
Vanilla Recurrent Neural Networks for Interpretable Semantic Textual
Similarity

Piotr Andruszkiewicz
Warsaw University of Technology

piotr.andruszkiewicz@pw.edu.pl

Barbara Rychalska
Warsaw University of Technology

b.rychalska@mini.pw.edu.pl

Abstract

Semantic similarity systems assess to what ex-
tent two words, phrases, sentences are simi-
lar in their meaning. In this task, rule-based
and neural network systems achieve the best
results. The former requires intensive human
workload and the latter needs heavy comput-
ing. Can we achieve high accuracy without
hand-crafted rules and without intensive com-
puting? In this paper we present three types
of Vanilla Recurrent Neural Networks that ful-
fill the aforementioned requirements for In-
terpretable Semantic Textual Similarity task
and we compare them to the systems from Se-
mEval competition.

1 Introduction

Semantic similarity, also called paraphrase detec-
tion, focuses on similarity of words, phrases, sen-
tences in terms of semantic equivalence. Having a
different grammar construction or different words,
yet synonyms, used, two sentences may convey the
same meaning. Semantic similarity assesses the
level of semantic equivalence, e.g., by saying that
a pair of sentences is not semantically equivalent or
is equivalent to some extent.

There are many different specifications of seman-
tic similarity task. We focus on two definitions of
this task used in SemEval competition (Cer et al.,
2015). The first one is a basic approach, called
herein basic semantic similarity task, that expresses
semantic similarity as one number from 0 to 5. 0
means that there is no semantic similarity, e.g., A
woman is slicing big pepper. vs. A dog is moving its

mouth. 5 is assigned when there is perfect semantic
equivalence, e.g., The man cut down a tree with an
axe. vs. A man chops down a tree with an axe. In
the middle there are pairs that are similar to some
extent, e.g., a pair People are playing cricket. vs.
Men are playing cricket. is scored as 3.

A more complicated specification of a task in
question, called Interpretable Semantic Textual Sim-
ilarity (iSTS), defines 8 alignment types between
chunks of sentences, e.g., EQUI - semantic equiva-
lence – in Olympics, at Olympics, OPPO - semantic
opposition – lower vs. higher. Additionally, simi-
larity for each alignment is scored on a scale 0-5. In
this paper, we focus on Interpretable Semantic Tex-
tual Similarity (iSTS) task as it gives more insight in
the justification of the similarity.

We can distinguish two main types of systems
that assess semantic similarity, namely; hand-crafted
rule-based systems and statistical systems. The first
group uses many rules prepared by linguists and is
highly customized for a specific task. Such systems
need a lot of manual work. Statistical systems use
trained models to assess semantic similarity. Some
of them also involve lots of manual work in features
engineering. We focus on statistical systems that do
not require manual work and here comes deep learn-
ing approach.

Moreover, we prefer network architectures pow-
ered by basic network cell, because amount of anno-
tated data is limited for Interpretable Semantic Tex-
tual Similarity (iSTS).

Hence, we focus on simple network models;
that is, Vanilla Recurrent Neural Network (Vanilla
RNN). Vanilla networks have been successfully ap-



plied in various tasks, for instance, char, word
sequences processing, including text generation
(Karpathy and Fei-Fei, 2017) or handwriting gen-
eration (Graves, 2013). The network cell we use is
much simpler and has less parameters to train than
more complicated gates, for instance, GRU/LSTM.
Thus, we present three new network architectures
with basic network cell and compare them to a base-
line architecture and other available solutions for In-
terpretable Semantic Textual Similarity with one-to-
one relations. In our work, we focus on achieving
high accuracy using vanilla Recurrent Neural Net-
works with basic network cell in Interpretable Se-
mantic Textual Similarity (iSTS) with one-to-one re-
lations. That has been achieved by refining network
architectures and by using basic network cell.

