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Abstract

In this paper, we define a sentence re-
generation task: re-generate a sentence given
a set of sentences that cover it. Due to the
absence of a dataset to perform this task, we
firstly build three language resources of a new
type containing more than 4 million anno-
tated sentences. They contain sentences an-
notated with similar sentences from the same
corpus, that cover them on the level of form
or meaning. We then perform the sentence
re-generation task on the newly produced lan-
guage resources using two approaches. The
first one is a naive approach where we rely
on a language model to reorder the covering
parts. The second one is a neural approach
where we treat the sentence re-generation task
as a translation task from a sequence of cov-
ering parts to the respective original sentence.
The performance of the systems is evaluated
on the level of form and meaning according
to the type of covering used to re-generate
the sentence. On the level of form, experi-
mental results show that the neural approach
outperforms the baseline in edit distance with
up to 40% lower scores. However, in BLEU
scores, the neural approach is similar or worse
than the baseline. On the level of meaning,
the neural approach always performs better
than the baseline with average scores of 89%
BERTScore.

1 Introduction

Translation memories (TM) are used by translators
to retrieve close sentences to a given source sen-
tence as hints for translations. It has been shown
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that similar sentences or informative sentences re-
trieved from TM can significantly boost the perfor-
mance of neural machine translation (NMT) systems
(Xu et al., 2020; Bulté and Tezcan, 2019a). The
idea of a set of sentences covering a given input sen-
tence can be introduced to combine TM with ma-
chine translation. (Liu and Lepage, 2021) proposed
a twofold-objective approach to retrieve similar sen-
tences based on an input sentence.

To assess the quality of sentence coverage, we de-
fine a sentence re-generation task:

Re-generate an input sentence back given
a set of sentences that cover it on two lev-
els, form or meaning.

Yet, there is a lack of data containing for this spe-
cific task. The needed data should contain sentences
similar in form and meaning along with the covering
parts annotated for each input sentence from some
corpus. Therefore, we build and release such lan-
guage resources to meet the requirement of this new
task. We then test a naive baseline and a neural ap-
proach on the newly built resources to perform the
sentence re-generation task. The two above aspects
are the contributions of our work.

The paper is organized as follows. Section 2 ex-
plains the notion of coverage of a sentence by other
sentences. Section 3 describes the new language
resources created. Section 4 explains the two ap-
proaches to the sentence re-generation task and the
experiment protocol. Section 5 presents the exper-
imental results and provides an analysis. Section 6
gives the conclusion and possible future directions.



Input

two young toddlers outside on the grass.

two white bunnies are outside on the grass.

Form

two young girls playing outside on the playground.

two toddlers posing for the camera.

there is a toddler playing on a playground.

two kids are laughing in the grass.

Meaning

a baby is sitting outside in grass.

a man and a young toddler are playing outside in the grass.

Figure 1: An input sentence (Input) and the list of sentences that cover it in form (Form) and meaning (Meaning). All

sentences are from the English part of Multi30K.

2 Coverage of a Sentence in Form and
Meaning

To produce the newly built released language re-
sources!, we use a tool for the retrieval of sentences
similar to an input sentence that has the claimed

twofold objective of

* maximising the coverage of the input sentence
in both form and meaning,

* while minimising the number of retrieved sen-
tences.

The tool is implemented as a Python package (Liu
and Lepage, 2021). Basically, the input is a sen-
tence (the input sentence) and a corpus, and the out-
put is two lists of sentences extracted from the cor-
pus which are similar to the input sentence. The two
output lists are:

* a list of sentences similar in form to the input
sentence that cover it as much as possible, and

* a list of sentences similar in meaning to the in-
put sentence that cover it as much as possible.

The lengths of these two lists are not necessarily
equal.

