
Proceedings of the 29th International Conference on Computational Linguistic, pages 71–84
October 12–17, 2022.

71

Rule Based Event Extraction for Artificial Social Intelligence

Remo Nitschke∗, Yuwei Wang∗, Chen Chen∗, Adarsh Pyarelal∗, Rebecca Sharp†
∗University of Arizona, Tucson, Arizona, USA

†Lex Machina, Tucson, Arizona, USA
{nitschke, wangyw, chencc33, adarsh}@arizona.edu

Abstract

Natural language (as opposed to structured
communication modes such as Morse code)
is by far the most common mode of communi-
cation between humans, and can thus provide
significant insight into both individual mental
states and interpersonal dynamics.

As part of DARPA’s Artificial Social Intelli-
gence for Successful Teams (ASIST) program,
we are developing an AI agent team member
that constructs and maintains models of their
human teammates and provides appropriate
task-relevant advice to improve team processes
and mission performance. One of the key com-
ponents of this agent is a module that uses
a rule-based approach to extract task-relevant
events from natural language utterances in real
time, and publish them for consumption by
downstream components.

In this case study, we evaluate the performance
of our rule-based event extraction system on
a recently conducted ASIST experiment con-
sisting of a simulated urban search and rescue
mission in Minecraft. We compare the perfor-
mance of our approach with that of a zero-shot
neural classifier, and find that our approach out-
performs the classifier for all event types, even
when the classifier is used in an oracle setting
where it knows how many events should be
extracted from each utterance.

1 Introduction

Humans communicate with each other using both
explicit (e.g., written and spoken natural language)
and implicit (e.g., tone of voice, body language)
modalities. While we posit that an artificially in-
telligent (AI) agent needs to handle both of these
modalities to serve as an effective teammate on
a hybrid human-machine team, in this paper, we
focus on the former.

To that end, here we present a case study de-
scribing our approach for extracting events relevant
to team coordination (e.g., instructions, requests,

knowledge-sharing statements about the locations
of people and objects, etc.) in real-time from nat-
ural language dialog. This was carried out in the
context of DARPA’s Artificial Social Intelligence
for Successful Teams (ASIST) program,1 a 4.5 year
program aimed at developing technologies for im-
buing artificial agents with social intelligence, i.e.,
the ability to construct and maintain models of their
human teammates in order to provide more effec-
tive assistance. The program is structured around
five large-scale experiments. One of the primary
goals of these experiments is to evaluate the AI
agents developed in the program on their ability to
successfully predict human behavior and improve
team processes. In order to do this, the agents need
to understand (and perhaps contribute to) the dialog
that takes place between their teammates.

This case study focuses on the third of these
five experiments (ASIST Study 3), in which teams
consisting of three humans and an AI advisor must
work together to rescue as many victims as possible
within a limited time. The mission takes place in
a collapsed office building simulated in Minecraft.
The human players participate remotely, commu-
nicating with each other using voice chat.2 The
goal of our event extraction component is to detect
specific team coordination-related events, and relay
them to AI agents, who then update their under-
standing of the state of the team members and the
mission. The event extraction component is embed-
ded into a larger architecture, which is described in
our preregistration document (Pyarelal, 2022, 5).

Critically, the actual design of these missions is
subject to change with little notice. There is no
training data for supervised approaches, and the
specificity of the domain means that many open-
domain approaches are unsuitable. For these rea-

1https://www.darpa.mil/program/
artificial-social-intelligence-for-successful-teams

2For further details on the experimental design, see Huang
et al. (2022a).

https://www.darpa.mil/program/artificial-social-intelligence-for-successful-teams
https://www.darpa.mil/program/artificial-social-intelligence-for-successful-teams

72

sons (described further in § 2) we employ a rule-
based approach for our event extraction component.
This allows us to rapidly pivot and adapt to changes
in requirements, as well as encode details of the
specific domain.

In this setting, this work provides these key con-
tributions:

1. Case study comparison of a rule-based and a
zero-shot approach to team coordination event
extraction in a (semi) real-world scenario. We
describe each approach and discuss the advan-
tages and drawbacks of each. We also show
that, at least in this setting with these con-
straints, the rule-based system outperforms
the zero-shot system and is more flexible, with
richer representations.

2. Evaluation dataset annotated for twenty com-
munication events. This data can be used to
evaluate other approaches to the same task,
as well as serving as an example of what to
do (and not do) when designing an annotation
task for event extraction.3

2 Motivation for Rule-Based Approach

While most current academic research focuses on
machine learning (ML) based approaches to in-
formation extraction (Ahmad et al., 2021; Du and
Cardie, 2020a; Nguyen et al., 2016a; Tozzo et al.,
2018; Chiticariu et al., 2013), here we use a rule-
based approach that was developed in response to
the specific constraints of the task and the ASIST
program.

1. Rapid adaptation. The experimental setup of
ASIST is subject to change at each experiment.
Thus, this is a dynamic domain where entities,
events, and relations are likely to change dra-
matically. Hence we need a system that can
quickly and reliably adapt to such changes.
Further, it would be near-impossible to anno-
tate data and train or fine-tune a neural agent
on the new vocabulary of a study prior to its
actual execution. By using rules, we can sim-
ply add, modify, or remove rules as needed.
In this way, adaption is straightforward and
endlessly repeatable.

3Due to some issues we found with our annotations de-
scribed in § 5.1, we will release our annotated data set in its
original form and in its corrected version.

