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Abstract 
Autism Spectrum Disorders (ASD) are a group of complex developmental conditions whose effects and severity show high 

intraindividual variability. However, one of the main symptoms shared along the spectrum is social interaction impairments that can be 

explored through acoustic analysis of speech production. In this paper, we compare 14 Italian-speaking children with ASD and 14 

typically developing peers. Accordingly, we extracted and selected the acoustic features related to prosody, quality of voice, loudness, 

and spectral distribution using the parameter set eGeMAPS provided by the openSMILE feature extraction toolkit. We implemented 

four supervised machine learning methods to evaluate the extraction performances. Our findings show that Decision Trees (DTs) and 

Support Vector Machines (SVMs) are the best-performing methods. The overall DT models reach a 100% recall on all the trials, meaning 

they correctly recognise autistic features. However, half of its models overfit, while SVMs are more consistent. One of the results of the 

work is the creation of a speech pipeline to extract Italian speech biomarkers typical of ASD by comparing our results with studies based 

on other languages. A better understanding of this topic can support clinicians in diagnosing the disorder. 
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1. Introduction 

The American Psychiatry Association defines Autism 
Spectrum Disorders (ASD) as a group of complex 
developmental conditions whose effects and severity are 
different in each person. However, some common 
symptoms have been found whose presence represents the 
criteria used during the diagnosis. According to the DSM-
5, one of them is the presence of impairments in social 
communication (Criterion A). Thus, the quality of language 
is an essential indicator during the diagnosis of ASD, both 
in comprehension and production. Even if these linguistic 
characteristics are present in a spectrum that showcases a 
wide variety, they still have something in common. Social 
interaction is mainly completed using different language 
skills. 
In the present study, we investigated the speech production 
of Italian-speaking children with ASD to understand if 
there are acoustic features that can be shared along the 
spectrum. Indeed, there are already many English 
contributions showing abnormalities of autistic speech at 
the prosodic level. Unfortunately, there are few studies on 
this promising field in Italian. To conduct this 
investigation, we performed an acoustic feature extraction 
and a supervised learning classification between the speech 
production of Italian-speaking children with ASD and their 
peers with typical neurodevelopment (TD).  

2. Prosody in ASD Speech  

The study of prosodic traits in people with autism is 
relatively new and, compared to other linguistics domains, 
still little explored (Diehl & Paul, 2013; Kiss et al., 2012; 
Tanaka et al., 2014; Van Santen et al., 2010). As a result, 
this research field was called by some experts the 
“Cinderella of speech” that remains "in the cellar, with few 
visitors" (Crystal, 2009; p. 257). Nevertheless, the research 
on the typical acoustic features in people with different 
neurodevelopmental disorders is promising. Through 
various methods, usually based on multimodal 
investigations (i.e., behavioural assessments, acoustic 
analysis, electrophysiological measures, brain imaging), it 

has been demonstrated that the speech of autistic people 

shows some anomalies from the prosodic point of view. 
Indeed, common variabilities along the spectrum have been 
recorded in the movements and the pitch types produced 
(Shriberg et al., 2001). This acoustic pattern is the speakers' 
attitude and emotional status medium.  
Based on these features, two main prosodic behaviours are 
commonly identified during the speech act: the pragmatic 
(or linguistic) and the affective functions (Anolli, 2002). 
The first represents the illocutive force, which is the act 
itself of talking by the speaker (see Searle & Vanderveken, 
1985). Moreover, it distinguishes the type of sentence 
produced, e.g., interrogative or affirmative. On the other 
hand, the second function represents the medium - 
sometimes unintended - of the emotional status felt by the 
speaker. Thus, people with alterations of these prosodic 
productions may exhibit impairments in elaborating the 
vocal chants and sentences showing their emotional status. 
Moreover, these impairments affect their comprehension of 
other people, causing difficulties in social interaction and 
communication (Olivati et al., 2017).  
From its first descriptions, the speech of people with autism 
has been defined as being monotonous, robotic, and pedant 
(Kanner, 1943). The patients present difficulties both in the 
production and perception skills. For instance, Kanner 
(1943; p. 228) wrote about one of the children he studied: 
"It made no difference whether one spoke to him in a 
friendly or a harsh way". Thus, the scholar who first 
defined autism gave an implicit focus on prosodic and 
affective traits in the speech production and comprehension 
of people with the disorder. However, the researchers 
ignored this part of Kanner's study in the decades that 
followed. Nevertheless, through prosody, we can detect the 
acoustic patterns that show the speaker's emotional status, 
one of the most visible symptoms in the atypical 
communication of people with ASD. Thus, during the last 
years, the research moved to the study of acoustic correlates 
while analysing these typical features of the disorder. 
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3. The Dataset 

