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Abstract

Large scale pre-trained language models
(PTLMs) such as BERT have been widely
used in various natural language process-
ing (NLP) tasks, since PTLMs greatly im-
prove the downstream task performances by
fine-tuning the parameters on the target task
datasets. However, in many NLP tasks, such
as document classification, the task datasets
often contain numerous domain specific words
which are not included in the vocabulary of
the original PTLM. Those out-of-vocabulary
(OOV) words tend to carry useful domain
knowledge for the downstream tasks. The do-
main gap caused by OOV words may limit
the effectiveness of PTLM. In this paper, we
present VART, a concise pre-training method
to adapt BERT model by learn OOV word
representations for multi-label document clas-
sification (MLDC) task. VART employs an
extended embedding layer to learn the OOV
word representations. The extended layer can
be pre-trained on the task datasets with high
efficiency and low computational resource.
The experiments for MLDC task on three
datasets from different domains with different
sizes demonstrate that VART consistently out-
performs the conventional PTLM adaptation
methods such as fine-tuning, task adaption and
other pre-trained model adaptation methods.

1 Introduction

Pre-trained language models (PTLMs) such
as GPT (Radford and Narasimhan, 2018) and
BERT (Devlin et al., 2018), which are trained
on massive unlabeled datasets, can effectively

encode rich knowledge into huge parameter spaces.
Therefore, by fine-tuning the PTLM parameters, the
encoded knowledge is able to benefit a wide range
of downstream natural language processing (NLP)
tasks (Dai et al., 2021; Liang et al., 2020; Adhikari
et al., 2019; Wang et al., 2019; Zhu et al., 2020; Gao
et al., 2019).

However, applying PTLMs to the specific domain
tasks always faces the domain gap problem. Con-
ventionally, PTLMs are trained on a large volume
of general domain datasets with a fixed vocabulary
extracted from the datasets. When applying such
general domain PTLMs on a specialized domain
dataset, e.g., patent documents, the domain gap be-
comes an important factor that hinders the perfor-
mance of PTLMs. One of the causes of the do-
main gap is the domain words which are not in-
cluded in the PLTM vocabulary. Although a PTLM
is capable to handle the out-of-vocabulary (OOV)
words by splitting each OOV word into multiple
in-vocabulary sub-words, for instance, the word
“chalcogenide” commonly seen in the patent doc-
ument will be split into five sub-words including
“ch”, “##al”, “##co”, “##gen” and “##ide” with
the vocabulary of BERT-base-cased model. As a
result, the representation of “chalcogenide” is di-
vided into five embedded vectors. Consequently, the
information of “chalcogenide” which is intuitively
preferable as an integral representation would be ig-
nored in the downstream tasks. Since those OOV
words tend to carry rich domain knowledge, the in-
formation loss potentially limits the effectiveness of
PTLMs for tasks such as multi-label document clas-
sification (MLDC), which is known as a fundamen-



tal and essential NLP task and has been widely ap-
plied in specific domain tasks such as clinical code
prediction (Scheurwegs et al., 2017; Mullenbach et
al., 2018) for electronic health record (EHR) texts
and biomedical document classification (Du et al.,
2019; Baker and Korhonen, 2017). The datasets for
domain-specific MLDC tasks always contain a large
number of domain OOV words which challenge the
use of PTLMs.

In order to bridge the domain gap for PTLMs, a
plenty of researches have been conducted. Some
of the prior researches have focused on fine-tuning
PTLMs for text classification (Sun et al., 2019),
while other researches have addressed the issue by
adapting the PTLMs to the target domain datasets
by training PTLMs from scratch with a new vocabu-
lary, such as SciBERT (Beltagy et al., 2019). How-
ever, the fine-tuning approach is focused on adapt-
ing the PTLM parameters to the target domain and
leaves aside the OOV issue, while training PTLMs
from scratch sets an extremely high demand of com-
putational resource and it is time-consuming. To
solve the domain OOV problem efficiently, there are
recent researches focusing on extending the orig-
inal PTLM vocabulary with target domain words,
such as exBERT (Tai et al., 2020), which comple-
ments the original BERT model with another BERT
model for learning the OOV representations. How-
ever, exBERT model still faces the problems of effi-
ciency and training complexity.