2. Structured events. In ASIST, communica-
tive events that shed light on individual cog-
nitive states and team processes are of par-
ticular interest for downstream components.
These events generally have a complex struc-
ture with one or more arguments. Our rule-
based system allows an unlimited number of
arguments for events and allows events to be-
come arguments of other events. This leads to
highly nested, but still interpretable structures.
While complex structures are certainly possi-
ble with ML approaches, they are not what
is supported by zero-shot approaches and we
simply do not have annotated datasets of the
necessary size to train such a model.

3. Transparency. A rule-based approach allows
our system’s decisions to be immediately in-
spectable, which helps with maintainability.
The transparency of rules also makes it easier
for us to inject domain knowledge into the
system.4 ML based approaches can provide
attention weights, but these are not necessar-
ily an interpretation of why the system made
the prediction it did (Jain and Wallace, 2019),
and regardless, they are not straightforwardly
actionable.

3 Related Work

Rule-based approaches to event extraction (EE)
have a long tradition in previous work (e.g., Ap-
pelt and Onyshkevych, 1998; Cunningham et al.,
2002; Levy and Andrew, 2006; Hunter et al., 2008;
Valenzuela-Escárcega et al., 2018; Sharp et al.,
2019). These rules were written over a variety
of language forms, from surface to syntactic or se-
mantic structures. Here we use rules that combine
surface and syntactic forms (Valenzuela-Escárcega
et al., 2015), to allow for richer representations
while also mitigating the effect of parsing errors
resulting from imperfect transcriptions from the
automated speech recognition system.

That said, much of the recent literature is on
machine learning approaches to EE (Nguyen et al.,
2016b; Liu et al., 2018; Sha et al., 2018; Wadden
et al., 2019; Du and Cardie, 2020b; Nguyen and
Nguyen, 2019; Xiang and Wang, 2019, inter alia).

4For example, due to the nature of the mission, we know
that when players interact with unnamed entities, those entities
can only be victims. So a statement such as “I will go get the
guy in A3”, must be about saving a victim. We can easily bake
this knowledge into our rules.

73

Much of this work, however, relies on supervision,
a luxury we do not have in this setting.

With the rise of large pretrained neural models,
there are now several approaches to common nat-
ural language processing tasks that do not train
or fine-tune a model, but instead use prompting
to glean desired information from the knowledge
already contained in the model (e.g., Wei et al.,
2021; Liu et al., 2021; Min et al., 2021). This cat-
egory of approach is desirable in scenarios such
as ours, where annotated data is unavailable and
would be difficult to produce at scale. For this
reason, we compare our rule-based approach to a
zero-shot approach based on prompting. In § 7, we
show that for our scenario, the rule-based approach
performed better and was able to produce richer
representations.

4 Approach

Our rule-based EE system uses the Odin
(Valenzuela-Escárcega et al., 2016) event extrac-
tion framework, which consists of an expressive,
declarative rule language and a runtime system for
applying the rules. More specifically, we have an
Odin rule grammar that extracts two broad types of
events from natural language: (i) simple events that
do not have arguments,5 and (ii) complex events,
that can take other events as arguments.

Each event is associated with a unique span of
text and is assigned a label by the rule that extracts
it. The event labels we are using are organized into
a hierarchical ontology. If a rule assigns a label
to an event from this ontology, the parents of that
label in the ontology are also assigned as labels for
that event.6

Our system currently contains 420 active rules.
These map to a total of 238 event labels, including
both parent labels as well as the labels for the events
we intentionally target.7 For example, if our system
detects a event label for a specific room on the map
(example: “A4”), it will output that specific event
label and all its parent labels like so: “Concept
> EventLike > Location > Infrastructure > Room
> A4”.8 This allows us to look at outputs at any

5Simple events are mostly entities, but they can also be
actions or events without arguments. For this reason we prefer
to call them events, as opposed to entities.

6See § 4.1 for details.
7Due to the hierarchical nature of the ontology, some event

labels are never exported by a rule directly, they exist only as
parents for grouping. These parent event labels can still serve
as arguments of other events.

8Note that we do not use the term Event in a strict way,

level of granularity and define event arguments at
any level of granularity. That is, we can define an
event that only requires an “A4” label as a possible
argument, or else we can define an event that takes
a “Location” event label as a possible argument.

Odin’s support for nested patterns allows the
user to implement recursive passes on the data, as
well as specifying at which pass the system should
match against which specific rules. For our pur-
poses, we use this to first look for simple events
only, and then on later passes we look for com-
plex events. The passes are recursive because prior
extractions are part of the input for later passes.
For example, a “Room” event that was extracted
in pass 3 can be an argument of a “Search” event
in pass 6, which can in turn be an argument of an
“Instruction” event in pass 12. Figure 1 shows a
visual representation of a sample utterance and the
events extracted from it.

The code, rules, and documentation for our ap-
proach are publicly available on our github reposi-
tory.9

4.1 The Label Ontology and Nested Events
Our event labels we are using are organized in a
hierarchical ontology. We present a sample of this
ontology in the appendix, page 13. This allows us
to access labels at different levels of granularity.
For example, in this domain there are different sub-
types of victim entities – thus, we have different
rules and labels for each sub-type. All sub-types of
the victim label are hierarchically organized within
a general Victim label. When we write event rules
that need to take a Victim-type label as an argu-
ment (for example, the Save event), we can simply
specify the higher ranking general Victim label as a
possible argument, which will automatically target
all subordinated labels as well. If we need to spec-
ify an event that only targets a very specific kind
of victim, then that is equally possible. The nested
ontology allows us to generalize over events while
still keeping as much granularity as we want.