The participants in the present study come from a pool of 
Italian-speaking children in a homogeneous geographical 
area from the region between Florence, Pistoia, and Prato. 
The corpus consists of audio recordings collected from two 
cohorts: children with ASD and their peers with typical 
neurodevelopment (TD). The data are balanced on the 
number of participants and their demographic 
characteristics. The children are 14 for each group with the 
same age (from 6 to 10 years) and sex (11 M, 3 F). Gender 
disparity is taken from the epidemiology of the disorder 
recorded by the DSM-5 (APA, 2013), i.e., four males every 
one female.  
The participants in the study were recruited from a previous 
project on discourse and storytelling in autism (Biancalani, 
2019), where the children were asked to tell a story from 
six pictures stimulating a semi-spontaneous speech during 
the interviews. The images illustrate a story about a 
birthday party and are easily interpretable by neurotypical 
children of different ages. The pictures come from the toy 
Shubi collection Storie da raccontare (in English, 'Story to 
tell'). The children from the ASD group were recruited 
from the speech and language therapy service of AUSL 
Toscana Centro and the Onlus foundation "Opera Santa 
Rita". The diagnosis was made by a neuropsychiatrist 
according to DSM-5 criteria. The data collection was 
carried out by a designed speech therapist in June 2019, 
after receiving the written consent of the caregivers of the 
children. The recordings were realised with a video camera 
placed on a tree-legged support. The setting was designed 
so that the child would feel comfortable. Therefore, the 
meeting was conducted in the room where they usually 
play. The interview started with activities generally done 
during the treatment session so the child would act in the 
most spontaneous way.  
It was necessary to conduct new data collection for the TD 
group. The recording was done for qualitative analysis in 
the previous study, and the audio quality was not good 
enough to realise an acoustic investigation. In particular, 
the background noise was so high that it was impossible to 
identify the child's voice automatically. It was attempted to 
denoise the recordings with the software Audacity, but this 
solution would have significantly changed the shape of the 
waveforms and their quality in general. The participants 
were chosen from the same geographical area and had the 
same demographic characteristics as those from the ASD 
group. Moreover, due to the COVID-19 pandemic, it was 
impossible to collect the data in situ, so the parents of each 
child did the recording using their phones. Even though we 
are aware that this might eschew our results, we consider 
that it will not have that significant impact because the 
storytelling task remained the same, and the quality of the 
recordings was high (i.e., there was no background noise). 

4. Extraction, Selection, and Classification 
of Acoustic Features 

In the present study, we decided to use the Munich open- 
Source Media Interpretation by Large feature-space 
Extraction (openSMILE) to extract the acoustic features. In 
the area of autistic vocalisation detection, this software has 
been used in previous studies, reaching satisfying results 
(Asgari & Shafran, 2018; Cho et al., 2019; Kim et al., 2017; 
Lee et al., 2013; Li et al., 2019; Marchi et al., 2015; 
Pokorny et al., 2017). After extracting the acoustic features, 

we selected the most statistically significant between the 
two groups of our dataset (ASD and TD). Then, we tested 
the features selection by implementing machine learning 
algorithms with a binary classification task. The role of 
training supervised learning methods is to classify them 
and show if they are significant in the speech production of 
people with ASD, according to the performance of each 
model. This model may evolve, through further studies, 
into a tool that helps the clinician determine whether Italian 
children have ASD at a young age. 