Inspired by the work of exBERT, we propose
VART, a Vocabulary Adapted BERT model which
adapts the original BERT model by extending
the vocabulary with the target domain vocabulary.
Specifically, we just extend the embedding layer of
BERT model to learn the OOV word representa-
tions while inheriting other BERT layers and then
pre-train the model on the downstream task datasets.
Comparing with exBERT, the main contributions of
this work are summarized as follows:

• We demonstrate a concise training method
to extend the BERT vocabulary with domain
OOV words. VART overcomes the problems
that remained in exBERT by boosting the ef-
ficiency in both pre-training and fine-tuning
phases while saving computational resources.

• Extensive experiments are conducted on three

datasets with different sizes and domains for
MLDC task. Although smaller in model size,
VART consistently outperforms exBERT and
other baseline methods even on an extremely
small scale task dataset.

2 Related Work

Fine-tuning PTLMs. The most common conven-
tional approach for utilizing PTLMs is fine-tuning.
Generally, fine-tuning is performed by replacing the
output layer of a PTLM with other layers which are
specified according to the downstream tasks. The
parameters of the original PTLM are preserved and
tuned on the task datasets. Various fine-tuning meth-
ods of BERT specially on document classification
task are investigated in (Sun et al., 2019), such as
studying the effectiveness of different BERT lay-
ers in the fine-tuning phase. Besides, a multi-task
learning mechanism is also used to fine-tune the
BERT model. Rietzler et al. (2019) fine-tunes the
BERT model for sentiment classification task. Dif-
ferent adaptation scenarios such as in-domain, cross-
domain and joint-domain are studied in the experi-
ments. Gururangan et al. (2020) focuses on dataset
selection for further pre-training the RoBERTa (Liu
et al., 2019) model. Various dataset selection strate-
gies, such as domain dataset selection (domain-
adaptive pre-training, DAPT) and task dataset se-
lection (task-adaptive pre-training, TAPT) are pro-
posed. The experiment results demonstrate that an
adapted PTLM is beneficial to various downstream
NLP tasks.

Domain specific PTLMs. In order to further im-
prove the performances on domain specific tasks,
such as biomedical domain, researches focusing on
training domain specific PTLMs have been proposed
in recent years. SCIBert (Beltagy et al., 2019) lever-
ages pre-training on large multi-domain scientific
publications with a new in-domain vocabulary. The
experiment shows that SCIBert outperforms general
domain BERT in the scientific domain tasks. More-
over, the in-domain vocabulary is proven helpful in
the experiment. Gu et al. (2020) pre-trains the do-
main BERT model from scratch with a customized
vocabulary on the PubMed articles. BioBERT (Lee
et al., 2019) inherits the vocabulary and the model
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Figure 1: Overview of adapting BERT model by extending the vocabulary. We will reuse the original BERT encoder
layer and further pre-train it with an extended vocabulary Vext from the target dataset. While in the pre-training phase,
we train the OOVEmbedding layer and MLM Prediction layer from scratch. Finally, the VART model is constructed
by merging the two embedding layers into one.

parameters from original BERT model and then is
further pre-trained on a large volume dataset that
mainly consisted of PubMed articles. Similarly, Lee
and Hsiang (2020) obtains a BERT model in patent
domain by fine-tuning original BERT model on over
two million patent documents.