Our system does not distinguish between enti-
ties and events; it treats every label as an event.
Events take other events as arguments (if so spec-
ified), leading to nested event structures. This al-
lows us to generate complex and informative label

locations are not events in a classic or true sense, but as in
our implementation they can possibly have “arguments” (i.e.,
relative positions, etc.), we consider them EventLike.

9Please note that v4.1.5 is the version that used for this
paper. This version can be found here: https://github.
com/clulab/tomcat-text/tree/v4.1.5

https://github.com/clulab/tomcat-text/tree/v4.1.5
https://github.com/clulab/tomcat-text/tree/v4.1.5

74

structures. In Figure 1, there is a DeliberatePlan
label that takes a MoveTo label as a topic argument.
The MoveTo label itself takes a Deictic label as a
target argument. In the exported JSON, the Delib-
eratePlan label will contain this entire hierarchical
structure and all superordinate labels. We present
a full JSON output for the above example in the
appendix, page 12.

Neural event extraction often uses a named entity
recognition (NER) model to find all entities that can
serve as arguments for events. While we consider
all labels as “events" for practical purposes, we do
have classes of labels that fall under “entities" in the
ontology. However, for the actual implementation,
they operate the same way as “events" do in our
system. Since our events can take other events as
arguments (and are not limited to entities), we can
generate more informative relationships between
events, and are not limited to entities as possible
arguments.

4.2 Rule Writing for Dynamic Domains

The experimental setup of ASIST changes with
each new experiment. These changes can be small,
such as new types of player interactions, or they
can entail changing the entire base task that play-
ers perform itself. While we know ahead of time
that changes will happen, we can never completely
predict how players will communicate under the
changed environment. This has lead us to adopt a
2-stage style of rule writing:

1. Predictive Rule Writing: In this stage we
know what the domain will be, but we do
not have any actual data yet. We write rules
that aim to predict how players will talk about
certain events.

2. Subject Data Informed Rule Writing: Once
we receive pilot data, we evaluate our pre-
dictive rules on that data and make changes
to them accordingly to prepare a improved,
frozen version of our system that is deployed
for the actual data collection.

This approach has helped us to manage rapid
adaption, while retaining a high standard of results.
For an example of one of our rules please refer
to the Example Rule with Commentary in the ap-
pendix.

5 Data

In order to quantitatively evaluate our approach and
highlight shortcomings, we annotated an evaluation
dataset10 of in-mission dialog transcriptions for
several key team coordination-related events. The
dynamic nature of the experiments in ASIST means
that annotations for ASIST Study 3 cannot be used
as training data for ASIST Study 4 and ASIST
Study 5. For this reason we (a) only annotated
enough for evaluating our approaches (rather than
training), and (b) only annotated for key events,
which were more likely to remain central, even as
the experimental paradigm shifts.

Our annotated data is drawn from live mission
dialog and constitutes a subset of the ASIST study
3 dataset (Huang et al., 2022b). The dialog is tran-
scribed in real-time using the Google Cloud Speech
automatic speech recognition (ASR) system. We
do not manually correct the transcription errors, as
we are interested in exploring what can be achieved
by our EE system in a realistic, live scenario. Due
to the nature of its origin, the utterances are often
messy and grammatically incorrect. Further, they
contain filler phrases, repetitions, and interruptions.
For example:

okay okay yeah so many patients I need
picked up was marker with the SOS

As mentioned above, we chose a set of 20 event
labels to evaluate (see appendix for detailed expla-
nations), consisting of labels we considered most
important or interesting to us in the context of the
ASIST program, and thus more likely to stay rele-
vant. Specifically, we selected:

• ‘Superset’ events that account for multiple
types of events. For example, a “Plan” event
subsumes different kinds of utterances that are
indicative of planning activity (see appendix
for details).

• Events highly specific to our use case, such as
“RescueInteractions”.11

• Events where we were unsure of the specific
label’s performance (recall that the primary
purpose of the data is to evaluate the validity
of our approach).

10The dataset is publicly available at https://osf.io/
6hr8t/.

11This event type subsumes different actions that players
can do with/to victims.

https://osf.io/6hr8t/
https://osf.io/6hr8t/

75

Figure 1: Visualization of extractions produced by our rule-based system. Note that some events are simple events
without arguments, while others are complex, such as the “Agree” and “ Sight” events respecitvely. Additionally,
events can nest, as with the “DeliberatePlan” event, which takes the “MoveTo” event as an argument. Finally, note
that the utterances that serve as input are often not grammatically well-formed.

Of our 20 labels, nine are simple events (entities)
and eleven represent complex events.

We tasked annotators with annotating 3686 ut-
terances of game dialog for the labels in our set.
Specifically, we asked that for each event, they (a)
mark the span of all arguments, and (b) label the
event as a whole. We did not ask them to indicate
the labels of arguments themselves.

Concurrently, we also annotated a subset of the
same data internally for precision alone12. This
precision-based evaluation was done to gain more
fine-grained insight into the arguments selected by
our event labels.

5.1 Annotation Issues and Lessons Learned

We provided a manual for our two annotators with
descriptions of each event type and some typical
examples of how they show up in the natural lan-
guage utterances. In an initial 90-minute training
session, we discussed each event and walked anno-
tators through some examples. Subsequently, we
let them annotate a test set which we used to cal-
culate inter-annotator agreement (Cohen’s kappa =
0.7451).