4.1 Methods 

We used openSMILE version 2.1, developed for the 
Interspeech challenge (Schuller et al., 2013). Among the 
feature sets currently available – i.e., GeMAPS (Geneva 
Minimalistic Standard Parameter Set), eGeMAPS (Eyben 
et al., 2015), and ComParE (Schuller et al., 2016) - we 
applied the second that was specifically ideated by its 
developers to become a tool used in paralinguistics and 
clinical speech analysis. 
Moreover, we chose this feature set over the other two 
proposed by openSMILE for several reasons. First, we 
decided against using ComParE, given that the size of the 
feature space (n = 6376) vastly outnumbers the sample size 
of our dataset. Furthermore, this would have caused our 
machine learning models to overfit, which is highly 
undesirable. On the other hand, we chose eGeMAPS over 
GeMAPS, given that the former extracts features based on 
their relation to various psychological changes in voice 
production (Eyben et al., 2015), which has proven useful in 
previous studies (Julião et al., 2020; Lee et al., 2020; 
Marchi et al., 2015; Memari et al., 2020; Pokorny et al., 
2017; Ringeval et al., 2016; Rybner et al., 2022; Schmitt et 
al., 2016). The acoustic features extracted by eGeMAPS 
are related to the frequency, energy, amplitude, and 
distribution on the spectrum. These are presented in Table 
1 - 3 with a short explanation extracted from Eyben et al. 
(2015; pp. 4-5). 
 
 

Features Explanation 

Pitch 
Logarithmic F0 on a semitone 

frequency scale, starting at 27.5 Hz  

Jiitter 
Deviations in individual consecutive 

F0  

Formants 1, 2, 3 

frequencies and 

bandwidth 

The centre frequency and the 

bandwidth of the first, second, and 

third formant  

Table 1: Frequency related features 

 

 

Features Explanation 

Harminics-to-Noise 

Ratio 

Relation of energy in harmonic 

components to energy in noise-like 

components  

Loudness 
Estimate of perceived signal intensity 

from an auditory spectrum  

Shimmer 
Difference of the peak amplitudes of 

consecutive F0 cycles  

Table 2: Energy and amplitude related features 
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Features Explanation 

Alpha Ratio  
Ratio of the summed energy from 50–

1000 Hz and 1–5 kHz  

Formants 1, 2, 3 

with relative 

energies 

Ratio of the energy of the spectral 

harmonic peak at the first, second, third 

formant's centre frequency to the energy 

of the spectral peak at F0  

Hammarberg 

Index 

Ratio of the strongest energy peak in the 

0–2 kHz region to the strongest peak in 

the 2–5 kHz region 

Harmonic 

difference  

H1–H2  

Ratio of energy of the first F0 harmonic 

(H1) to the energy of the second F0 

harmonic (H2)  

Harmonic 

difference 

H1–A3  

Ratio of energy of the first F0 harmonic 

(H1) to the energy of the highest 

harmonic in the third formant range (A3)  

MFCC 1-4 Mel-Frequency Cepstral Coefficients 1-4 

Spectral flux 
Difference of the spectra of two 

consecutive frames  

Spectral Slope  

0–500Hz and 

500–1500 Hz 

Linear regression slope of the logarithmic 

power spectrum within the two given 

bands  

Table 3: Spectral (balance) related features 

 

Once the acoustic features presented in Tables 1 - 3 were 
extracted, we selected the most statistically significant ones 
by implementing a non-parametrical statistical test, namely 
Mann-Whitney U-test (Mann & Whitney, 1947; Wilcoxon, 
1945). Thus, with the Mann-Whitney U-test, we tested 
whether the features had similar values between the two 
groups and selected the ones presenting the more 
significant distance. In the final discussion, we introduced 
the features selected by comparing them with those 
obtained by other studies. In doing so, we considered the 
different methods applied to the data collection and the 
analysis itself. 
Having irrelevant features can decrease the accuracy of 
machine learning models, especially when dealing with 
linear models such as support vector machines. On the 
other hand, the feature selection operated on clinical 
recorded data can lead to high performances of the 
classifier, which are not reproducible on new data 
considering all the speech production. This aspect produces 
a bias in the results obtained by the classifier when used to 
create a tool able to distinguish the speech productions of 
the disease. For instance, while performing the same task 
on people with Alzheimer Dementia’s speech, Luz et al. 
(2020) report that the performance evaluation metrics drop 
consistently if applied to the same dataset without 
performing the feature selection. However, this work aims 
to test the feature extraction effectiveness and not 
automatically classify ASD from new speech data. This 
goal could be reached by future studies conducted on larger 
datasets.  
We pre-processed the data obtained through feature 
selection to prepare it for the supervised learning methods. 
Then we normalised the data and implemented the K-fold 
Stratified cross-validation to train the models (k = 3). Thus, 
we split the training set into k parts, denominated folds. 
Next, we train a model that uses that fold as a validation set 