2 Related Work

Semantic similarity systems could be divided into
two main groups: rule-based systems and statisti-
cal systems. An example of a rule-based system
is UMBC EBIQUITY (Han et al., 2013), which
won SemEval 2013 (Diab et al., 2013). Despite
the already mentioned drawbacks of rule-based ap-
proaches, such systems have recently dominated the
area of semantic similarity. They use external re-
sources prepared by linguists, e.g., databases of syn-
onyms, and heavily depend on manual work in rules
creation. The main idea behind this kind of systems
is to find words that are semantically similar in both
sentences and calculate the level of semantic simi-
larity for each pair. Then, the aggregated similarity
is calculated. These systems could be supported by
statistical models, however, the influence of a sta-
tistical model on the whole system is usually rather
low.

The second group - statistical systems - are of-
ten based on neural network models. The first neu-
ral network that achieved high accuracy in semantic
similarity task was presented in (Socher et al., 2011).
It was based on autoencoder that encodes a sentence
and then decodes it into another one being as close
to the original sentence as possible. In this approach
two encoded sentences are compared and assigned a
score. The encoder transforms a sentence according
to a dependency tree. Recently, recurrent neural net-
works (RNN) have been used for semantic similar-

Figure 1: Linear Vanilla RNN.

ity task. In (Tai et al., 2015), LSTM gate organized
in a tree structure architecture has been used. The
tree was built according to a dependency parse tree.
In (Mueller and Thyagarajan, 2016) siamese RNNs
with tied weights between networks were used. We
do not apply this restriction in our solution. RNN
approach is the current trend in semantic similarity.

There are also hybrid systems that combine rule-
based approaches and statistical models. As they
utilize advantages of these two kinds of systems, hy-
brid systems achieve high accuracy. A system of this
type (Rychalska et al., 2016) won, for instance, se-
mantic similarity task for English at SemEval 2016.
Unfortunately, hybrid systems inherit also disadvan-
tages of both of their combined approaches.

Our models are different from the above systems
as they use statistical approach without time con-
suming manual work and apply basic network cell
due to small available annotated data for iSTS.

3 Network Architectures

In this section, we present the baseline network ar-
chitecture for Interpretable Semantic Textual Simi-
larity task. We also propose three new architectures
of recurrent neural networks built on top of basic
network cell.

3.1 Baseline Linear Architecture

We use a linear vanilla architecture, denoted as
VRNNH1-lin and shown in Figure 1, as a base-
line for our three more complicated, yet still sim-
ple, vanilla architectures for semantic similarity as-
sessment. xi nodes represent terms from a sen-
tence. Nodes may be a single value or a vector,
e.g., an embedding vector (Turian et al., 2010), (Pen-
nington et al., 2014) that represents semantics of a
term. The hidden state of a network is calculated as
hi = tanh(U · xi +W · hi−1), where hi−1 is previ-



Figure 2: Tree Vanilla RNN.

Figure 3: Linear Vanilla H2 RNN.

ous hidden state of the network and U , W are weight
matrices.

3.2 Proposed architectures
The first of the proposed vanilla architectures
(herein called VRNNH1-tree) is presented in Fig-
ure 2. A structure of a network is constructed ac-
cording to a dependency tree of a sentence. The
idea is similar to (Socher et al., 2011) (Tai et al.,
2015), however, we use simpler vanilla unit. Com-
pared to (Socher et al., 2011) we do not assume a
decoding part of a network, as it is done in autoen-
coders. Moreover, we do not restrict a tree to be
binary. Contrary to a linear network, a tree struc-
tured network does not process terms in the natural
order as human beings do. However, we assume that
a grammatical structure, represented by a parse tree,
will be more beneficial for semantic representation
of a sentence. The hidden state of a network is cal-
culated as hi = tanh(U · xi +

∑m
j=1W · hi−1,j).

To extend the linear vanilla architecture, we add
one more hidden layer. The extended architecture
is depicted in Figure 3. A vector, Hi, for a node

Figure 4: Tree Vanilla H2 RNN.

in the second hidden layer is computed as a non-
linear function of a current hidden state hi and a pre-
vious hidden state hi−1. The additional non-linear
function allows a network to model more compli-
cated dependencies than those with only one hid-
den layer. Terms are processed according to a natu-
ral order of a sentence. h state is computed in the
same way as in linear vanilla architecture: hi =
tanh(U · xi + W · hi−1). Additional hidden state
is calculated as Hi = tanh(U2 · hi +W2 ·Hi−1).
We denote this architecture as VRNNH2-lin.