After annotations were complete, it was evi-
dent that our system performed significantly worse
when evaluated against the annotated set than it had
in internal evaluations conducted for ASIST Study
1 and ASIST Study 2. We quickly realized that the
annotators had slightly different conceptualizations
of our events than we thought or intended. As a re-
sult, they were essentially annotating for a different
task than the one we originally planned.

This was caused by a few mistakes on our part.
We underestimated the degree to which the annota-
tors would need to be intimately familiar with the
domain. Their relative unfamiliarity with the do-
main caused them to miss instances of events that
they would otherwise have identified. Another is-
sue we observed was that annotators only annotated

12This involved running our system on the data and manu-
ally annotating the output and its argument structure as either
correct or incorrect.

certain action-related events if it could be inferred
that the player actually performed that action. For
example, compare the following utterances:

1. I am going to A3

2. We should go to A3 next

Annotators tended to give the first utterance a
“Movement” label, but not the second. However, in
the context of ASIST, we want to apply a “Move-
ment” label to both, as we would like our AI agent
to be able to better predict future actions, not sim-
ply identify current and past ones.

In order to address this issue, we manually cor-
rected all instances of disagreement between our
system and the annotators. After removing same-
utterance duplicates, we had 3920 annotated labels.
Of those, there were 2817 disagreements with our
system.13 After manual corrections, we found 1303
disagreements remaining.14 We would like to re-
mark that we did not make any changes of our
codebase during this process.

This method of correction is not ideal, as it risks
instilling bias. If only disagreements are examined,
then we could incorrectly bake in false negatives
that our system and the annotators both missed.
The same is potentially true for false positives from
both (though due to the general nature of the is-
sues, this was less of a concern). To check on this
clear risk for bias, we subsampled 20 instances of
agreement between our annotators and our system
for each of our 20 event labels15 and checked those
samples for any inaccuracies. We found that in
our set of 20*20 decisions, only two were faulty
(one “Precedence” and one “Instruction”). Finally,
we also checked 50 utterances where neither an-
notators nor our system had assigned any event
labels. We found that in 50 utterances, there were

13These were either cases where our system assigned a label
and the annotators did not, or the inverse case.

14This means that annotators were correct in their disagree-
ment a little under 50% of the time.

15Two event labels had fewer than 20 instances of agree-
ment: “Search” and “RescueInteractions”.

76

again only two instances where both annotators
and our system had missed a “CriticalVictim” label.
No other issues were found. Given this, we use
the corrected annotations to evaluate both the zero-
shot baseline as well as the rule-based system. We
found that the corrected annotations improved the
performance of both our system and the zero-shot
baseline.

As a takeaway, we recommend creating internal
test annotations to compare against annotator work
at the beginning of the annotation process. By do-
ing a mix of qualitative comparison and calculating
inter-annotator agreement between the internal an-
notations and annotator work, this kind of situation
can be avoided.

6 Evaluation

We evaluate our rule-based approach at two differ-
ent levels of granularity: coarse and fine-grained.
For the former, we compare the performance of our
approach to that of a zero-shot classifier (see § 6.1).

For the coarse-grained evaluation, we evaluated
whether the correct labels were assigned to utter-
ances, without checking for argument structure or
spans. A given utterance may contain multiple
events with the same label.16 For simplicity in this
evaluation, and to streamline comparison with the
zero-shot approach, here we evaluate extractions
on a presence-only basis. That is, if the annotator
assigned one “Victim” label to an utterance, and
our EE system assigned two “Victim” labels to the
same utterance, we consider this correct for the
purposes of evaluation.

For the fine-grained evaluation, we annotated a
subset of our data for the precision of the argument
structure of our outputs. We only consider outputs
that we had already annotated as correct. If all their
arguments match for the correct event, we consider
the extraction as a true positive.17

During our evaluation process, we considered
the code-base “frozen". We did not make any ad-
justments to our system based on insights from the
annotation or evaluation process until the evalua-
tion was complete and all data was gathered. In

16For example, a player might use the term “victim” multi-
ple times in a single utterance.

17An implementation detail is that our system assigns a
“GenericAction” label to events that it does not recognize.
These event labels will only be exported by the system if
they become an argument of a later event. When creating the
dataset, if the arguments contained “GenericAction” events,
we did not consider the event for annotation.

contrast, we continually improved the zero-shot
baseline approach during the evaluation process.

6.1 Zero-Shot Classification Baseline

For our zero-shot baseline we leverage the bart-
large-mnli18 checkpoint provided by Meta on Hug-
gingface (Wolf et al., 2020). This zero-shot text
classifier can take a label set and text as input and
will return probability scores for the labels passed.

The model is based on a textual entailment
framework which can work without annotated data
of seen labels (Yin et al., 2019), an approach that
has been adopted by previous work (such as Ye
et al., 2020; Sainz and Rigau, 2021; Sun et al.,
2021).

To recast our EE task as text classification, we
provided the utterance as the text to be classified
and the event labels as the classes. The labels pro-
vided were slightly adjusted to make them more
amenable to the natural language expections of the
approach (e.g., we changed “Move” to “movement”
and “KnowledgeSharing” to “inform”). While we
feel that the labels given to the zero-shot classifier
could be further improved, we consider this to be
beyond the scope of this work.