and the rest as its training set for each fold. This helps avoid 
overfitting the noise in the data. We split 80% for the train 
and 20% for the test sets. Given the small number of 
samples on our corpus (ASD = 14, TD = 14, total features 
= 16), the data processed on the sets were 22 by the train 
and six by the test sets.  
The machine learning methods implemented are all 
supervised: Decision Trees (DTs), K-Nearest Neighbours 
(KNNs), Random Forests (RFs), and Support Vector 
Machines (SVMs). First, we evaluate the performances of 
each model trained using different metrics: accuracy, 
recall, precision, F1-score, and Area under the Curve 
(AUC). Then, we chose the best ten models obtained by 
running each supervised method and comparing them with 
the others. Finally, we selected the best performing model 
of each method.  
All the computational steps are done by implementing 
different algorithms in Python (Chollet, 2021; Downey et 
al., 2012; Van Rossum & Drake, 2011) with the aid of the 
Jupyter Notebook (Kluyver et al., 2016). Moreover, all the 
machine learning methods performed are implemented 
using the Scikit-learn module for the Python programming 
language (Pedregosa et al., 2011). The code used is 
publicly available on GitHub: https://github.com/federica-
bcc/speech-autism. 

4.2 Results  

We extracted 88 parameters concerning the frequency, 
energy, and spectral distribution. Table 4 reports the 
parameters selected with their respective functionals in 
parenthesis (μ = mean, σ = standard deviation), the values 
obtained from both the groups with the number of outliers 
in parenthesis if found. The last column indicates the 
significance levels through the p-value (p).  
The best models of each supervised method reach high 
accuracy, with the highest being Decision Tree, Random 
Forest, and Support Vector Machine (accuracy = 83%), 
while the lowest KNN (accuracy = 67%). The AUC 
metric's highest values are reached by DT and SVM (AUC 
= 88%), while the KNN and the RF have lower 
performances (AUC = 75%). Tables 5 and 6 report the 
results obtained by the best model of each classifier on 
these metrics and the others (recall, precision, and F1-
score), both on the train and the test sets, respectively.  
On the other hand, Table 7 reports the mean of the 
evaluation metrics obtained by all the models for each 
method giving a clearer view of their overall behaviour on 
the classification task. 

4.3 Discussion 

In the present study, we analysed the speech production of 
Italian speaking children with ASD. Our corpus comprises 
28 audio recording files divided into two groups: 14 
children with ASD and 14 controls. First, we implemented 
the acoustic feature extraction using eGeMAPS provided 
by the openSMILE toolkit. Next, we extracted 88 
parameters for each audio file and selected the most 
statistically significant between the two groups. Finally, we 
implemented four supervised learning algorithms to test the 
validity of the feature selection.  
In the following sections, we discuss the features obtained 
with the feature selection (Section 4.3.1) and the results 
from the classification task (Section 4.4.2). 

https://github.com/federica-bcc/speech-autism
https://github.com/federica-bcc/speech-autism
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4.3.1 Typical Acoustic Features of ASD Speech 

To discuss the features selected, we divided them into 
thematic groups according to their linguistic qualities: 
frequency-related parameters (pitch and second formant), 
voice quality (shimmer, jitter, and Harmonics-to-Noise 
Ratio), loudness, and spectrum-related parameters (spectral 
flux and slope). 

Frequency-related parameters. The pitch is 
one of the main features of prosodic analysis. In general, 
there are opposite findings in the literature regarding the 
mean values of the pitch. The present study found higher 
values in this functional, but the difference between the two 
groups is not statistically significant. However, the 
increasing pitch could suggest chasing away the idea that 
the speech of people with ASD is robotic, monotonous and 
without melodic variation, as reported in the past literature 
(Kissine & Geelhand, 2019; Nayak et al., 2019; Olivati et 
al., 2017).  
We found interesting results on the standard deviation of 
the pitch falling slope. Moreover, even if not statistically 
significant, the same pattern is observed in the rising slope. 
These results confirm the high variation in the general 
prosody production, specifically on the intonation 
contours. Sharda et al. (2010) related these pitch excursions 
to their range and showed similarities to the one observed 
during "motherese" speech postulating a delayed 
developmental trajectory of speech. Nevertheless, even if 
interesting, Bonneh et al. (2011) disproved these results 
and showed that this trend does not always hold.  
Another explanation can be found in some interesting 
results on impairments controlling the cortical pitch. The 
most relevant finding on these assumptions is related to 
auditory processing in autism (Boddaert et al., 2004; 
Rosenhall et al., 1999). The research in this field has 
increased in the past few years, mainly thanks to neuro-
imaging techniques applied to experiments through a 
multimodal optic study.  