2.1 Coverage of a Sentence in Form

By covering an input sentence in form, we mean that
the input sentence is covered by sequences of words
found in the sentences from the list of sentences out-
put by the retrieval process. The tool ensures cover-
age by recursive sub-string matching. A sentence

1http://lepage—lab.ips.waseda.ac.jp —
Projects — Kakenhi Kiban C 18k11447 — Experimental data

with the longest possible sub-string in common with
the input sentence is first retrieved. Then, the re-
maining parts of the input sentence are explored re-
cursively by the same retrieval procedure.

The sentences marked Form in Figure 1 illustrate
this. The input sentence is the English phrase two
young toddlers outside on the grass. The corpus is
the English part of Multi30K. The longest sub-string
in common with another sentence in the corpus is
outside on the grass, found in the sentence
white bunnies are outside on the grass. The pro-
cess then further retrieves sentences that have sub-
strings in common with the remaining parts of the
input sentence. Sentences with the longest possible
sub-strings in common are first retrieved. This ex-
plains why the next sentence contains a sub-string of
two words in common with the input sentence (two
young), while the third one has only a sub-string of
one word in common (toddlers).

An almost total coverage of the input sentence is
obtained by combining the sub-strings. Indeed the
coverage is not total, as the full stop is not cov-
ered. All together, but in a different order, the three
sub-strings outside on the grass, two young, and
toddlers make back the entire input sentence two
young toddlers outside on the grass (again without
the full stop).

two

2.2 Coverage of a Sentence in Meaning

By covering a sentence in meaning, we mean finding
portions of the input sentences that are semantically
close to sentences from the corpus. Semantic close-
ness or similarity is achieved through vector cosine
similarity of sub-word, word, or word sequence em-
beddings.

The four sentences marked Meaning in Figure 1



are examples of covering sentences for the same in-
put sentence as in the previous section. The sub-
strings on a, in the grass, and outside in grass
cover on the grass in the input sentence. Notice
that semantic similarity does not necessarily mean
synonymy.

3 Data

We use three corpora that contain diverse topics that
may lead to different performance. For each sen-
tence in the three corpora, we retrieve covering sen-
tences from the same corpus. This is performed, of
course, after removing the input sentence, so as to
prevent the input sentence from being retrieved. The
sentence coverage in the newly produced language
resources is shown by annotating the parts in com-
mon, in form or in meaning, using an XML-like tags
format.

3.1 Original Corpora Used to Produce the
Released Language Resources

We use the following three corpora to produce three
language resources:

« Multi30K? (Elliott et al., 2016; Elliott et al.,
2017; Barrault et al., 2018) is a collection of
image descriptions (captions). This corpus is
available in four languages: Czech, English,
French and German. In this work, we only use
the English part of the corpus. This corpus is
heavily used in multilingual image description
and multimodal machine translation tasks.

» Tatoeba® is a collection of sentences in over
100 languages. The number of sentences per
language ranges from 10 to over 100,000 sen-
tences per language. In this work, we only con-
sider the English part of the corpus.

« ACL ARC* (Bird et al., 2008) is a corpus that
contains academic articles in English, in the
field of computational linguistics. It is a col-
lection of published papers in conferences as-
sociated with or organised by the Association
for Computational Linguistics (ACL).

https://github.com/multi30k/dataset

*https://tatoeba.org

*https://catalog.ldc.upenn.edu/docs/
LDC2009T29/1rec_08/

Table 1 shows the statistics of the above corpora.
The ACL ARC corpus contains around 2.5 million
sentences, while the number of sentences that we
use from Tatoeba is a little bit more than 1.5 million.
Multi30K has a relatively small number of sentences
in comparison to ACL ARC and Tatoeba: 30,000,
as the name says. The vocabulary of ACL ARC is
100 times larger than that of Multi30K. Tatoeba has
the shortest average length of sentences in compari-
son with the other two corpora. ACL ARC also has
around two times longer sentences in both, words
and characters, compared with Multi30K.