Extending PTLM vocabulary. It is known that
training PTLMs from scratch requires powerful
computational resources and is time-consuming.
Recently proposed exBERT (Tai et al., 2020) intro-
duces a general training method to extend the orig-
inal BERT from the general domain to a specific
domain. The exBERT model preserves the original
BERT model and vocabulary. Meanwhile, another
smaller (or full size) BERT model is used to learn the
information of domain OOV words. However, there
are mainly two problems of this dual BERT model
structure. Firstly, exBERT is much larger than a sin-
gle BERT model so that it is highly inefficient in pre-
training phase. For alleviating the problem, the au-
thor proposes tradeoffs such as shrinking the size of
the extra BERT model and fixing the parameters of
the original BERT model in the pre-training phase.
However, the smaller size BERT model may be in-
adequate to learn document representations, while
the original BERT model still faces the domain gap
if the parameters are fixed. Secondly, it is non-
trivial to combine the outputs from the two BERT
encoders. For this reason, a weighting block com-
prised of a fully-connected layer and sigmoid acti-
vator is used to combine the two encoder outputs.
This increases the training complexity.

The fine-tuning PTLMs method focuses on the
model parameter adaptation and leaves aside the

OOV issue. Training domain specific PTLMs
from scratch is computational expensive and time-
consuming. Inspired by exBERT, we propose VART
to adapt the original BERT model to the target
domain by learning the representations of domain
OOV words. In order to solve the remained prob-
lems in exBERT, we use only one single BERT
model with a minor modification for the adaptive
pre-training. Comparing with exBERT, our model
boosts the efficiency in both pre-training and fine-
tuning phases without sacrificing the performances
for MLDC task.

3 Methodology

In this section, we introduce VART model which is
pre-trained with an extra OOV list from the target
dataset illustrated in Figure 1. In the first place,
we would like to define the PTLM adaptation task
in this paper. Given an original pre-trained BERT
model B with a vocabulary Vin and a training dataset
Dt for MLDC in a specific domain, we expand Vin

to Vext with an OOV list extracted from Dt at first,
and then design an extended BERT model Bext,
which is inherited from B and is further pre-trained
with Vext. Finally, VART is derived from Bext and is
fine-tuned for downstream MLDC task. In the rest of
this paper, the term “BERT” refers to “BERT-base-
cased”1 model from Huggingface2 repository and is
implemented by Huggingface transformers3 (Wolf
et al., 2020).

1https://huggingface.co/bert-base-cased
2https://huggingface.co/
3https://github.com/huggingface/

transformers
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Figure 2: Overview of further pre-training Bext with extended vocabulary and target dataset Dt. The OMask (OOV
Mask) selects and combines embeddings embin from the original Embedding layer for the existing vocabularies and
emboov from OOVEmbedding layer for the new vocabularies.

OOV Extraction. Given a training dataset Dt of a
specific task (MLDC for this paper), we first extract
a word list Vt from Dt via WordPiece (Wu et al.,
2016) algorithm, then an OOV vocabulary Voov is
constructed by selecting all the terms in Vt but not
in Vin. Afterwards, Vext is obtained by appending
Voov to Vin. As the example shown in Figure 2, we
extract a new word “bananas” from Dt and append
the word to Vin.

Pre-training VART. The structure of original
BERT model can be categorized mainly into three
components shown in Figure 1(a). The embed-
ding layer encodes the input tokens into a real-
valued vector. The encoder is a stack of Trans-
former (Vaswani et al., 2017) blocks consist of mul-
tiple self-attention heads and learns the final repre-
sentation of the input sequence. The task layer gen-
erates the output for self-supervised tasks such as
masked language model (MLM) and next sentence
prediction (NSP).

In order to learn the representations for the OOV
words, we simply complement an extra embedding
layer to the original BERT model B while preserv-
ing the original embedding layer to encode the in-
vocabulary words. As the example shown in Fig-
ure 2, by applying OMask, only the new word “ba-
nanas” is encoded by the OOVEmbedding layer. Af-

terwards, it is handy to use OMask for combining
the embedded vectors embin and emboov. This pro-
cess is described in the following Equations, where
wi is id of the i-th word in the input sequence.