Since we require the classifier to be able to pre-
dict more than one event at a time, we cannot sim-
ply take an argmax. In an effort to more fairly
compare the zero-shot model with our rule-based
approach, we sampled different approaches for cut-
off points of the label probability scores to serve
as thresholds for extracting the events. Unfortu-
nately, all methods sampled yielded overall micro
F1 scores of < 0.1 (< 0.2 for macro F1) for the
classifier.

While we believe it is likely that with further
optimization we could have improved the perfor-
mance of the zero-shot baseline, we hypothesize
that the improvement would be limited. The data
we are processing is real spoken language produced
during times of stress and high focus for the partici-
pants. It is not comparable to the type of text-based
data most modern large transformers are trained
on.

However, we also implemented an oracle ap-
proach for the classifier that yielded much stronger
performance. In our oracle approach, for each ut-
terance we select the top n outputs of the zero-shot
classifier as the given output, where n is the num-

18https://huggingface.co/facebook/
bart-large-mnli

https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/facebook/bart-large-mnli

77

Precision Recall F1

Event Label Rule-based Zero-shot Rule-based Zero-shot Rule-based Zero-shot Support

Simple CriticalVictim 0.959 0.751 0.729 0.423 0.828 0.541 350
Victim 0.870 0.691 0.804 0.561 0.836 0.619 342
Room 0.997 0.572 0.939 0.286 0.968 0.381 809
Engineer 1.000 0.957 0.997 0.609 0.998 0.744 294
Transporter 1.000 0.303 0.986 0.888 0.993 0.451 277
Medic 1.000 0.696 1.000 0.567 1.000 0.625 210
Rubble 1.000 0.950 0.986 0.551 0.993 0.697 69
MarkerBlock 1.000 0.272 0.833 0.708 0.909 0.393 48
Meeting 0.978 0.279 1.000 0.856 0.989 0.421 90

All simple
(weighted av.)

0.975 0.634 0.910 0.508 0.940 0.518 2489

Complex Move 0.912 0.254 0.804 0.595 0.855 0.356 296
Precedence 0.745 0.112 0.976 0.159 0.845 0.132 126
RescueInteractions 0.792 0.091 0.528 0.222 0.633 0.129 36
KnowledgeSharing 0.948 0.246 0.704 0.111 0.808 0.154 314
ReportLocation 0.849 0.127 0.745 0.236 0.794 0.165 106
Search** 0.818 0.064 – 0.156 – 0.091 45
HelpRequest 0.805 0.098 0.713 0.057 0.756 0.072 87
Question 0.705 0.308 0.298 0.038 0.419 0.068 104
YesNoQuestion 0.827 0.248 0.684 0.120 0.749 0.161 209
Instruction 0.700 0.133 0.531 0.018 0.604 0.031 224
Plan 0.814 0.645 0.855 0.045 0.834 0.084 447

All complex
(weighted av.)

0.829 0.299 0.733 0.165 0.770 0.144 1994

All events
(weighted av.)

0.844 0.528 0.829 0.472 0.840 0.450 4483

Table 1: Comparison of our rule-based EE system and the zero-shot baseline system for our coarse-grained
evaluation. The zero-shot scores are all for the oracle setting, where we assume knowledge of the gold number of
unique events in the utterance. The rule-based system does not use this oracle knowledge.

78

Event Label Precision Support

Move 0.942 120
Precedence 0.978 46
RescueInteractions 1.0 21
KnowledgeSharing 0.981 159
ReportLocation 1.0 57
Search 1.0 14
HelpRequest 0.961 26
Question 0.923 52
YesNoQuestion 1.0 21
Instruction 0.917 12
Plan 0.974 155

Weighted average 0.969 683

Table 2: Weighted average of argument structure preci-
sion scores for our rule-based approach (for events with
arguments).

ber of unique gold labels for the utterance. While
this method is not realistic, as it requires a-priori
knowledge of the number of gold labels, it allowed
us to generate a stronger baseline for comparison.
Note we did not provide this knowledge to our
rule-based approach.

7 Results

Table 1 shows the results of our evaluation. Our
rule-based system achieves micro F1 scores of
0.940 and 0.770 for simple and complex events
respectively.

The oracle zero-shot classifier baseline shows
a micro F1 score of 0.518 for simple events and
0.144 for complex events. Our system outperforms
the baseline on every event label, with the gap
being particularly pronounced for domain-specific
complex events such as “RescueInteractions”.

In our system, both simple and complex events
display consistently higher precision than recall,
with “Precedence”19 being the only exception. This
outcome is expected; we designed the rules to favor
precision over recall because the outputs of the EE
system form inputs for further downstream tasks.

Table 2 shows the results for the precision-only
fine-grained argument structure evaluation. Those
events that can take arguments score a weighted
average of 0.969 for precision of their argument
structure.

19“Search” also displays higher recall than precision, but
this is due to annotators not assigning any Search labels at
all. We removed the recall score for the Search label from the
table to reflect this fact.

8 Conclusion

Here we presented a case study on extracting team
coordination events from natural language dialog.
This dialog consists of live communications, which
suffer from mistranscriptions, gap fillers, and inter-
rupted or truncated utterances. While supervised
neural approaches make up much of the recent liter-
ature for event extraction, these approaches become
infeasible for this task due to the lack of training
data. Further, the rapidly changing requirements
for what should be extracted, as well as the need
to embed domain-specific knowledge, led us to
implement a rule-based approach.