Feature ASD TD  p-value 

Pitch falling slope (σ) 168.81 ± 61.29 (0) 137.27 ± 130.12 (2) 0.0409* 

F2 Frequency (σ) 0.17 ± 0.013 (3) 0.15 ± 0.017 (0) 0.0030** 

F2 bandwidth (σ) 0.33 ± 0.038 (0) 0.38 ± 0.075 (1) 0.0326* 

Jitter (μ) 0.036 ± 0.008 0.024 ± 0.011 0.0094** 

Jitter (σ) 1.69 ± 0.21 (2) 1.88 ± 0.26 (1) 0.0094** 

Shimmer (μ) 1.23 ± 0.067 1.04+ 0.14 0.0016** 

Shimmer (σ) 0.46 ± 0.02 (1) 0.66 ± 0.16 (0) 0.0010*** 

Harmonics-to-Noise Ratio (μ) 5.04 ± 1.14 7.88 ± 2.10 0.0012** 

Harmonics-to-Noise Ratio (σ) 1.03 ± 0.29 0.64 ± 0.28 0.0016** 

Loudness (μ) 1.16 ± 0.44 0.82 ± 0.30 0.0508 

Loudness rising slope (σ) 7.87 ± 2.25 0.04 ± 0.02 0.0409* 

Loudness (Percentile 20.0) 0.59 ± 0.21 0.32 ± 0.18 0.0035** 

Spectral Flux (μ) 0.72 ± 0.38 0.42 ± 0.24 0.0366* 

Spectral Flux voiced segments (μ) 0.86 ± 0.43 0.51± 0.26 0.0409* 

Slope unvoiced segments, 0-500 Hz (μ) 0.056 ± 0.02 0.04 ± 0.02 0.0456* 

Slope unvoiced segments, 500-1500 Hz (μ) -0.0096 ± 0.0022 (0) -0.0027 ± 0.0071 (1) 0.0026** 

Table 4: Values of the acoustic features with statistical significance between the ASD and TD groups.   
Results are expressed as means ± standard deviations (n. outliers). Asterisks indicate when the group-related difference is 

significant under the Mann-Whitney U-test: * p < 0.05; ** p < 0.01, *** p < 0.001. 

Methods Acc. Rec. Prec. F1-sc. AUC 

DT 82 92 100 96 96 

KNN 77 83 77 80 77 

RF 77 67 89 67 78 

SVM 73 83 71 77 72 

Table 5: Values of the evaluation metrics obtained on the train 

set by the best models 

Methods Acc. Rec. Prec. F1-sc. AUC 

DT 83 100 96 80 88 

KNN 67 100 50 67 75 

RF 83 50 100 67 75 

SVM 83 100 67 80 88 

Table 6: Values of the evaluation metrics obtained on the test set 

by the best models 

Methods Acc. Rec. Prec. F1-sc. AUC 

DT 
68.2 

(16.40) 

100 

(0) 

54.5 

(13.50) 

69.5 

(11.46) 

76.3 

(12.92) 

KNN 
58.5 

(12.02) 

75 

(26.35) 

42 

(10.05) 

52.1 

(11.83) 

59.8 

(12.66) 

RF 
70.1 

(10.33) 

65 

(24.15) 

64 

(25.03) 

59.2 

(8.48) 

68.5 

(6.85) 

SVM 
79.8 

(6.75) 

95 

(15.81) 

63.6 

(7.17) 

77.4 

(5.48) 

84.9 

(5.44) 