Looking deeper into the use of words, we observe
the following phenomena. In types as well as in
tokens, words in ACL ARC are around two times
longer than in Multi30K. ACL ARC has a high ra-
tio of hapaxes with more than 60%, in comparison
to Multi30K with just above 40% and Tatoeba with
a little bit more than 45%. These phenomena are
mostly caused by the characteristics of the sentences
contained in the corpora themselves. Academic arti-
cles are more likely to contain longer and more spe-
cialized terms. In contrast, in Multi30K, which con-
tains image captions, sentences are shorter and con-
tain more frequent words, which are in trend, shorter
than scientific terms.

3.2 Format of the Released Language
Resources

The format of the released language resources fol-
lows standard practice in Natural Language Process-
ing, where language pieces appear as raw data, sep-
arated by tabulations and with annotations by XML-
like tags. Each resource consists of a unique file
containing a sequence of sentences on each line. On
each line, the input sentence comes first, then the list
of sentences for coverage in form, and finally the list
of sentences for coverage in meaning. Each sentence
is separated from the next one by a tabulation.

The sub-strings or parts in common with the in-
put sentence in the retrieved sentences are identi-
fied by XML-like tags. There is only one tag used:
coverage. It takes one attribute type with two
possible values: formal and semantic. For in-
stance, the first sentence in the Form part of Figure 1
appears in the language resource produced from the
English part of the Multi30K corpus as follows:



Multi30K Tatoeba ACL ARC
# of sentences 30,014 1,519,509 2,491,483
# of tokens 390,843 11,561,489 57,585,605
# of types 10,376 160,454 1,083,298
Avg. token length 3.87+2.40 4.26+2.19 5.34+3.14
Avg. type length 6.93+2.41 8.06+2.74 8.76+4.28
Type-Token-Ratio 0.03 0.01 0.02
Hapax ratio (%) 41.94 47.24 62.55
# of char./sent. 62.384+20.37 | 39.03£23.52 | 145.48+73.26
# of words/sent. 13.194+4.17 9.55£4.97 | 27.45+14.06

Table 1: Statistics on the original data (the average values are given with standard deviation after the + sign).

per input sentence on average Multi30K Tatoeba ACL ARC
# of retrieved sent. 5.43+£2.21 3.29+2.32 5.79£3.77
# of char./sent. 61.9+20.54 | 44.39437.33 | 160.99+78.29
# of words/sent. 13.514£4.18 | 10.56£7.54 | 29.96+14.67
Form # of char. in coverage 17.97£13.33 | 16.19£15.65 | 35.501+46.24
# of words in coverage 391+291 3.87+3.49 6.71+8.75
Individual coverage (%) 32.08 4471 27.42
Cumulative coverage (%) 87.50 85.48 63.14
# of retrieved sent. 2.05£1.21 1.5240.82 2.70+£1.42
# of char./sent. 59.18£19.82 | 36.90£26.27 | 148.294+76.96
# of words/sent. 12.84+4.09 9.18+5.38 | 27.60+14.44
Meaning | # of char. in coverage 33.57£23.49 | 20.14+£16.87 | 95.19£92.52
# of words in coverage 7.24+4.77 4.5143.60 | 18.19+17.04
Individual coverage (%) 86.58 82.43 82.93
Cumulative coverage (%) 89.42 89.52 84.91

Table 2: Statistics on the data produced (the average values are given with standard deviation after the + sign).




two white bunnies are
<coverage type=
"formal">outside on the
grass.</coverage>

Although the order of retrieved sentences in the
released language resources is fixed as mentioned
above, the order is theoretically free, because the
values of the attribute type give the type of cov-
erage.

3.3 Ratio of Coverage

The coverage of a sentence is the length of the se-
quence of words that is similar to the input sentence.
We find that the average length of semantic cover-
age is higher than that for formal coverage. This is
indicated in Table 2 by the rows # of char. in cov-
erage and # of words in coverage. For the Tatoeba
corpus, the average length of semantic coverage is
1.2 times that of formal coverage, while this ratio is
2 for Multi30K and roughly 3 for ACL ARC.

