O’Regan et al. synthesized additional
data with audio perturbation techniques. For Yuan et
al., their best model showed a relative improvement of
9% FER / 10% PER against its unaugmented counter-
part Y5. The best model from Mogll/O’Regan et al.
showed a relative improvement of 5% FER / 3% PER
against its unaugmented counterpart M0O7.

Another difference between the two challengers’ sub-
missions was their respective choices of pretrained
model. The models from Yuan et al. were all pretrained
on 60,000 hours of unlabeled audio, while every model
from Moéll/O’Regan et al. pretrained on 960 hours of
unlabeled audio. Comparing each challenger’s unaug-
mented LARGE models (Y5 and MOG6), the 60,000-
hour model improved on the 960-hour model by a rela-
tive 9% FER / 14% PER. By comparison, model size
had minimal effect: MO6 improved on PSST-A by
<1% FER / 3% PER, having 315 million and 95 mil-
lion parameters, respectively.

Moéll/O’Regan et al. experimented with several dif-
ferent techniques, laying the foundation for future in-
vestigations. One interesting question the authors raise
is whether their pitch-shift techniques, which preserve
time, could be retaining acoustic markers of phonologi-
cal features more so than their other techniques. The ef-
fects of room acoustics could also be explored in more
depth: for example, what if RIR filter selection were
more intentional, factoring in room size, shape, and
construction material? Finally, Mo€ll/O’Regan et al.
were somewhat conservative with the balance of syn-
thetic data to unmodified PSST. With pitch perturba-
tion, 3-fold augmentation is known to be effective and
the recommended practice with last-generation ASR
toolkits (Ko et al., 2015). Also, several perturbation
techniques could be combined for numerous subtle
variations of synthetic data.

The Yuan et al. work also prompts fascinating ques-
tions. The paper’s narrative centers on the effects of
various quantities of in- and out-of-domain data. This
effect is clearest between the LibriSpeech-augmented
models: Y4 (using only 3.9 hours of LibriSpeech)
was fourth-best, whereas Y6 (100 hours) and Y7 (960
hours) were the overall worst. The authors hypothe-
size this is a consequence of domain mismatch. Indeed,
LibriSpeech is audibly different from the PSST corpus



Data (hours of audio) |

ASR |

Model Arch  Pretrain PSST TIMIT AphasiaBank Other FER PER
Y1 LARGE | 60,000 2.8 33.3V 9.9% 20.0%
Y2 LARGE 60,000 2.8 39 10.3% 21.1%
Y3 LARGE 60,000 2.8 44,0 10.4%  21.5%
Y4 LARGE 60,000 2.8 3.9 | 10.6% 222%
Y5 LARGE 60,000 2.8 109% 22.3%
MO1 LARGE 960 2.8 11" 11.3%  25.5%
MO2 LARGE 960 5.6° 11.4%  25.1%
MO3 BASE 960 2.8 11" 11.7%  26.3%
MO4 LARGE 960 5.6° 11.7%  25.4%
MO5 LARGE 960 567 117 11.9%  26.0%
MO6 LARGE 960 2.8 12.0%  25.9%
MO7 BASE 960 5.6™ 12.0%  26.1%
PSST-A BASE 960 2.8 121%  26.4%
Y6 LARGE 60,000 2.8 100 26.0%
Y7 LARGE 60,000 2.8 960~

L Librispeech, pseudo-labeled with G2P
U iteratively pseudo-labeled (unweighted)
W iteratively pseudo-labeled (weighted)

P with pitch-shifted variants
¢ with time-shifted variants
™ with Gaussian noise augmentation

" RIR reverb applied

Table 2: ASR results for Test set. Results are show in terms of feature error rate (FER), phoneme error rate (PER).

Values in gray did not improve on PSST-A.

in many ways: speaker demographics, recording con-
ditions, and factors concerning the clinical context of
PSST. In contrast to these “bottom-up” characteristics,
the authors also describe a “top-down” effect, pointing
out how a model like wav2vec2.0 tends to develop an
implicit language model (LM) As more out-of-domain
data is added, this implicit LM is biased toward out-of-
domain transcripts. They support this hypothesis with
a principal component analysis, illustrating how the
model’s contextualized representations visibly shift as
more out-of-domain data is added to the training data,
more so than the in-domain data from AphasiaBank.