The same extension can be applied to VRNNH1-
tree network, thus Figure 4 presents a tree based net-
work with additional hidden layer called VRNNH2-
tree. Compared to VRNNH1-lin we try to leverage
grammatical structure of a sentence and allow for
modeling of more complicated dependencies by in-
corporating the additional hidden layer. The hidden
state in the first hidden layer of a network is calcu-
lated like in VRNNH1-tree, as hi = tanh(U · xi +∑m

j=1W · hi−1,j). The state from the second layer
is computed as Hi = tanh(U2 · hi +

∑m
j=1W2 ·

Hi−1,j).
In order to evaluate two chunks/sentences in the

context of semantic similarity, we need one more
layer which gives a final result. We chose a soft-
max layer (Su and Xu, 2015) for this purpose. The 6
output neurons represent one of the 6 possible re-
sults on a 0-5 scale for basic semantic similarity
task and 8 neurons represent alignment type in In-
terpretable Semantic Textual Similarity task. Each
neuron of a softmax layer gives a probability of a



Figure 5: The full architecture of linear Vanilla RNN.

particular possible result. We can choose the result
with the highest probability. A full network archi-
tecture combines final vectors representing two sen-
tences and gives the final result. The full architec-
ture for VRNN1-lin representation of a sentence is
shown in Figure 5. h23 and h13 are nodes that out-
put the vector representation for each of the two sen-
tences. Then node s1 compresses vectors represent-
ing sentences (e.g. 50 or 100 elements) to the length
equal to the number of possible final outputs (e.g.,
six) for scoring estimation.

In the full network architecture presented in Fig-
ure 5, states for s1 and s2 are calculated as fol-
lows: s1 = tanh(S11 · h23 + S12 · h13), s2 =
softmax(S2 · s1). For two hidden layer networks
the final layers connect nodes from the second hid-
den layer, e.g., H23 and H13. Please refer to Figure
6 that presents full network structure for VRNN2-
lin sentence representation architecture. For tree
structured architectures the idea of combining vec-
tors representing each sentence is the same.

4 Non-Integer Scores

Scores provided in SemEval data are not always in-
tegers. Let us assume that the score is 3.75. Then
we can guess that it comes from score 4 assigned by
three annotators and score 3 assigned by one annota-
tor. We need to choose the approach to process such
scores in the softmax layer.

4.1 Scores Weighting
First approach is to reconstruct the distribution of
scores. If we know that for 3.75 three persons as-
signed score 4 and one person chose score 3, we

Figure 6: The full architecture of linear Vanilla H2 RNN.

Set Training Testing Total
Images 375 375 750
Headlines 378 378 756

Table 1: Number of sentence pairs in the data sets.

can represent a softmax layer as (0 0 0 0.25 0.75 0)
where score 3 has a probability of 0.25 and score 4
has a probability of 0.75. Thus, we take into account
minority votes.

4.2 Scores Rounding

We may also think, in case of score 3.75, that score
3 was a mistake or deviation from the proper score.
Hence, we round the score to the most probable one
and omit the minority votes by taking into account
only majority votes. In such a case we would repre-
sent the softmax layer as (0 0 0 0 1 0) that means we
assume the score of 4 should be assigned.

We examine both approaches in Section 5.

5 Experiments

We test the proposed architectures with Images and
Headlines (Agirre et al., 2015) data sets from Se-
mEval 2015 Interpretable Semantic Textual Similar-
ity (iSTS) contest to compare our models to sys-
tems submitted by SemEval participants.The data
sets contain around 750 sentence pairs each (please
refer to Table 1. Golden chunks, scores and types
are also provided.