3.3.1 Ratio of Coverage in Form

We measure the ratio of coverage in form by
counting the number of identical word sequences in
the retrieved sentences covering the input sentence.
There are two kinds of ratios of coverage per input
sentence: individual coverage and cumulative cov-
erage. The individual coverage computes the length
of coverage of a retrieved sentence against the length
of the input sentence. We report the average individ-
ual coverage over all retrieved sentences. In contrast
to the average individual coverage, cumulative cov-
erage is the ratio of the sum of the lengths of all sub-
strings in the retrieved sentences over the length of
the input sentence. Table 3 illustrates these ratios on
several example sentences.

Table 2 shows that the average individual cov-
erage in form is higher for Tatoeba than Multi30K
and ACL ARC. This is not surprising as Tatoeba is
known to be repetitive. In terms of cumulative cov-
erage, an input sentence can be almost 85% covered
by the retrieved sentences in Multi30K and Tatoeba,
whereas it is only covered by 63% in ACL ARC.

3.3.2 Ratio of Coverage in Meaning

To compute the similarity between the input sen-
tence and its retrieved similar sentences in meaning,

we use the F1 value of BERTScore® (Zhang et al.,
2020). The individual coverage in meaning is de-
fined as the BERTScore of the semantic coverage
per retrieved sentence with the input sentence. Fur-
thermore, we use the concatenation of the sequences
of coverage in all retrieved sentences to calculate the
cumulative coverage.

Table 2 shows that the ratio of coverage is up to
80% in all three corpora, Multi30K, Tatoeba, and
ACL ARC. Some example results for the calculation
of coverage ratio in meaning are shown in Table 3.

4 Experiments

We carry out experiments on sentence re-generation
with the newly produced language resources intro-
duced in Section 3. For each resource, we divide the
dataset into training and test sets, 90% and 10% re-
spectively. Thus, we have a training set and a test set
for each Multi30K, Tatoeba, and ACL ARC.

To illustrate the task, let us look at the example
in Figure 1. The task consists in re-generating the
sentence marked Input, from the only given of the
three sentences marked Form or the four sentences
marked Meaning. The covering parts are shown in
boldface and are indicated by tags in the raw dataset.

We consider two approaches to address this task.
The first one is a naive approach which uses a lan-
guage model to perform reordering of the cover-
ing parts. This is our baseline. The second one is
the neural approach where we treat the sentence re-
generation task as a translation task from the cov-
ering parts into the original sentence. The perfor-
mance is evaluated separately according to the type
of coverage used. Therefore, we have a distinct eval-
uation on each of the levels of form and meaning.

4.1 Baseline

As said above, the baseline, which is a naive ap-
proach, just reorders the covering parts. It first ex-
tracts the covering parts in the retrieved sentences
based on the tags (see Section 3.2). The covering
parts are ordered in all possible permutations. From
this set of all possible permutations, we select the
output as being the permutation with the lowest per-
plexity according to a language model.

*https://github.com/Tiiiger/bert_score



Multi30K __Coverage (%)
indiv | avg | cum
Input two young toddlers outside on the grass.

two white bunnies are outside on the grass. 50.00

Form two young girls playing outside on the playground. 25.00 | 29.17 | 87.50
two toddlers posing for the camera. 12.50
there is a toddler playing on a playground. 82.97
. two kids are laughing in the grass. 92.51

Meaning a baby is sittingiuts(g;de in gf:zss. 90.89 2012 | 90.32
a man and a young toddler are playing outside in the grass. | 94.10

Table 3: Example results for coverage ratio on the three corpora. The individual coverage (indiv) is for each individual
sentence. The average coverage (avg) is the arithmetic mean over all individual coverage scores. The cumulative
coverage (cum) is the coverage of all sub-strings in the retrieved sentences over the input sentence. Its maximal value
is 100%.