Recently, large-scale pretrained language models
have made zero shot and/or prompting-based ap-
proaches a convenient go-to for strong baselines, as
these approaches make knowledge gained through
large-scale pretraining accessible to various tasks.
For this reason, we compare our rule-based method
to a zero-shot classifier approach. We showed that
in our case, our rule-based method out-performed
the classifier for all event types we considered. Fur-
thermore, the events output by our rules contain
rich structure that can be used by downstream com-
ponents for inference.

References
Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei Chang.

2021. GATE: Graph Attention Transformer Encoder
for cross-lingual relation and event extraction. In
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, pages 12462–12470.
AAAI Press.

Douglas E Appelt and Boyan Onyshkevych. 1998. The
common pattern specification language. In Proc. of
the TIPSTER Workshop, pages 23–30.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.
2013. Rule-based information extraction is dead!
Long live rule-based information extraction systems!
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
827–832, Seattle, Washington, USA. Association for
Computational Linguistics.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate: an
architecture for development of robust hlt applica-
tions. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages
168–175. Association for Computational Linguistics.

https://ojs.aaai.org/index.php/AAAI/article/view/17478
https://ojs.aaai.org/index.php/AAAI/article/view/17478
https://aclanthology.org/D13-1079
https://aclanthology.org/D13-1079

79

Xinya Du and Claire Cardie. 2020a. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 671–683. Association
for Computational Linguistics.

Xinya Du and Claire Cardie. 2020b. Event extraction by
answering (almost) natural questions. arXiv preprint
arXiv:2004.13625.

Lixiao Huang, Jared Freeman, Nancy Cooke, John
Colonna-Romano, Matthew D Wood, Verica
Buchanan, and Stephen J Caufman. 2022a. Exer-
cises for artificial social intelligence in Minecraft
search and rescue for teams.

Lixiao Huang, Jared Freeman, Nancy Cooke,
John “JCR” Colonna-Romano, Matt Wood, Verica
Buchanan, and Stephen Caufman. 2022b. Artificial
Social Intelligence for Successful Teams (ASIST)
Study 3.

Lawrence Hunter, Zhiyong Lu, James Firby, William A
Baumgartner, Helen L Johnson, Philip V Ogren,
and K Bretonnel Cohen. 2008. Opendmap: an
open source, ontology-driven concept analysis en-
gine, with applications to capturing knowledge re-
garding protein transport, protein interactions and
cell-type-specific gene expression. BMC bioinfor-
matics, 9(1):78.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Roger Levy and Galen Andrew. 2006. Tregex and Tsur-
geon: tools for querying and manipulating tree data
structures. In Proc. of LREC.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-based
graph information aggregation. arXiv preprint
arXiv:1809.09078.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heinz, and Dan Roth. 2021. Re-
cent advances in natural language processing via
large pre-trained language models: A survey. arXiv
preprint arXiv:2111.01243.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016a. Joint event extraction via recurrent neu-
ral networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, pages 300–309, San Diego, California.
Association for Computational Linguistics.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016b. Joint event extraction via recurrent neu-
ral networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 300–309.

Trung Minh Nguyen and Thien Huu Nguyen. 2019. One
for all: Neural joint modeling of entities and events.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 6851–6858.

Adarsh Pyarelal. 2022. Tomcat (uaz + tamu) study 3
preregistration.

Oscar Sainz and German Rigau. 2021.
Ask2transformers: Zero-shot domain labelling
with pre-trained language models. arXiv preprint
arXiv:2101.02661.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and arguments
by dependency-bridge rnn and tensor-based argument
interaction. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.

Rebecca Sharp, Adarsh Pyarelal, Benjamin Gyori,
Keith Alcock, Egoitz Laparra, Marco A. Valenzuela-
Escárcega, Ajay Nagesh, Vikas Yadav, John Bach-
man, Zheng Tang, Heather Lent, Fan Luo, Mithun
Paul, Steven Bethard, Kobus Barnard, Clayton Mor-
rison, and Mihai Surdeanu. 2019. Eidos, INDRA, &
Delphi: From free text to executable causal models.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 42–47,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Yi Sun, Yu Zheng, Chao Hao, and Hangping Qiu. 2021.
Nsp-bert: A prompt-based zero-shot learner through
an original pre-training task–next sentence prediction.
arXiv preprint arXiv:2109.03564.

Alex Tozzo, Dejan Jovanović, and Mohamed Amer.
2018. Neural event extraction from movies descrip-
tion. In Proceedings of the First Workshop on Story-
telling, pages 60–66, New Orleans, Louisiana. Asso-
ciation for Computational Linguistics.

Marco A Valenzuela-Escárcega, Özgün Babur, Gus
Hahn-Powell, Dane Bell, Thomas Hicks, Enrique
Noriega-Atala, Xia Wang, Mihai Surdeanu, Emek
Demir, and Clayton T Morrison. 2018. Large-scale
automated machine reading discovers new cancer-
driving mechanisms. Database, 2018.

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, and
Mihai Surdeanu. 2016. Odin’s runes: A rule lan-
guage for information extraction. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 322–329,

https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.17605/OSF.IO/JWYVF
https://doi.org/10.17605/OSF.IO/JWYVF
https://doi.org/10.17605/OSF.IO/JWYVF
https://doi.org/10.48349/ASU/QDQ4MH
https://doi.org/10.48349/ASU/QDQ4MH
https://doi.org/10.48349/ASU/QDQ4MH
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.17605/OSF.IO/HSY32
https://doi.org/10.17605/OSF.IO/HSY32
https://doi.org/10.18653/v1/N19-4008
https://doi.org/10.18653/v1/N19-4008
https://doi.org/10.18653/v1/W18-1507
https://doi.org/10.18653/v1/W18-1507
https://aclanthology.org/L16-1050
https://aclanthology.org/L16-1050

80

Portorož, Slovenia. European Language Resources
Association (ELRA).