Table 7: Means and (sd) of the evaluation metrics obtained on 

the test set by running the models ten times 
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Moreover, the extreme variation in the pitch values shows 
the difficulties of people with autism to perceive and, 
consequently, produce prosody in the same way as their 
peers (Olivati et al., 2017). This can lead to many 
difficulties in social interaction and communication 
because of the lack of others' speech intention 
comprehension than the production itself (Bonneh et al., 
2011). Moreover, on the correlation between production 
and perception, many studies conducted on the 
comprehension of the emotions communicated by the 
interlocutor show that children with ASD have less 
capacity than their peers. The same trend is reflected in 
their speech, especially in using different intonations to 
transmit each emotion (Chiew et al., 2017; Hubbard et al., 
2017; Schelinski & Kriegstein., 2019). 
Finally, another problem described in the literature is the 
influence of external factors on the recording and the 
inhomogeneity in extracting the correlations. First, the 
feature related to the formants, including the fundamental 
frequency, is sensitive to the speaker's age, gender, and 
height (Bone et al., 2014). Second, as reported in McCann 
and Peppe (2003), it would be expected that these 
descriptors for prosodic abnormalities should appear in 
many studies. However, the findings do not show coherent 
discussions because the evaluation measures are not well 
defined. 
For these reasons, in future studies, it will be interesting to 
investigate both the correlation of voice features to the 
personal characteristics of the speakers (age, gender, and 
height) and compare all the results with other studies that 
used the same metrics. 

Voice quality. The voice quality is measured as 
the difficulty in controlling the vocal fold vibrations, 
transforming the production into hoarseness, breathiness, 
and creaky voice. These irregularities can be quantified 
through the analysis of some features that "reflect 
mathematical properties of the sound wave" (Robin et al., 
2020; p. 102), such as the jitter for the pitch, the shimmer 
for the intensity and the Harmonics-to-Noise Ratio (HNR) 
for the description of the periodic and aperiodic acoustic 
propagation (Tsanas et al., 2011). The present study found 
interesting results on all these parameters, confirming the 
observations drawn by other investigations.  
Jitter and shimmer are related: the first measures 
periodicity in the speech signal, while the second the 
difference from a cycle to the next one. As done in other 
studies, these values were calculated using the local method 
by evaluating the pitch period and magnitude once per each 
span of the period (Boersma, 2001; Bone et al., 2012). 
However, they are also related to another aspect: they are 
valuable parameters to measure in a speech pathology 
analysis because the voice with language impairment is 
likely to have higher values than a healthy one (Styler, 
2021).  
In the present study, two populations are compared with the 
assumption that one of them (ASD) shows impairments in 
vocal production. The results we obtained from the jitter 
and the shimmer confirm this hypothesis. Indeed, the 
means are higher in the speech of ASD, with statistically 
significant differences described by the p-values obtained 
by the Mann-Whitney U-test (0.0094 for jitter and 0.0016 
for shimmer). However, the results are the opposite for the 
standard deviations. The findings suggest that these 

acoustic features vary consistently less in children with 
autism but have higher values on average. 
This trend has also been observed in previous studies. For 
instance, in Kissine & Geelhand (2019), the authors noted 
a highly statistically significant difference between these 
two parameters, with a higher rate in the production of ASD 
(jitter p < 0.001; shimmer p = 0.001). Moreover, their 
sample was composed by adults (mean age: about 28 years 
old) while, in the present study, the participants were 
children. Hence, future studies might explore if this trend 
is typical of autism throughout life, meaning a turning point 
in the early diagnosis of the disease. Indeed, the analysis of 
these correlations, combined with the pitch, intensity, and 
pause count, supports the hypothesis of assessing the 
speech modulation in ASD through studying the measure 
of dynamic-intonation variability (Bone et al., 2015).  
Moreover, the jitter and the shimmer show the noise 
present in the speech, and their values can be sensitive to 
its presence in the recording. For this reason, it is essential 
to analyse also the HNR that usually detects the friction in 
the vocal tract, attributed to hoarse, breathy, or laryngeal 
pathologies when it decreases significantly (Styler, 2021).  
In Bone et al. (2014), the mean of the HNR is shown to be 
strictly related to the jitter: when this latter increases, the 
other decreases. In the present study, we found this trend 
with significant results both on the means (jitter: p = 
0.0094**, HNR: p = 0.0012**) and on the standard 
deviations (jitter: p = 0.0094**, HNR: p = 0.0016**) that 
follows the opposite growth for both the mean and the 
standard deviation. 
The negative correlation between jitter and HNR is 
observed in many studies concerning the analysis of 
breathless, hoarseness and roughness voices, where they 
are also correlated to an increase in the cepstral values 
(Halberstam, 2004; Hillenbrand et al., 1994). McAllister et 
al. (1998) correlated in their studies the jitter to the breathy, 
hoarse, nasal speech and the shimmer to the breathiness, 
but no correlation with the cepstral values was found in this 
type of speech. In the same way, the present study did not 
find statistically significant results on these latter features. 
Bone et al. (2014) reported the same trend that we obtained. 
Therefore, we agree with the authors that it is necessary to 
conduct more analysis regarding voice quality to confirm 
this trend and to be able to use it during the diagnosis (Bone 
et al., 2014: 1173). 