These findings are compelling, though we’d like to
emphasize how a segment of speech can be tran-
scribed phonemically in many different ways and still
be correct, depending on its context. By ASR stan-
dards, TIMIT was transcribed using narrow conven-
tions—extremely narrow in the case of stop consonants
(e.g. /b/), which are subdivided as closures (e.g. BCL)
and releases (e.g. B) occurring in isolation or as a se-
quence (e.g. BCL B). In ASR systems, these closures
are conventionally relabeled as as silence. (Lopes and.
Perdigao, 2011a) As aresult, the word “maybe" is alter-
nately realized with the stop (whenM EY BCL B IY
becomes /meéi bi/) or without (when M EY BCL IY
becomes /méi i/). In PSST conventions, however, both
of these pronunciations are /méibi/. Considering how
open-ended transcription can be, we note how Yuan
et al. used different techniques to generate pseudo-
labels: G2P for Librispeech versus iterative pseudo-
labeling for AphasiaBank. The G2P model was trained
on a word-to-pronunciation dictionary, and the tran-
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scripts are a function of orthography, uninfluenced by
the recordings. On the other hand, the AphasiaBank
labels were generated by a model trained on the PSST
labels themselves, and the transcripts are a function of
the audio recordings. Unlike their AphasiaBank model,
their G2P model has never been exposed to contextu-
ally important phenomena like the mispronunciations,
neologisms, inter- and intra-word variation, etc. found
in the PSST transcripts. So while the LibriSpeech data
is out-of-domain, perhaps its pseudo-labels are better
characterized out-of-range, with the important distinc-
tion that the latter could have a remedy. We could learn
more if the LibriSpeech experiments were repeated us-
ing the iterative pseudo-labeling methods.

5 Task B: Correctness

In Task B, we asked participants to perform a sim-
ple example of a downstream task, namely, determin-
ing whether a recording contained a target word pro-
nounced correctly. Since the BNT-SF and VNT are
confrontation naming tests, they are intended to elicit
specific nouns and verbs (respectively) in response.
For the challenge, we used the same audio samples
as Task A, with true/false labels provided by our an-
notators (see §3). We also provided a set of accept-
able phoneme sequences for each stimulus, including
all variations in conjugation, dialect, etc. that we found
during data preparation. This allowed us to focus on
the question of how to identify and preserve sufficient
acoustic-phonetic information from a speech signal to
improve on a downstream classification task. Like Task
A, we provided scripts for the classification metrics for



the train and valid splits, and we provided the source
code for the baseline model.

We received a submission from one challenger (Tran,
2022) for Task B. Our baseline model relies on ASR
transcripts from Task A, so we also experimented with
the Task A transcripts submitted by challengers.

5.1 Evaluation

Task B was evaluated in terms of F1-score, precision,
recall, and accuracy. To compute each metric, we tal-
lied the true positives (1 P), true negatives (1T'IV), false
positives (F'P), and false negatives (F'N). Precision
was computed as Tri%’ recall as = PTJ:; ~» and ac-
curacy as %. F1 is the harmonic mean
of precision and recall, or %.

5.2 Models

Baseline Model (PSST-B) The baseline model for
Task B relied on a simple string matching algorithm.
We began with the transcripts produced by PSST-A, re-
moving any silence and noise labels. If a transcript con-
tained any of the pre-determined “correct” phoneme se-
quences, uninterrupted and in its entirety, the sample
was marked true; otherwise, it was marked false.