We also use F measures applied in SemEval iSTS



Model F1 score F1 s+type Avg
H1-lin 0.8620* 0.6894 0.7757
H1-tree 0.8516 0.6819* 0.7668*
H2-lin 0.8541 0.6679 0.7610
H2-tree 0.8651 0.6825* 0.7738*

Table 2: Experiments summary for 50 elements embed-
ding vectors for Images set.

Model F1 score F1 s+type Avg
H1-lin 0.8559* 0.6624* 0.7592*
H1-tree 0.8578* 0.6643* 0.7611
H2-lin 0.8617 0.6557* 0.7587*
H2-tree 0.8502 0.6704 0.7603*

Table 3: Experiments summary for 100 elements embed-
ding vectors for Images set.

contest. F1 score (Agirre et al., 2015) is F1 mea-
sure that takes into account the score assigned to the
alignment. The score should match. The alignment
type is ignored.

F1 score+type (also called F1 s+type) (Agirre et
al., 2015) is F1 measure that takes into account both
alignment type and score for alignments.

In our tests we use golden chunks, thus the al-
gorithm does not need to discover chunks within
the sentences because it uses chunks provided in the
data set.

In the experiments, we use word embeddings
described in (Turian et al., 2010) and log-loss
function as a loss function. To calculate a gradient,
Limited-memory BFGS algorithm is used (Liu
and Nocedal, 1989). Regularization is performed
with L2 method. The source code is available
at https://www.dropbox.com/s/ot25z73qnhue92f/
vrnn1.0.zip?dl=0 (anonymized link).

Model F1 score F1 s+type Avg
H1-lin 0.8560 0.6942* 0.7751*
H1-tree 0.8536 0.6953* 0.7745*
H2-lin 0.8652 0.6958* 0.7805
H2-tree 0.8509 0.6981 0.7745*

Table 4: Experiments summary for 50 elements embed-
ding vectors and rounding for Images set.

5.1 Experiments with Short Word Embeddings

First we conduct experiments using word embed-
dings consisting of 50 elements. The results for
Images set are shown in Table 2. The first column
contains the names of network architectures. “H1”
indicates a network with one hidden layer. “H2”
means that two hidden layers are used. “lin” de-
notes a linear architecture. “tree” indicates that a
network constructed according to the dependency
tree is used. Thus, “H2-lin” denotes a network with
linear structure and two hidden layers. The second
and third column contains results of F1 score and F1
score+type, respectively. The last column presents
the average of F1 score and F1 score+type mea-
sures. The best results for each measure or average
is marked in bold. * denotes values for which the
difference between them and the best value, marked
in bold, is not statistically significant at 0.05 p-
value level. We use weighting for non-integer scores
(please refer to Section 4).

In terms of F1 score measure, the best result
(0.8651) is obtained with the most complicated net-
work, i.e., the tree structured network with two hid-
den layers. However, the linear network with one
hidden layer obtains the result that is not statisti-
cally different from the one marked in bold. For
F1 score+type the best result (0.6894) is achieved
by the simplest architecture, i.e., the linear network
with one hidden layer. The same network gets the
best average result (0.7757).

Comparing the statistically differences, only the
linear network with two hidden layers yields the
lowest results obtaining statistically lower results
three times.

Table 6 presents the results for Headlines set.
Considering statistic significance, the presented out-
put of four networks does not differ for all measures,
thus, all four networks perform well.

5.2 Experiments with Longer Word
Embeddings

In the next set of experiments, we use longer word
embedding vectors with 100 elements. Table 3 sum-
marizes the results for Images set. In this setup, the
best result for F1 score is obtained by the linear net-
work with two hidden layers (0.8617). However,
only H2-tree network yields statistically different re-



Model F1 score F1 s+type Avg
H2-lin 0.8652 0.6958 0.7805
H2-tree 0.8509 0.6981 0.7745
NeRoSimR1 (Banjade et al., 2015) 0.7877 0.5841 0.6859
UMDuluthBlueTeam2 (Karumuri et al., 2015) 0.7968 0.5964 0.6966
FULL (Lopez-Gazpio et al., 2017) 0.8085 0.6159 0.7122

Table 5: Experiments summary for 50 elements embedding vectors and rounding for Images set.