Accuracy Edit distance # of chars | # of words | BLEU
Corpus Approach - - .
(%) in chars | in words per sent. per sent. | points
) Naive 0.30 51.76 12.05 99.28 20.76 | 43.60
Multi30K | Neural 790 | 2938 6.76 55.06 12.01 | 39.61
Tatoeba Naive 0.44 33.83 8.37 58.47 12.80 | 45.05
Neural 24.64 19.70 4.65 34.74 8.61 | 45.57
Naive 0.00 | 161.31 35.19 212.32 38.83 | 23.53
ACL ARC Neural 0.27 | 103.86 23.30 103.47 20.34 8.76
Table 4: Evaluation on the level of form.
Corpus Approach # of chars | # of words BERTScore (F1)
per sent. per sent.

) Naive 69.41 14.82 0.86

Multi3OK | Neural 43.43 10.19 0.91

Tatoeba Naive 30.93 6.69 0.85

Neural 28.14 7.95 0.90

Naive 287.11 54.98 0.84

ACL ARC Neural 91.71 20.70 0.86

Table 5: Evaluation on the level of meaning.



4.1.1 Permutation of Covering Parts

We extract the covering parts from the retrieved
sentences. These covering parts are to be found be-
tween the tags mentioned in Section 3.2. As an ex-
ample, let us suppose that we have five sentences in
the sentence coverage on the level of form for one
input sentence. This gives five sub-strings between
tags that we extract, which are the covering parts.

Carrying on with the situation of five retrieved
sentences, we permute the five covering parts in all
possible orders. This gives us 120 possible permu-
tations, i.e., n!, where n is the number of covering
parts, 5.

4.1.2 Selection by Language Model

We apply a language model to score all pos-
sible permutations. We use kenLM® (Heafield et
al., 2013) for that, and use modified Kneser-Ney
smoothing without pruning, for smoothing. In our
experiments, we train the language model on the
training set. We thus built 3 language models, one
on each of the three different corpora: Multi30K,
Tatoeba, and ACL ARC.

In our previous example of 120 combinations, ap-
plying the language model to each of the 120 combi-
nations delivers a score for each of the combinations.
We select the best combination, that is the one with
the lowest score among the 120 combinations. Some
examples of results are given in Table 6 for each of
the three corpora.

4.2 Neural Approach

In a second, more modern and less naive approach,
we treat the sentence re-generation task as a transla-
tion task where:

* the source channel is the covering parts con-
tained in the sentence coverage, and

» the target channel is the original sentence
which we would like to re-generate.

Similar to the baseline, we only consider the cov-
ering parts as the input for the neural approach.
Thus, we first extract the covering parts from the
sentence coverage according to the tags (see Sec-
tion 3.2). We then train the Transformer model on
the training set.

*https://github.com/kpu/kenlm

4.2.1 Preprocessing Dataset

As mentioned above, we extract the covering parts
from the retrieved sentences. The covering parts are
concatenated as an input sequence to the neural ap-
proach. For example, in Figure 1, we use the cover-
ing parts on the level of form, “outside on the grass”,
“two young” and “toddlers” as an input sequence for
the input sentence “two young toddlers outside on
the grass”. The source and target channels of the
neural approach are shown as follows:

* source channel:
young toddlers”

“outside on the grass two

* target channel: “two young toddlers outside on
the grass.”

All sentences are tokenized using SentencePiece’
to break the sentences into sub-words. The sub-
word model is known to improve the performance of
the natural language generation systems (Kudo and
Richardson, 2018). This tool is an unsupervised text
tokenizer (encoding) for neural networks, especially
in the text generation system.

4.2.2 Transformer: Open-NMT

We train a Transformer model provided in Open-
NMT-py® (Klein et al., 2017) on each of the three
language resources mentioned above to perform the
sentence re-generation task. We keep the test set as
itis (10%) and divide the original training set (90%)
into 80% as a training set and 10% as a validation
set to train our Transformer model. Next, we select
the best-trained model to perform the sentence re-
generation task in terms of the perplexity score given
by the transformer model on the validation set.