Challenge Submission: Tran (2022) The approach
in [Tran (2022) explored acoustic feature engineering
as a supplement to the methods used in the baseline
model. Motivated by previous work identifying acous-
tic markers of mild cognitive impairment (MCI) (Roark
et al., 2011)), Tran conducted a broad search for rel-
evant acoustic features using speech analysis toolKits.
These features were aggregated using statistical func-
tions such as mean, minimum, and maximum. Sim-
ilarly, aggregates of ASR confidence measurements
were also explored in the feature set. Features were
selected using a T-test, focusing on those deemed sta-
tistically significant: mean/standard deviation of loud-
ness, mean/standard deviation of spectral flux, and
mean/max of the ASR confidence measures. The fea-
tures were concatenated with the PSST-B predictions
into fixed-length vectors, then used to train support vec-
tor machine (SVM) and logistic regression classifiers.
Hyperparameters were optimized with grid search, and
both linear and non-linear SVM kernels were explored.

The Effects of ASR on Task B Although neither
Yuan et al. (2022) nor Moél et al. (2022) applied
their work to Task B, we used their transcripts to ob-
serve how each ASR model affected the Correctness
task. For this experiment, we followed the same meth-
ods as PSST-B, swapping out the transcripts for those
produced by challengers’ models. We also computed
metrics using the gold standard transcripts to identify
this model’s ceiling with hypothetically “perfect” ASR.

5.3 Results

The baseline model had an accuracy of 0.903, preci-
sion of 0.929, recall of 0.858, and F1 of 0.892. The
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techniques used in|Tran (2022)) yielded the same labels
as the baseline model, so all metrics were the same.

In the experiment using transcripts from Task A, we
found mixed results, which we report in Table E} The
ceiling for “perfect" ASR showed a 0.984 F1, 0.968
precision, 1.000 recall, and 0.985 accuracy. The base-
line transcripts had a 0.892 F1, 0.929 precision, 0.858
recall, and 0.903 accuracy. Y2 achieved the top F1 of
0.921, and the top accuracy of 0.985. All of Y1-Y5
improved on the four metrics with one exception: Y5
was below the baseline precision, while obtaining the
best recall of 0.914, and the second-best F1 (0.920) and
accuracy (0.926). Although Y1 achieved the stand-out
best FER and PER in Task A, its transcripts were less
effective for identifying correctness, having an F1 of
0.917 and an accuracy of 0.925. Similarly, the gains
MO1 through MO7 showed in Task A did not translate
to the classification task. Of these, MO7 had the best F1
at 0.888 and accuracy at 0.900. MO4 improved on the
baseline in terms of recall (0.865), but at the expense
of precision (0.910). MO6, MO3, and MOS5 improved
on precision (0.934, 0.931, and 0.930, respectively) at
the expense of recall (0.842, 0.842, and 0.832, respec-
tively). Y6 and Y7 also improved a bit on precision
(0.934 and 0.942, respectively) while taking a heavy
hit to recall (0.696 and 0.432, respectively).

5.4 Discussion

As Tran points out, the baseline established by PSST-B
was quite strong. Surprisingly, while 26% of the
phonemes produced by PSST-A were incorrect, less
than 10% of those transcripts were labeled incorrect
by PSST-A. When planning the challenge, we chose
to avoid more difficult (and more clinically informa-
tive) tasks, like those that require subtler judgements
phonological similarity judgements. In retrospect, we
may have designed Task B to be foo easy, leaving little
room to improve on the baseline.

Tran’s experiments showed negative results, produc-
ing labels identical to PSST-B. This suggests that
the acoustic features didn’t provide more information
than the PSST-B algorithm could glean from the tran-
scripts. The author also notes that without including the
PSST-B predictions as a feature, the performance of the
acoustic models was only slightly better than chance.
Further, Tran discusses the challenge of retaining valu-
able information while aggregating time sequences to
fixed-length vectors. To this, we note some problem
formulation differences between Task B and work like
Roark et al. (2011) and [Fraser et al. (2014). First, their
acoustic markers were found in narrative speech tasks,
consisting of several successive sentences, containing
more prosodic information than a confrontation nam-
ing test. Second, the Task B correctness labels describe
an event (a paraphasia) as opposed to a condition like
aphasia or MCI,; thus, the clinical dementia rating used
in the cited work is more analogous to the AQ index
included with the PSST data.