Model F1 score F1 s+type Avg
H1-lin 0.8632* 0.6615* 0.7623*
H1-tree 0.8648* 0.6708 0.7678
H2-lin 0.8662* 0.6651* 0.7657*
H2-tree 0.8675 0.6598* 0.7637*

Table 6: Experiments summary for 50 elements embed-
ding vectors and Headlines set.

Model F1 score F1 s+type Avg
H1-lin 0.8680* 0.6557* 0.7619*
H1-tree 0.8700 0.6641 0.7670
H2-lin 0.8679* 0.6543* 0.7611*
H2-tree 0.8679* 0.6514* 0.7597*

Table 7: Experiments summary for 100 elements embed-
ding vectors and Headlines set.

sults from the one marked in bold.
For F1 score+type the network with two hid-

den layers and tree structure performs the best and
achieves 0.6704. The average points also tree struc-
tured network but with one layer that yields 0.7611.
The differences between results of different models
for F1 score+type and average are in the range of
around 1–1.5 percentage points (p.p.) and are not
statistically different.

For Headlines (Table 7 once again, we obtain the
results which are not statistically different.

Compared to 50 elements word embedding vec-
tors and Images set, the networks trained with longer
vectors perform better only for H1-tree and H2-lin in
terms of F1 score measure. All averages are lower
than results obtained for 50 elements word embed-
ding vectors and Images set. For Headlines, the dif-
ferences between averages for 50 and 100 elements
vectors are so small that they are not statistically sig-
nificant.

Model F1 score F1 s+type Avg
H1-lin 0.8734 0.6783* 0.7758*
H1-tree 0.8680* 0.6702 0.7691
H2-lin 0.8694* 0.6747* 0.7720*
H2-tree 0.8707* 0.6830 0.7769

Table 8: Experiments summary for 50 elements embed-
ding vectors and rounding for Headlines.

Thus, not only do longer vectors not improve the
models but even lower the results, especially for F1
score+type measure. Hence, for further experiments
we choose 50 elements word embedding vectors.

5.3 Non-Integer Scores
We also test the alternative approach to non-integer
scores; that is, rounding (for details please refer to
Section 4). The results are presented in Table 4.
“H2-lin” achieves the best results for F1 score ob-
taining 0.8652. For F1 score+type and average the
networks obtain the results that are not statistically
different. These are the highest values for all set
of experiments and measures for Images data set.
Rounding increases especially F1 score+type mea-
sure, which is above 0.69 for all network architec-
tures.

For Headlines data set (please refer to Table 8)
only H1-tree is significantly worse than other net-
works for F1 score+type and average. Compared to
previous results, this set of experiments obtains the
best results for Headlines also.

The rounding approach resembles majority voting
and reduces non-agreement between annotators. For
scores close to integers, e.g., 4.75, one score of 4
may be a mistake or deviation from major score and
it is reduced by rounding the value to 5. This kind of
approach suggests the network the strict answer and
reduces uncertainty about the golden score.



Model F1 score F1 s+type Avg
H1-lin 0.8734 0.6783 0.7758
H2-tree 0.8707 0.6830 0.7769
NeRoSimR3 (Banjade et al., 2015) 0.8157 0.6426 0.7326
NeRoSimR2 (Banjade et al., 2015) 0.8263 0.6401 0.7332
FULL (Lopez-Gazpio et al., 2017) 0.8211 0.6185 0.7198

Table 9: Experiments summary for 50 elements embedding vectors and rounding for Headlines set.

Figure 7: F1 score measure of linear Vanilla RNN with one and two hidden layers on Images set with respect to the
number of iterations.



To sum up the experiments, our models assess se-
mantic similarity quite well in iSTS. In this task,
chunks are scored. Chunks usually are shorter, con-
tain less tokens, than whole sentence, thus vanilla
network with basic network cell may process it quite
well as the relations within chunks are simpler than
in whole sentences. This also could be the reason for
networks based on parse tree not obtaining signifi-
cantly better results than linear architectures. As the
relations in chunks are simpler than in whole sen-
tences additional information provided by parse tree
does not help the system. Moreover, Vanilla Recur-
rent Neural Networks perform well in iSTS on small
amount of data.