5 Results and Analysis

We evaluate the performance of the baseline and the
neural approach on the test sets on each of the three
corpora. As mentioned in Section 4, the evaluation
is performed on two levels, form and meaning, based
on the type of coverage used. On the level of form,
we use accuracy, edit distance, and BLEU scores as
evaluation metrics. To measure the performance on
the level of meaning, we use BERTScore. The over-
all results are given in Table 4 and Table 5.

https://github.com/google/sentencepiece
8https://github.com/OpenNMT/OpenNMT-py



Corpus Level Approach Sentence BLEU | BERT-F1
- - two young toddlers outside on the grass . -
é Form Naive two young toddlers outside on the grass 86.69 -
5} Neural two young toddlers outside on the grass . 100.00 -
g Naive on a and a young toddler are playing outside in the - 0.91
Meaning grass in the grass outside in grass
Neural a toddler is playing with a toy in the grass . - 0.93
- - I'd be unhappy, but I wouldn’t kill myself. -
.. but I would n’t be unhappy, wouldn’t kill I'd be un- 36.41 -
- Naive
S Form happy, but 1
% Neural I’d be unhappy, but I wouldn’t kill. 79.56 -
B Naive but I don’t intend to kill myself - 0.86
Meaning I don’t intend to kill myself, but I don’t want to kill - 0.92
Neural
myself.
- - Single word may have different meanings under dif- -
ferent situations.
O Naive under different situations Single word 18.39 -
% Form Neural Slometlmes different situations under different situa- 28.32 -
B tions.
SC) have different meanings . g . word followed by - 0.85
. Naive comma) can also be addressed through truecasing
Meaning
Neural In other words, words may have different meanings. - 0.92

Table 6: Examples of sentences re-generated by the naive baseline and neural approaches on the three corpora using
coverage on the level of form and meaning. A grey background indicates the original sentence from the corpus, a

white background is for the re-generated sentence.

5.1 Evaluation on the Level of Form

The first metric used to evaluate the performance of
the system on the level of form is accuracy. Accu-
racy is defined as the proportion of exact match be-
tween the reference and the re-generated sentence
(just a full stop missing counts as zero). The naive
baseline’s performance is close to zero in terms of
accuracy on all of the corpora: 0.30% on Multi30K,
0.44% on Tatoeba, and 0.00% on ACL ARC. There
is no correct sentence re-generated by the baseline
on the ACL ARC. However, the neural approach has
higher accuracy than the baseline on the three cor-
pora: 7.90% on Multi30K, 26.64% on Tatoeba, and
0.27% on ACL ARC. The difference is pretty high,
particularly on Tatoeba.

A finer view is given by the use of the Leven-
shtein edit distance (Levenshtein, 1966)° to perform
the formal evaluation. The Levenshtein edit distance
involves three different operations: insertion, dele-
tion, and substitution. Each operation counts as one.
Table 4 gives the results of the application of the

‘https://github.com/roy-ht/editdistance

Levenshtein edit distance at two levels of granular-
ity, that of characters and that of words. The edit
distance of the baseline is very close to the average
length of the original sentence. This means that al-
most all of the words in the re-generated sentence
need to be modified. We also observe that the neural
approach achieves around 40% lower edit distance
than the baseline. Looking at some examples of the
re-generated sentences in Table 6, the Transformer
model has removed repeated words or grammatical
errors such as punctuation. This makes re-generated
sentences closer to the reference sentences in terms
of edit distance.