Transcripts F1 Precision Recall Accuracy FER PER
PSST-Gold 0.984 0.968  1.000 0.985 0% 0%
Y2 0.921 0.941  0.901 0.928 | 10.3% 21.1%
Y5 0.920 0.914 0.926 | 10.9% 22.3%
Y1 0.917 0.941 0.894 0.925 | 99% 20.0%
Y3 0.903 0.949 0.861 0914 | 104% 21.5%
Y4 0.899 0.930 0.871 0910 | 10.6% 22.2%
PSST-Baseline  0.892 0.929  0.858 0.903 | 12.1% 26.4%
MO7 12.0% 26.1%
MO4 0.865 11.7% 25.4%
MO6 0.934 12.0% 25.9%
MO1 0.858 11.3% 25.5%
MO3 0.931 11.7%  26.3%
MO2 11.4% 25.1%
MO5 0.930 11.9% 26.0%
Y6 0.934 26.0%
Y7 0.942

Table 3: Correctness results using the PSST-B model, using Test transcripts generated by Task A models Y1-Y7
and MO1-MO7. F1, precision, recall, and accuracy scores are shown, alongside the FER and PER shown in Task
A. The first row, PSST-Gold, used the gold standard transcripts. Values in gray did not improve on PSST-A.

In the experiment using transcripts from Task A, we
see how improvements to FER and PER do not nec-
essarily ripple out to the downstream task. FER and
PER consider the full transcript, so improvements out-
side the response boundaries have no effect on cor-
rectness. Even if improvements occurred within the
response boundary, so long as any errors remain, the
PSST-B algorithm will mark it as false. A correctness
algorithm that considered likelihoods for each token in
the sequence might better show a relationship to incre-
mental ASR improvements.

The perfect recall and imperfect precision of PSST-
Gold indicate that with ideal transcripts, 10 false pos-
itives account for all the errors. In these samples, the
correct sequence of phonemes were present, but the re-
sponse was incorrect for other reasons. For example,
the string /meilbaks/ (“mailbox") contains /meil/, it
is incorrect because it is a different word, and a noun
rather than a verb. Similarly, /klafiy/ contains the
/lefmy/ (“laughing”), but the production is a non-word.
This can be seen as a limitation of the algorithm with
no sensitivity to word and syllable boundaries. Unlike
PSST-Gold, the remaining transcripts had worse recall
than precision, suggesting they tended to miss correctly
pronounced words (false negatives) more so than they
smoothed out mispronunciations (false positives).

We reviewed PSST-B errors that were common across
the transcripts. In one instance, we provided the tran-
script /pufiy/ (“pushing") and labeled the response as
correct, whereas none of the ASR transcripts agreed. In
fact, 7 of 12 transcripts had /m/ as the initial consonant,
and upon listening to the sample post-hoc, we tend to
agree with the ASR. Another particular challenge per-
tains to matters of motor planning and articulation. One
example included a prolongation of the initial /m/ in the

word “mixing", i.e. /mi- miksiy/. During the prolon-
gation, the participant was also lowering the jaw with
lips closed, introducing more oral resonance than typ-
ical for /m/, and demonstrating involuntary pitch fluc-
tuations. This seemed to confuse all the ASR systems,
though predictably: 6 were transcribed as /piksiy/ and
5 as /bpiksiy/ In their raw form, our transcripts anno-
tated phenomena like phonological fragments and pro-
longations, but these annotations were removed during
pre-processing. Furthermore, none of our annotations
addressed deviations in pitch or resonance.

6 Conclusion

As we hoped, the PSST participants improved on our
baseline approach. The ASR metrics FER and PER
were improved by a relative 18% and 24%, respec-
tively. Those improvements alone improved the F1
of the Correctness task by a relative 3.3%. These
ideas warrant further experimentation, and we expect
progress will continue as a result of expanding the
PSST data and refining this work.