5.4 Comparison with Other iSTS Systems
As the networks trained on 50 elements word em-
bedding vectors and rounding achieve the best re-
sults, we choose our best models to represent our
approach.

We compare our models to systems from SemEval
2015 (Agirre et al., 2015) as there were changes in-
troduced in SemEval 2016 and our models need to
be adjusted. In SemEval 2015 assumed one-to-one
alignments and SemEval 2016 introduced many-to-
many alignments. We plan to do it in future work.
We cannot compare results of systems prepared for
basic semantic similarity task either as iSTS task
is more complicated and systems designed for ba-
sic semantic similarity task cannot be used for iSTS
task without further substantial modifications. The
results of the comparison are shown in Table 5 and
9.

The system that obtained the best result for Im-
ages in SemEval 2015 iSTS for F1 score (0.7968)
and F1 score+type (0.5964) measures was UMDu-
luth BlueTeam (Karumuri et al., 2015). NeRoSim
(Banjade et al., 2015) ranked II for Images set, as
it achieved 0.7877 for F1 score and 0.5964 for F1
score+type. System FULL (Lopez-Gazpio et al.,
2017) outperforms two aforementioned systems. It
is the solution prepared by a team that relates to or-
ganizers of SemEval 2015, thus the system could not
be ranked. It scored 0.7122 in average measure.

Both our models outperform other systems in all
measures for Images data set. Even all our remain-
ing models achieve better results in terms of F1
score, F1 score+type, and average. The difference

between our best model and the other best system is
around 6 p.p. in F1 score, 8 p.p. in F1 score+type,
and 7 p.p. in average, which is high improvement.

For Headlines our best models shown in Table 9
outperform significantly other systems also. The dif-
ference between our best model and the other best
system is around 5 p.p. in F1 score, 3 p.p. in F1
score+type, and 4 p.p. in average. Moreover, our
remaining models also yields better results the other
systems.

The mentioned systems from SemEval 2015 used
extensive feature engineering. In Interpretable Se-
mantic Textual Similarity, NeRoSim applied hand-
crafted rules. The system UMDuluth BlueTeam was
a hybrid of human tuned word aligner, supervised
machine learning and even translation systems. Our
system achieves better results even though it does
not use feature engineering nor customization per-
formed by humans.

5.5 Iterations

Figure 7 presents the example F1 score measure
with respect to number of L-BFGS algorithm iter-
ations. We show linear networks with one and two
hidden layers. 50 elements word embedding vectors
are used and weighting for non-integer scores. Our
models usually achieve high accuracy between 6th-
8th iteration and remain stable for further iterations.
The models with two hidden layers usually still yield
lower F1 than models with one hidden layer at 4th it-
eration.

The basic network cell makes the process of train-
ing a model effective despite small number of avail-
able samples. It proves its usability in Interpretable
Semantic Textual Similarity task.

6 Conclusions and Future Work

We presented three new architectures of recurrent
neural networks built on top of basic network cell.
Our aim was to maintain or increase the accuracy of
established models by using Vanilla Recurrent Neu-
ral Networks and basic network cell. This approach
was motivated by small amount of data available for
Interpretable Semantic Textual Similarity (iSTS).

The proposed models are promising in iSTS as
they achieved better results compared to the heav-
ily hand-crafted systems. And there is still a lot of



room for improvements in our models. We could
also combine them with other hand-crated systems
to obtain better results. However, we would like to
stay away from feature engineering as much as we
can, since this process is not automatic and requires
manual work. In future work, we plan to check the
accuracy of more complicated gates, such as GRU
or LSTM, and test their influence on both accuracy
and training time. Moreover, we would like to ap-
ply siamese networks to iSTS. We would also like
to propose different network architectures tuned for
Interpretable Semantic Textual Similarity task. We
plan to adjust our system to modified iSTS SemEval
2016 task by introducing many-to-many alignments
and test its accuracy.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M.
Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. Semeval-2015 task 2: Semantic textual
similarity, english, spanish and pilot on interpretabil-
ity. In Cer et al. (Cer et al., 2015), pages 252–263.