We thus measure the extent to which groups of
words might be in the correct order. To this end,
we use BLEU (Papineni et al., 2002), in its Sacre-
BLEU!? (Post, 2018) implementation. BLEU eval-
uates the similarity between one or several origi-
nal references, and a candidate sentence. Higher
BLEU scores indicate higher similarity, with 100
being the maximum. Table 4 shows that the base-

Yhttps://github.com/mjpost/sacrebleu



line is able to obtain around 44 BLEU scores for
Multi30k and Tatoeba, twice as much as for ACL
ARC (23.53). BLEU scores of above 40 reflect the
fact that some sequences of words are shared be-
tween the re-generated sentence and the reference
sentence, i.e., not all words are scrambled in a com-
pletely different order. We also notice that the neural
approach gets similar (Tatoeba) or lower (Multi30K
and ACL ARC) BLEU scores than the baseline. This
indicates that the Transformer model missed half of
the portion of correct words in the correct position.
For ACL ARC, the neural approach seems to change
most of the content of the sentence into a completely
different sentence which leads to a low BLEU scores
(8.76).

5.2 Evaluation on the Level of Meaning

To evaluate the performance on the level of mean-
ing, we use BERTScore (similar to what we did
in Section 3.3.2). It computes the cosine simi-
larity between pair-wise tokens in form of the re-
generated sentence and the original sentence using
a pre-trained BERT embedding model. BERTScore
provides precision, recall, and F1, measured by the
weighted maximum similarity scores. Here, we only
consider the F1 score which is the harmonic mean
of recall and precision. A value of 1 for the F1
score means that the meaning of the re-generated
sentences and reference sentences are the same. Ta-
ble 5 shows that F1 scores on Multi30K, Tatoeba,
and ACL ARC are in the range of the mean of 0.87
to 0.92. This shows that the re-generated sentences
are 85% semantically close to the original input sen-
tences, according to BERTScore. Overall, the neu-
ral approach performs better than the baseline with
an average score of 0.89. This does not necessarily
show that our re-generated sentences are close to the
reference sentence, as shown in Table 6.

5.3 Discussion

Our experimental results show a configuration
where scores in accuracy close to zero and large
Levenshtein edit distances are seemingly in contra-
diction with the reasonably high scores in BLEU and
the excellent scores in BERTScore. Such an exper-
imental configuration asks the question of what the
adequate metrics are to reflect the fact that, although
almost all the expected words are present, although

some sequences of words are correct and match ex-
actly the input sentence, as a whole, the re-generated
candidate sentences produced by our naive method
are far away from the input sentences.

6 Conclusion

We defined a sentence re-generation task: re-
generate an input sentence back given sentences that
cover it on two levels, form and meaning. For
this task, we built a new type of language resource
produced from three different corpora: Multi30K,
Tatoeba, and ACL ARC. Altogether, this represents
over 4 million sentences annotated with similar sen-
tences that cover them, and in which the covering
parts are tagged. We released three resources.

We carried out experiments on this new type of
resource using two approaches: a naive approach
of sequence reordering using a language model,
and a neural approach that treats the sentence re-
generation task as a translation task from covering
parts to the original sentence. The experiments were
performed on both the level of form and meaning.
The performance of the systems was evaluated ac-
cording to the type of coverage used. On the level
of form, experimental results showed that the neu-
ral approach performed up to 40% better in terms of
accuracy and edit distance. However, it performed
similarly or lower in terms of BLEU. On the level
of meaning, the neural approach achieved a higher
BERTScore than the baseline by a margin of 4%.

For future work, as for the released language re-
sources, their quality can be improved. A higher
individual coverage percentage (mentioned in Sec-
tion 3) is needed, particularly for the ACL ARC cor-
pus, so that original sentences are enough covered.
In addition, the calculation of coverage percentage
on meaning needs to be revised since the average of
83% of individual coverage percentage was not re-
flected well in our evaluation on the level of mean-
ing.

We also consider releasing similar resources for
other languages than English. We believe that this
new type of resource can be used for various types of
NLP tasks such as language reference (Vossen et al.,
2020), text generation (Nan et al., 2021), or the inte-
gration of translation memories with machine trans-
lation (Bulte and Tezcan, 2019b).
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