To this end, as a next step we will investigate which
linguistic and clinical characteristics pose the great-
est challenge across the ASR systems. Further, we
will assess how FER/PER relate to the performance
of downstream tasks; and, explore how different ap-
proaches to FER computation could improve its util-
ity. At the same, we intent to continue expanding the
PSST dataset using AphasiaBank data while also refin-
ing our evaluation methods. Given the opportunity to
hold another PSST challenge, we see ample opportu-
nity to raise the bar with the downstream tasks: intro-
ducing tasks like phonological and morphological sim-
ilarity assessment, or leaning in to the complexities as-
sociated with accents and dialect.
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Appendices

A More on Phonological Features and
Feature Error Rate (FER)

Phoneme error rate (PER) is the go-to evaluation met-
ric for phonemic ASR, derived from the edit distance
between the predicted and target phonemes. For PSST,
we explore a feature error rate (FER) as finer-grained
alternative to PER. Instead of the phonemic edit dis-
tance, the error in FER is a phonological feature dis-
tance (Mortensen et al., 2016; [Tao et al., 2006). In
short, each phoneme is represented by a quasi-binary
vector indicating the presence and absence of each fea-
ture described by the system, and these vectors can be
used to compute a measure akin to Euclidean distance.
Feature distance is then normalized by the sequence
length to determine the error rate, much like PER. In
other words, FER is a way of giving “partial credit” to
an ASR transcript when it produces phonemes which
are similar (but not exact) to the target transcript, defin-
ing similarity in terms of distinctive phonological fea-
tures.

Phonological features distill information about how
people distinguish the sounds of their language from
one another, while also grouping phonemes into natu-
ral classes (Chomsky and Halle, 1968)). For example,
the English words “bead” and “bid” both contain high
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https://www.scholars.northwestern.edu/en/publications/northwestern-assessment-of-verbs-and-sentences-navs
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ARPAbet | IPA | Example Word | Special diphthong features

EY /e/ | "bay" [-+high, +-tense]

ow 166/ | "beau" [-+high, +-tense]

oY /a1 | "boy" [-+high, -+front, +-back, +-round]
AW /as/ | "bough" [-+high, +-low, -+back, -+round]
AY /ai/ | "buy" [-+high, +-low, -+front]

Table 4: Diphthongs and their unique features used during computation of feature error rate (FER)

Cost Feature Changes
1 [-feature] < [+feature]
[-feature] <> [+feature]
0.75
[—+feature] < [+feature]
[-feature] < [Ofeature]
0.5 [-+feature] <« [+—feature]
[Ofeature] <+ [+feature]
[-feature] < [—+feature]
0.25 [—+feature] < [Ofeature]
’ [Ofeature] <+ [+feature]
[+—feature] <> [+feature]
[-feature] <> [-feature]
[—+feature] < [—+feature]
0 [Ofeature] <> [Ofeature]
[+—feature] < [+—feature]
[+feature] <> [+feature]

Table 5: Costs associated with each feature difference
during computation of feature error rate (FER)

front vowels. In the feature system proposed by (Hayes,
2009), high front vowels are a natural class primarily
described as [+syllabic, +high, +front]. In fact, the
two phonemes share all the same features, save for one
distinction: the /i/ in bead is [+tense], while the /1/
in “bid” is said to be lax, or [—tense], distinguished by
only that feature. Some phonemes do not specify a cer-
tain feature, for example, the tense/lax distinction only
applies to vowels, so /b/ and /d/ are both [Otense].

Distinctive features are thus used in phonological anal-
ysis to classify phonemes and describe their linguis-
tic behavior (e.g. allophonic variations or historical
sound changes), and they are empirically validated
for that purpose. Recently, however, phonological
features have found novel applications in computa-
tional linguistics, enhancing statistical models with in-
formation about phonemes’ features and feature dis-
tances (Mortensen et al., 2016).