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, Mi-
hai Surdeanu, and Thomas Hicks. 2015. A domain-
independent rule-based framework for event extrac-
tion. In Proceedings of ACL-IJCNLP 2015 Sys-
tem Demonstrations, pages 127–132, Beijing, China.
Association for Computational Linguistics and The
Asian Federation of Natural Language Processing.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
arXiv preprint arXiv:1909.03546.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Wei Xiang and Bang Wang. 2019. A survey of event ex-
traction from text. IEEE Access, 7:173111–173137.

Zhiquan Ye, Yuxia Geng, Jiaoyan Chen, Jingmin Chen,
Xiaoxiao Xu, Suhang Zheng, Feng Wang, Jun Zhang,
and Huajun Chen. 2020. Zero-shot text classification
via reinforced self-training. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3014–3024.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. arXiv preprint
arXiv:1909.00161.

Appendix

List of event labels and their meanings
What follows is a list of event labels we used for
the evaluation. We provide explanations for each
event and examples, some from the data used for
this paper.

Simple Events

1. CriticalVictim: ASIST mission participants
can encounter regular victims and critical vic-
tims. Critical victims require the entire team

to save them. Examples: “type C”, “critical
guy”, “c type”

2. Victim: Regular victims can be saved by the
team member with the medic role. Examples:
“guy in C3”, “type a person”, “b type victim”

3. Room: This is a collection of different room
type events. We have specific event labels for
every room on the map of any given experi-
ment. Examples: “A2”, “room”, “office”

4. Engineer: One of the possible roles a player
can assume. The engineer can clear rubble
that is blocking the players’ path. Examples:
“rubble guy”, “engineer”, “shovel guy”

5. Transporter: Assuming the transporter role
allows players to move faster and to trans-
port regular victims. Examples: “transporter”,
“transport specialist”, “scout”

6. Medic: The medic can triage victims. Triag-
ing victims yields points for the team. Exam-
ples: “medic”, “medical specialist”, “healer”

7. Rubble: Players will encounter rubble block-
ing their path on their mission. Examples:
“gravel”, “rubble”, “rebel” (common mistran-
scription), “blockage”

8. MarkerBlock: Participants can drop a series
of different markers on the floor. These can
have different meanings and are used to mark
important rooms etc. This event label is a
collection of all specific marker block event
labels. Examples: “c victim marker”, “gravel
marker”, “victim block”, “threat sign”

9. Meeting: One of the participants will have a
list of meetings that were going on when the
building collapsed and their location. This is a
collection of event labels capturing the terms
used for those meetings. Examples: “manage-
ment meeting”, “lunch”

Complex Events

10. Move: A collection of different event labels
capturing participants discussing movement
of themselves and others. Examples: “I’m on
my way”, “Can you come to A2?”, “entering
c1”

https://doi.org/10.3115/v1/P15-4022
https://doi.org/10.3115/v1/P15-4022
https://doi.org/10.3115/v1/P15-4022
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

81

11. Precedence: A collection of different event
labels capturing participants discussing tem-
poral precedence. The event arguments aim
to sort the two actions as an initial and sub-
sequent action. Examples: “same thing M1
M1 M3 and then we can go i4a and then I2”,
“after I4 let’s go to j4”

12. RescueInteractions: Participants can triage,
wake up, and stabilize victims. This is a col-
lection of labels capturing all these cases. Ex-
amples: “heading back to get all the victims”,
“yeah I can get this one let’s wake up the there
he’s awake”

13. KnowledgeSharing: This event captures par-
ticipants relaying information about entities
that exist around them. Examples: “there’s
loads of victims in here”, “there’s a critical
condition in the back”

14. ReportLocation: This event captures partic-
ipants reporting their own location or the lo-
cation of other entities. It also captures par-
ticipants relaying certain information about
the location.20 Examples: “yeah I’m right I’m
right by C6”, “M3 is a trap room”

15. Search: This event captures participants talk-
ing about searching a room for victims. Ex-
amples: “we have searched F4 F4 is lunch this
is medic”, “have you checked a4a”

16. HelpRequest: Participants requesting help.
This is a collection of different event labels
which can be summarized under this umbrella.
Examples: “if someone could help me I am
trapped in j4”, “and transporter if you can also
assist in j4”

17. Question: Participants asking content ques-
tions. Examples: “this is the engineer how
do you guys know whether they goes north or
south”

18. YesNoQuestion: Participants asking binary
questions. Examples: “do we clear this out”

19. Instruction: Participants giving instructions.
Examples: “go to the middle section there’s
about 45 criticals so we know there’s points
there”

20This is handled by different event labels which are summa-
rized under this event label for the purpose of the evaluation.

20. Plan: Participants engaging in planning. Ex-
amples: “okay if we want to start on i4a just
to get some people moving”, “okay I’ll take
care of the B type”

82

Listing 1: Example JSON output for "I’ll head there
first oh jeez what."