embini = Embedding((1−OMaski) · wi) (1)

emboovi = OOVEmbedding(OMaski · wi) (2)

embi = (1−OMaski)embini +OMaskiemboovi

(3)
The encoder of Bext is initialized with the encoder

in B. For the task layer, we only select MLM to
pre-train Bext in this work. Considering that the vo-
cabulary size of Vext is enlarged, the magnitude of
prediction vector from the task layer should be in-
creased to match the size of Vext. Therefore, we cre-
ate a new task layer with the proper dimension for
pre-training Bext on Dt. Considering that the ex-
tra embedding layer and the task layer in Bext need
to be trained from scratch, while the encoder layer is
inherited from B, it is plausible to set different learn-
ing rates for those layers in the pre-training process.
Afterwards VART model is obtained by concate-
nating the two embedding layers after pre-training
Bext(see Figure1(c)). At this point, we adapt B to
the target dataset Dt by extending the vocabulary.

The final transformation brings another merit of
VART in that our model is converted into a standard



Table 1: Datasets overview. The column “Len” denotes
the average document length of each dataset. “Labels” is
the actual label number of the dataset.

Dataset Train Test Len Labels Domain
CEI 2.4k 1.2k 277 103 Clinical
EU-Leg 45k 6k 538 4193 Law
Patent 90k 10k 66 9152 Patent

BERT model from the non-standard structured Bext.
A standard structured BERT model is much more
friendly to people who would deploy VART in their
own applications since they do not need to import
any extra libraries in their project reducing the risk
of library conflicts.

4 Experiment

4.1 Datasets

We conduct experiments on three datasets for the
MLDC task with different sizes and domains. An
overview of all the datasets is shown in Table 1.

CEI dataset4 (Larsson et al., 2017) is annotated
for chemical exposure assessments5. The dataset
contains 3.7k abstracts from PubMed documents
and is categorized by experts into 32 classes denot-
ing chemical exposure information.

EU-Leg dataset (Chalkidis et al., 2019) com-
prises 57k legislative documents from EURLEX6.
The documents are annotated with multiple concepts
from EUROVOC7 and contain about 4.3k labels in
total.

Patent dataset8 (Huang et al., 2019) is collected
from USPTO9 containing 100k patent documents,
including titles and abstracts. The hierarchical an-
notation category contains almost 9k labels.

4.2 Implementation

Pre-training. We use the exBERT library10 and
modify the training script to support the VART

4https://figshare.com/articles/dataset/Corpus and Software/
4668229

5https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336247/
6https://eur-lex.europa.eu/
7https://publications.europa.eu/en/web/eu-vocabularies
8https://drive.google.com/open?id=1So3unr5p vlYq31gE0Ly

07Z2XTvD5QlM
9https://www.uspto.gov/

10https://github.com/cgmhaicenter/exBERT

Table 2: Learning rate settings for pre-training different
models. “BERTtapt” denotes the task adapted training
for BERT model. The subscript of exBERT and VART
models denotes the dataset on which the learning rate is
applied.

Models Original
Layers

Extended
Layers

BERTtapt 4e-05 –
exBERTother 2e-05 1e-04
exBERTCEI 4e-05 1e-04
VARTother 4e-05 1e-04
VARTEU Leg 2e-05 2e-04

model. The BERT-base-cased model, which con-
tains 12 Transformer layers with 12 self-attention
heads and 768 hidden dimension, is selected as the
original BERT model. The maximum input se-
quence length is set to 512 and only the masked lan-
guage model task is chosen to pre-train all the mod-
els.

For the extended encoder in exBERT model, we
inherit the best settings in the author’s work with
hidden size 252 and feed-forward layer size 1024
(about 33% of the original BERT model size). Dif-
ferent learning rates are set for the original BERT
layers and the extended layers in both exBERT and
VART models. The detailed learning rate settings
are listed in Table 2. We pre-train all the mod-
els for 50 epochs on the CEI dataset, 40 epochs
on the Patent dataset and 10 epochs on the EU-Leg
dataset in considering of training efficiency. The
models saved after the final epoch will be used for
the MLDC task. The batch size is set to 4 on all the
datasets. The Adam (Kingma and Ba, 2015) opti-
mizer is applied to tune the parameters. All the ex-
periments hereafter are conducted on our in-house
servers with GeForce GTX 1080 Ti/2080 Ti GPUs.