For the PSST challenge, we use FER as an evaluation
metric for ASR. Previous research has used a varia-
tion of the concept as a metric for automatic phoneme
recognition (Halpern et al., 2022), but the practice is
not well established. Our motivation here is to gain
insight into what makes an ASR a better fit for our
tasks. During transcription, certain feature-adjacent
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phonemes can be quite difficult to distinguish (by an
ASR or a human). Yet in some contexts, feature-
adjacent phonemes like /t/ and /d/ are functionally
interchangeable (e.g. a sound change attributable to
dialect), whereas more distant phoneme errors would
invalidate an analysis.

Compared to PER, FER is much more difficult to com-
pute and understand, and all the more difficult for those
with no background in phonology. For this reason, we
put together the pssteval-viewer tool to illustrate
how FER was computed for each utterance, which we
shared with PSST challengers in |our evaluation toolkit.
An example feature analysis generated by the software
is shown in FigureI]

To build our table of feature values, we began with the
system specified by Hayes (2009). We excluded two
features which do not contrast in our ARPAbet tran-
script (nor English, generally): [constrictedglottis] and
[trill]. Diphthongs presented a conundrum: with no
single entry for diphthongs in the feature table, the two
components would be treated as two phonemes. In
other words, if a diphthong replaced a monophthong
(or vice versa), the distance would always include an
insertion or a deletion, and the feature error would
be greater than a full phoneme. To rectify this, we
treated diphthongs as individual phonemes (as they are
in ARPAbet), adding new entries in the feature table
for /e1/, 160/, 151/, /av/, and /al/ (the vowels in "bay",
"bow/beau"”, "boy", "bow/bough", and "buy", respec-
tively), and new feature values to capture their move-
ment. These all emphasize the first of their two compo-
nent vowels (Ladefoged and Johnson, 2015)), so when
a feature has the new value [+~ feature] (present to-
ward absent) we consider it between [+feature] and
[Ofeature], while [ feature] (absent toward present)
is between [Ofeature and [—feature]. The five diph-
thongs and their novel features are highlighted in Ta-
ble [4] All combinations of feature changes and their
costs are shown in Table 5] introduced two new sym-
bols to capture how a diphthong’s features moved be-
tween its components.

B More Details on Data Preparation
B.1 More on Data Preparation

Approximately one third of the total number of in-
cluded responses (n=3291) consisted of BNT-SF first
responses (n=1074), defined as single-word first com-
plete attempts according to the scoring guidelines of the


https://github.com/PSST-Challenge/pssteval

W) | o © © © © Oo|loc o] © © © © © © © oo o o|lo ot + oo+ I+ | o+ I+ 1]l o o o
Nq | o o ©o ©o © ol ©o|lc © ©o © © © ©o © o|lo o oo o I+ ol o | I+ + I o+ + + ,.T | +_ I+
oj | o o o ©o © o|oc ©o|c © © © © © © © o|lo © o|loc o+ | o|lo|+ + | I+ 4+ I +, + | +_
M | o o o o | o ol ©o ©o © © ©o ©o o oo o o o | I o] o | | | | | | + ,+ ,+ +
B |l o © o o + +|oc ojlc o © © o o © © olec o +|lo o+ + ||+ + + 4] +, I I +, +, | +_ +_ |
[esIop | | | | + + | | | | | | | | | | | | | + | | + + | | + + + +/+ + + + + +|+ + + +
Telaje] | | | | | | | | | | | | | | | | | | | | + | | | | | | | | | | | | | | | | | | |
jueptns | o o | Il o o+ +|o o | I+ + + + oo I o] | o o | o ©o ©o olo ©o ©o ©o ©o o|loc o o o
pamqQIIsp | o o | Il o o+ +|oc o + + | I+ + oo | o] | llo o +|+|o © © o|lc ©o 0o ©o © o|c © o o
nmwue | o o + + o o | o o + 4+ + + | Il ol + ol + +|o o | o ©o ©o ol ©o ©o ©o ©o o|loc ©o o o
[eUOI0D I o+ 4+ | + + | e+ + + + 4+ + o+ + + I I+ + | | | | | | | | | | | | | |
[eiuopolqe] I I I I | | | | + + | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
punox | | | | | | | | | | | | | | | | | | | | | | | + | | | | + + | | | + + ,AT | +_ | |
feqer | +  + | | | | | | + + | | | | | | | + | | | | | + | | | | + + | | | + + + | | | |
smo[3peaids | | | | | | | | | | | | | | | | + | | | | | | | | | | | | | | | | | | | | | | |
oA |+ 1+ T+ + 0+ ++ N+ + ]+ ]+ )+ )+ + + +
Jeseu | | | | | | | | | | | | | | | | | + + + | | | | | | | | | | | | | | | | | | | |
dey | | | | | | | | | | | | | | | | | | | | | + | | | | | | | | | | | | | | | | | |
JIqeR[IAS | | | | | | | | | | | | | | | I I | | | | | I I I ++ + + v+ + + + + +]+ + + +
wewrxodde | 11 1 1 0 L[ b+ | A+ A+ |+ +
jueiouos | | I I I I I | | I I I I | | | I M+ + v+ +|+ + 1+ + + + ++ + + + + +|+ + + +
juenuUpuod | | I I | I I | M+ + + + + 4+ + + +] | I M+ ++ + v+ + + + £+ + + + + ++ + + +
Psea2Ipake[op I I I I I M+ ++ + + + + + + + +|loc ©c oo o|o ©o ojlo|lo © © oo © © © © oo o o o
[eyueuosuod | + + + + + + | + +| + + + + + + + + | + + +]+ + I I I | | | | | | | | | | | | | | |
el T I (e Ll » @ © o 8N = w |8 /& 2~ <|—> B = m - = 3 2| w (B H o 8 B8 B ® =
pavayy | & @ e ox o)l F Ble > B F o ow § 8 E|= =z 2|\ K= < F| 058 BB B E QS8 5|2 E % F