The loudness. The loudness is defined as the 
energy intensity produced by a sound wave. We found a 
statistically significant difference on the 20th percentile (p 
= 0.0035), in the standard deviation (p = 0.0409), and in the 
general mean (p = 0.0508). Even if these functionals 
measure different distribution aspects, they all present the 
same trend, showing higher values for the ASD group. 
These results are confirmed in Bone et al. (2012), where the 
role of intensity in the perception of abnormal volume is 
underlined with the increasing rate of atypicality. 
Moreover, these findings suggest that ASD intonation 
might not be as monotonous as described in other studies 
since a higher variation influences the perceived 
expressivity in the intensity contours. Thus, loudness could 
measure the dynamic intonation of autistic speech 
production (Bone et al., 2015), especially in tasks where 
affective prosody is investigated (Hubbard et al., 2017). 
However, many researchers report the problem of having 
opposite results on intensity in the literature of reference. 
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For instance, in Mohanta et al. (2020; Mohanta & Mittal, 
2022), the authors reported higher values in ASD (Quigley 
et al., 2016; Filipe et al., 2014) but also lower (Scharfstein 
et al., 2011). Furthermore, in addition to a trend of papers 
that present lower intensity in autistic speech (Chevallier et 
al., 2011; Ochi et al., 2019), there is also a consistent 
number of papers that did not find statistically significant 
results at all (Diehl & Paul, 2012; 2013; Filipe et al., 2014; 
Grossman et al., 2010). Moreover, in many studies, the 
authors decided not to study the intensity levels to avoid the 
risk of obtaining unclear results (Bisson et al., 2014; 
Dahlgren et al., 2018).  
This difference in the results could be caused by the most 
reported problems: the recording environment and the 
microphone's position. The first cause reflects a common 
problem while doing a clinical speech collection and 
analysis since it is crucial to do so in a comfortable space 
for the patient. For the microphone, it would be necessary 
that all the participants wear it simultaneously from their 
mouths to ensure that all the variations are due to the actual 
speech production. 
For these reasons, we decided not to consider the results 
obtained as relevant for the present. However, further 
studies could solve these impediments by rethinking the 
data collection process based on these observations. 

Spectral-related parameters. In the present 
study, we found two spectral-related parameters with 
statistically significant results: the means of the spectral 
flux and the one from the slope of all the segments (voiced 
and unvoiced). Regarding the spectral flux, we found a 
statistically significant difference between both groups 
under all features extracted: voiced and unvoiced segments 
and the general mean that depends on them. Unfortunately, 
we did not find many literature studies for these features in 
the same context. Therefore, we hypothesised that these 
results show a trend typical of autistic speech. For example, 
Haider et al. (2019) report that jitter, shimmer, and spectral 
flux are valuable features to measure speech instability. 
Furthermore, using a speech sample from patients with 
dementia, the authors demonstrated that these features 
make the difference in higher accuracy levels between 
different classifiers. The same observation was done by 
Bonnet et al. (2011) regarding the spectral characteristics 
and the pitch values. However, we did not find any other 
relevant studies to confirm the importance of spectral 
features to detect ASD, but we found in Pokorny et al. 
(2017) the same trends as the present study. They also used 
eGeMAPS to extract the acoustic features and found results 
shared with ours. Indeed, the ten most significant features 
between ASD and TD groups are slope in the 0-500 Hz 
range of unvoiced segments and mean of the length of these 
and voiced segments. 
Furthermore, Volkmar (2017) posits the difficulty in 
registering the voice volumes visible on the spectrum 
because of the trend in autistic speech of having a small 
number of voice volumes that are usually louder than the 
typical speech. This trend may reflect the impairments in 
indicating areas of emphasis and higher values in some 
parameters, such as the spectral slope and flux. 
Further studies can clarify these results with more focused 
research on the spectral-related parameters and show 
whether the differences between the unvoiced and voiced 
segments are significant in the early detection of the 
disorder. 