Rajendra Banjade, Nobal Bikram Niraula, Nabin Mahar-
jan, Vasile Rus, Dan Stefanescu, Mihai C. Lintean, and
Dipesh Gautam. 2015. Nerosim: A system for mea-
suring and interpreting semantic textual similarity. In
Cer et al. (Cer et al., 2015), pages 164–171.

Daniel M. Cer, David Jurgens, Preslav Nakov, and
Torsten Zesch, editors. 2015. Proceedings of
the 9th International Workshop on Semantic Evalua-
tion, SemEval@NAACL-HLT 2015, Denver, Colorado,
USA, June 4-5, 2015. The Association for Computer
Linguistics.

Mona T. Diab, Timothy Baldwin, and Marco Baroni, ed-
itors. 2013. Proceedings of the Second Joint Confer-
ence on Lexical and Computational Semantics, *SEM
2013, June 13-14, 2013, Atlanta, Georgia, USA. Asso-
ciation for Computational Linguistics.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. CoRR, abs/1308.0850.

Lushan Han, Abhay L. Kashyap, Tim Finin, James May-
field, and Jonathan Weese. 2013. Umbc ebiquity-
core: Semantic textual similarity systems. In Diab
et al. (Diab et al., 2013), pages 44–52.

Andrej Karpathy and Li Fei-Fei. 2017. Deep visual-
semantic alignments for generating image descrip-
tions. IEEE Trans. Pattern Anal. Mach. Intell.,
39(4):664–676.

Sakethram Karumuri, Viswanadh Kumar Reddy Vuggu-
mudi, and Sai Charan Raj Chitirala. 2015. Umduluth-
blueteam: SVCSTS - A multilingual and chunk level
semantic similarity system. In Cer et al. (Cer et al.,
2015), pages 107–110.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Math. Program., 45(1-3):503–528.

Iñigo Lopez-Gazpio, Montse Maritxalar, Aitor Gonzalez-
Agirre, German Rigau, Larraitz Uria, and Eneko
Agirre. 2017. Interpretable semantic textual similar-
ity: Finding and explaining differences between sen-
tences. Knowl.-Based Syst., 119:186–199.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similarity.
In Dale Schuurmans and Michael P. Wellman, editors,
Proceedings of the Thirtieth AAAI Conference on Ar-
tificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., pages 2786–2792. AAAI Press.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans, editors, Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543. ACL.

Barbara Rychalska, Katarzyna Pakulska, Krystyna
Chodorowska, Wojciech Walczak, and Piotr An-
druszkiewicz. 2016. Samsung Poland NLP team at
semeval-2016 task 1: Necessity for diversity; com-
bining recursive autoencoders, wordnet and ensemble
methods to measure semantic similarity. In Steven
Bethard, Daniel M. Cer, Marine Carpuat, David Jur-
gens, Preslav Nakov, and Torsten Zesch, editors, Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval@NAACL-HLT 2016, San
Diego, CA, USA, June 16-17, 2016, pages 602–608.
The Association for Computer Linguistics.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In John Shawe-Taylor,
Richard S. Zemel, Peter L. Bartlett, Fernando C. N.
Pereira, and Kilian Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14
December 2011, Granada, Spain., pages 801–809.

Hang Su and Haihua Xu. 2015. Multi-softmax deep
neural network for semi-supervised training. In IN-
TERSPEECH 2015, 16th Annual Conference of the In-
ternational Speech Communication Association, Dres-



den, Germany, September 6-10, 2015, pages 3239–
3243. ISCA.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1556–
1566. The Association for Computer Linguistics.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Ben-
gio. 2010. Word representations: A simple and gen-
eral method for semi-supervised learning. In Jan Ha-
jic, Sandra Carberry, and Stephen Clark, editors, ACL
2010, Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, July 11-16,
2010, Uppsala, Sweden, pages 384–394. The Associa-
tion for Computer Linguistics.