Table 6: The 40 phonemes in this ASR system in ARPAbet and IPA, and their associated phonological fea-
tures. Features align with Hayes (2009), with the exception of diphthong handling, which are treated as individual

phonemes here (using special symbols —"and + ~to describe their movement).
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Split Mild Moderate Severe Very Severe

Train 0.85 (32.8%) 1.39  (53.4%) 0.33  (12.5%) 0.03  (1.0%)

Hours Validation 0.11 (31.5%) 0.20 (56.3%) 0.04 (12.1%) 0.00 (0.0%)
Test 0.17  (28.2%) 0.32  (55.0%) 0.08 (13.9%) 0.02 (2.6%)

Train 1073 (49.3%) 893  (41.0%) 187 (8.6%) 20 (0.9%)

Segments Validation 121  (37.2%) 170 (52.3%) 34 (10.4%) 0 (0.0%)
Test 262 (41.9%) 275  (44.0%) 67 (10.7%) 20 (3.2%)

Train 33 (44.5%) 32 (43.2%) 8 (10.8%) 1 (1.3%)

Speakers  Validation 4  (36.3%) 6 (54.5%) 1 (9.0%) 0 (0.0%)
Test 8 (36.3%) 10 (45.4%) 3 (13.6%) 1 (4.5%)

Table 7: Detailed breakdown of the data illustrating the attempt to balance aphasia severity across each split. The
balance is show for each of hours of audio, number of segments, and number of speakers.

IPA Example ARPAbet
/p/  “pat” P
/b/  “bat” B
Jt/ “ten” T
/d/  “den” D
/k/ “coat” K
/9/  “goat” G
/t/ “butter” (allophone of /t/, /d/) DX
/?/  “cotton” (allophone of /t/) (removed)
/ﬁ/ “church” CH
a5/ “judge 8
/t/ “fan” F
/v/ “yan” Y
/6/ “thin” (voiceless) TH
/8/ “then” (voiced) DH
/s/ “see” S
/z/ “200” 7
/f/ “shoe” SH
/3/ “occasion” ZH
/h/ “hat” HH
/n/ “nose” N
/n/ “sing” NG
/m/  “man” M

IPA Example ARPAbet
/w/  “win” W
il yes Y
/r/ “red” R
/1/ “late” L
/3/  “heard” (stressed) } R
/2/  “perhaps” (unstressed)

/i/ “she” IY
/1/ “fit” IH
Ju/ “boot” UW
v/ “wood” UH
Jer/  “state” EY
/e/ “red” EH
/66 “vote” oW
/31/  “boy” oY
/a/ “dawn” 20
/a/  “but” (stressed) } AH
/o/ “alone” (unstressed)

/a/ “not” AR
J®/  “cat” AE
Jai/  “kite” AY
jas/  “cow” AW

Table 8: A list of International Phonemic Alphabet (IPA) notations used by our laboratory and their ARPAbet

mappings for ASR, with examples.