1 {
2 "participant_id": "----",
3 "asr_msg_id": "----",
4 "text": "I'll head there first oh

jeez what.",
5 "utterance_source": {
6 "source_type": "message_bus",
7 "source_name": "agent/asr/final"
8 },
9 "extractions": [

10 {
11 "labels": [
12 "DeliberatePlan",
13 "Commitment",
14 "Plan",
15 "Communicate",
16 "SimpleAction",
17 "Action",
18 "EventLike",
19 "Concept"
20],
21 "span": "will head there",
22 "arguments": {
23 "topic": [
24 {
25 "labels": [
26 "MoveTo",
27 "Move",
28 "SimpleAction",
29 "Action",
30 "EventLike",
31 "Concept"
32],
33 "span": "head there",
34 "arguments": {
35 "target": [
36 {
37 "labels": [
38 "Deictic",
39 "Inferred",
40 "Location",
41 "EventLike",
42 "Concept"
43],
44 "span": "there",
45 "arguments": {},
46 "attachments": [],
47 "start_offset": 10,
48 "end_offset": 15,
49 "rule": "deictic_detection"
50 }
51]
52 },
53 "attachments": [
54 {
55 "text": "I",
56 "agentType": "Self",
57 "labels": [
58 "Self",
59 "Entity",
60 "Concept"
61],
62 "span": [
63 0
64]
65 },
66 {

67 "value": "future"
68 }
69],
70 "start_offset": 5,
71 "end_offset": 15,
72 "rule": "move_deixis_action"
73 }
74]
75 },
76 "attachments": [
77 {
78 "text": "I",
79 "agentType": "Self",
80 "labels": [
81 "Self",
82 "Entity",
83 "Concept"
84],
85 "span": [
86 0
87]
88 },
89 {
90 "value": "future"
91 }
92],
93 "start_offset": 1,
94 "end_offset": 15,
95 "rule":

"commit_to_something_plan-type"
96 },
97 {
98 "labels": [
99 "MoveTo",

100 "Move",
101 "SimpleAction",
102 "Action",
103 "EventLike",
104 "Concept"
105],
106 "span": "head there",
107 "arguments": {
108 "target": [
109 {
110 "labels": [
111 "Deictic",
112 "Inferred",
113 "Location",
114 "EventLike",
115 "Concept"
116],
117 "span": "there",
118 "arguments": {},
119 "attachments": [],
120 "start_offset": 10,
121 "end_offset": 15,
122 "rule": "deictic_detection"
123 }
124]
125 },
126 "attachments": [
127 {
128 "text": "I",
129 "agentType": "Self",
130 "labels": [
131 "Self",
132 "Entity",
133 "Concept"
134],
135 "span": [

83

136 0
137]
138 },
139 {
140 "value": "future"
141 }
142],
143 "start_offset": 5,
144 "end_offset": 15,
145 "rule": "move_deixis_action"
146 }
147]
148 }

Listing 2: Sample of a subsection of the Label Ontology
1 - Communicate:
2 - Instruction:
3 - HelpCommand # for players

instructing others to help,
f.e.: "Help the engineer!"

4 - ReportStatus:
5 - Stuck # for players stuck in a

room (for whichever reason),
has some overlap with
AmTrapped

6 - ReportLocation # players
reporting on their, or other
players locations: "I’m in
B2"

7 - RoleDeclare # players
declaring their role to the
team

8 - RoomStatus:
9 - RoomClear # "A1 is clear"

10 - ReportThreatRoom # players
declaring rooms as
threatrooms: "A1 is a
threat room"

11 - KnowledgeSharing # players
reporting that something
exists: "There is a critical
victim here" or "I have some
rubble in B2"

12 - Need: # labels for players
discussing the needs of the
team or their own needs

13 - NeedRole
14 - NeedItem
15 - NeedAction

Example Rule with Commentary

Listing 3: Example Rule
1 - name: "Help_command"
2 label: HelpCommand
3 example: "You should help him."
4 priority: ${ rulepriority }
5 pattern: |
6 trigger =

[lemma=/assist|help|aid|support/]
7 agent: Entity = >nsubj

[!mention=Self] |<xcomp >nsubj
[!mention=Self]

8 helpee: Entity = >ccomp >nsubj
[!mention=You] | >ccomp
[!mention=You] | >dep
[!mention=You] | >dobj
[!mention=You]

9 location: Location? = >/${preps}/|
10 >/advmod/

• name: Every Odin rule requires a unique
name.

• label: This field defines the actual label that
this rule will export. The label’s place in the
ontology is defined elsewhere

84

• example: We try and provide an example
with each rule, for easier development.

• priority: This field defines at which itera-
tion the rule will be applied. In this case this
is defined via a vaiable.

• pattern: The pattern field defines the trig-
ger and its arguments.

• trigger: Rules with an argument need a
trigger field. If the trigger is found, the rule
starts searching for the arguments. In this
case, the trigger is defined as series of possible
lemmas.

• agent: Entity – This field states that
this rule takes an “agent” argument which as
to carry the label "Entity" (or any of the sub-
ordinate labels of entity)

• >nsubj [!mention=Self] |<xcomp
>nsubj [!mention=Self]: These
statements define the dependency relationship
that the agent argument needs to have with
respect to the trigger. In plain English, this
statement requires: An outgoing “nsubj”
dependency, at the end of which there may
not be an event label You, or an outgoing
“ccomp” dependency, at the end of which
there may not be an event label You, and so
on.

	Introduction
	Motivation for Rule-Based Approach
	Related Work
	Approach
	The Label Ontology and Nested Events
	Rule Writing for Dynamic Domains

	Data
	Annotation Issues and Lessons Learned

	Evaluation
	Zero-Shot Classification Baseline

	Results
	Conclusion