4.3.2 Classification of Speech Samples through 
Machine Learning Algorithms 

The previous sections explained the methods and the 
results obtained by applying supervised machine learning 
methods to the feature selection applied to the dataset. The 
final aim of these implementations is to test whether these 
acoustic features are typical in the speech production of 
Italian-speaking children with ASD. Good results in the 
performances of the classifiers would confirm this 
assumption. Moreover, testing the effectiveness of the 
extraction represents a general evaluation of the feature set 
used (eGeMAPS) since it was proposed as a standard for 
clinical purposes in acoustic analysis (Eyben et al., 2015). 
The best DT, RF, and SVM models reach a high accuracy 
value (83%), meaning that the feature selection 
implemented obtained good results on the classifiers. 
Moreover, the DT, KNN, and SVM reach an optimal value 
of recall (100%) that indicates the recognition as true of all 
the acoustic features in the ASD speech.  
However, by comparing the metrics obtained by the four 
best models implemented, we can exclude KNN because it 
has a poor performance overall, presenting overfitting 
between the train and the test sets. 
Concerning RF, it had a decent performance without 
overfitting, and it is the model that reaches the highest level 
of precision (100%). Furthermore, it has the same values 
on accuracy as DT and SVM. However, these consistently 
outclassed RF for the other metrics, especially for the recall 
(50%).  
Between the DTs and the SVMs models, if we only look at 
Table 3, the first can be selected as the best classifier on 
this dataset. Moreover, it is the only one reaching a recall 
of 100% on the test set of all the models trained (Table 4). 
However, if we compare the results of all the models 
obtained by the k-folds average on the test set, it likely 
overfits more than RF and SVM. Half of the ten best 
models of all the ones trained for DT are good in the 
classification task, but the others tend to decrease their 
performances drastically from the train to the test sets. 
On the other hand, SVM reached high performances on 
almost all the evaluation metrics of the models trained. 
(Accuracy = 83% in eight models, Recall = 100%, 
Precision = 67% in nine models, F1-score = 80% in eight 
models, AUC = 88% in seven models out of ten).  
In the literature, we found the same trend in the 
implementation of supervised classifiers on the features 
extracted by eGeMAPS (Asgari & Shafran, 2018; Lee et 
al., 2020; Li et al., 2019; Pokorny et al., 2017; Rybner et 
al., 2022; Schmitt et al., 2016). Shahin et al. (2019) used 
the same SVM model and described it as the most 
performant compared to GeMAPS, the previous features 
set. The linear kernel on SVM was also used in Li et al. 
(2019), and the authors aimed to reach high performances 
since this supervised method is the best to use when dealing 
with small datasets. 

5. Conclusion 

The present work analysed the speech production of Italian 
speaking children with Autism Spectrum Disorders (ASD) 
compared with their peers with typical neurodevelopment 
(TD). Unfortunately, there are no other similar studies on 
Italian compared with other languages to the best of our 
knowledge.  
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The main aim of this study was to determine whether the 
features reflected in both the qualitative and quantitative 
literature for English and other languages are also relevant 
for autistic production in Italian. Therefore, we performed 
an acoustic analysis on a specific dataset and implemented 
different types of supervised machine learning methods.  
Our findings show that in the speech of Italian children with 
ASD, some typical acoustic features can be extracted and 
analysed as previously done in other languages. 
Furthermore, this task can be done using the extended 
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) 
by considering the small sizes of the dataset used. 
However, further studies need to consider a larger 
collection of data and compare the performance of different 
feature subsets. In this way, it would be possible to create 
a standard set of typical acoustic features for children with 
ASD. The next step will be the ideation of a tool from a 
classifier able to distinguish the typical productions of the 
disorder from the not typical ones. 
Further studies can analyse pitch and intensity features by 
paying attention to the recording process to satisfy all the 
requirements. However, due to the necessity of maintaining 
some environmental comforts for the patients in a clinical 
condition, we assume it is important to rethink the 
recording process to satisfy these requirements and collect 
audio data. Moreover, as pointed out by De La Fuente et al. 
(2020), the studies should use the same feature set to 
conduct the feature extraction to have the possibility to 
better compare the results between different languages. 
To conclude, most of the problems found in this work 
concern the quality of recordings and the dataset size. 
However, the results obtained on the features extraction 
and classification are promising for developing a tool that 
can help the clinician diagnose the disorders at a young age. 
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