PNT. For about a quarter of BNT-SF responses (n =
155), first complete attempts were segmented to also
contain surrounding connected speech when phonemic
boundaries between words were blurred. BNT-SF re-
sponses that overlapped with examiner speech as well
as responses labeled as non-naming attempts (e.g., de-
scriptions of the target, whispered responses, etc.) were
excluded.

Approximately two thirds of the response data con-
sisted of VNT first responses (n = 2217), defined as
any response from the moment following picture stimu-
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lus presentation and a first examiner prompt to the mo-
ment preceding a second examiner prompt and/or the
administration of the next picture stimulus. Nonver-
bal cues from the examiner, such as gestures indicating
the target verb, were treated as second prompts if they
occurred. Examiner speech that overlapped with a re-
sponse was excluded, and, if possible, exactly one seg-
ment of participant speech was retained per test item.



B.2 Audio Preprocessing

When we extracted audio-only segments from the full
TalkBank session videos, we applied pre-processing
steps using |ffmpegl To remove high-energy, low-
frequency noise, we used a high-pass filter, rolling off
the audio signal below 100Hz (at a rate of 12 dB per oc-
tave). Then, we applied adaptive limiting to the audio
in two phases. First, we used a applied a filter designed
to achieve broadcast-standard loudness normalization
(EBU R128), dynamically adjusting to an integrated
loudness of —23dB. Second, to remove large peaks (e.g.
when a microphone was bumped) we applied a look-
ahead limiter set to prevent the signal from exceeding
—6dB. Finally, we downsampled and downmixed to a
monaural 16KHz (discarding sounds over 8KHz, typi-
cal for ASR) and extracted each segment to individual
WAV files.

B.3 Transcription Procedures

Phonemic transcriptions were broad with conventions
originally developed by our laboratory for the purposes
of use with a computer algorithm. For this project, we
aimed to apply previously developed conventions in a
way that captured some degree of phonetic detail if and
when phonemic boundaries were crossed. To this end,
research assistants received training from a licensed
speech-language pathologist on some typical coartic-
ulation processes and dialectical patterns observed in
the participant sample, namely those that could be rep-
resented using broad phonemic notation.

B.4 Transcript Pre-Processing for ASR

For ASR purposes, the IPA transcripts were converted
to ARPAbet. The full mapping of IPA to ARPAbet
symbols is shown in Table[§] Similar to conventional
ASR preparation (Lopes and Perdigao, 2011b)), some
phonemes were combined or removed: /o/ and /a/ be-
came AH, /3/ and /2+/ became ER, and glottal stops (/?/)
were removed from the transcripts. We used a spe-
cial symbol SPN for instances where transcribers noted
unintelligible words or speech noises (e.g. laughing,
coughing).

C More on baseline model training

The model was fine-tuned for 12,000 total iterations
(401 epochs), linearly ramping up to a learning rate of
5 x 1075 over the first 4000 iterations. For the first
2000 iterations, we froze all but the newly-initialized
weights, priming only the output layer. For the fi-
nal model, we restored the model to the point when
it showed the minimum PER on the validation set, at
5964 iterations (200 epochs). We used a maximum
batch size of 6.4 million frames of audio (400 seconds).
Figure2]shows the progression of the model’s loss over
the course of training.
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Figure 2: CTC loss over number of updates for the
baseline model (at 30 updates per epoch). The red line
is loss computed for the train set, and the blue line is
loss computed for the test metric.
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