Fine-tuning. In the fine-tuning process, the hid-
den state h of the first token [CLS] is considered
as the document representation and is followed by
a fully connected layer (task layer) which predicts
the final labels. Different learning rates are set to the
pre-trained models and the task layer respectively.
2e-05 is set to all the pre-trained models, while 2e-
04 is set to the task layer on CEI dataset and 1e-04
is set on Patent and EU-Leg datasets. Moreover, a
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Figure 3: Visualization of results from different vocabularies. The line chart denotes the micro-F1 score corresponding
to the left vertical axis and the histogram shows the vocabulary size corresponding to the right vertical axis.

Table 3: Overall experiment results. “Vocab Size” de-
notes the vocabulary size for training exBERT and VART
models. For BERT models, the vocabulary size is 28,996.

Model CEI EU-Leg Patent
BiGRU-LWAN – 69.8% –
HARNN – – 54.1%
BERTfine tune 91.9% 70.4% 57.5%
BERTtapt 92.6% 70.4% 58.3%
exBERText 92.1% 71.5% 58.4%
exBERTwhole 92.8 % 70.8% 58.6%
VART 92.9% 71.2% 58.8%
Vocab Size 33,710 55,558 41,718

learning rate decay mechanism is adopted to boost
the performance in the form of Equation 4, where
α0 is the initial learning rate and decay rate is set
to 0.9. We run 20 epochs for fine-tuning on all the
datasets and the binary cross-entropy loss is used to
train the classifier. Micro-F1 score is adopted as the
evaluation metric.

α′ =
1

1 + decay rate× epoch num
α0 (4)

4.3 Baseline Methods

Networks without pre-trained models.
HARNN (Huang et al., 2019) is a hierar-
chical attention-based RNN model. BiGRU-
LWAN (Chalkidis et al., 2019) adopts a label-wise
attention mechanism on the basis of a Bi-GRU
layer. The two models carried out experiments
on the same datasets as in this work and without
pre-trained models. We cite the reported results on

Table 4: Comparison of different vocabularies. Scores
in bold denote the results better than Berttapt. The
best scores are marked with †. The number in brackets
presents the vocabulary size.

Settings CEI EU-Leg Patent

Bertfine−tune
91.9%

(28,996)
70.4%

(28,996)
57.5%

(28,996)

Berttapt
92.6%

(28,996)
70.4%

(28,996)
58.3%

(28,996)

VART10k
92.9†%
(33,710)

70.8%
(33,000)

58.4%
(34,008)

VART20k
92.7%

(40,726)
70.4%

(39,507)
58.8%†

(41,718)

VART30k
92.8%

(42,659)
70.7%

(47,254)
58.6%

(50,456)

VART40k
92.8%

(49,673)
71.2%†

(55,558)
58.3%

(55,075)

Patent and EU-Leg datasets from the works directly.

Fine-tune Only. The original BERT model is di-
rectly fine-tuned for the downstream MLDC task.

Task Adaptation. We follow the task adaptation
(TAPT) method described in (Gururangan et al.,
2020) to pre-train the BERT model on each train-
ing dataset with the vocabulary unchanged at first,
and then fine-tune the adapted BERT model for the
MLDC task.

exBERT. We inherit the best settings for the ex-
tended encoder in the author’s work with hidden
size 252, feed-forward layer size 1024, 12 attention
heads and 12 hidden layers (about 33% of the orig-



Table 5: Efficiency and computational resource cost comparison of the pre-trained models.
BERTtapt exBERT VART

Parameter size 110M 147M 122M

FLOPspre train

CEI
Patent
EU-Leg

55.2B
75B

74.6B
80.1B

60.6B
60.2B
65.6B

FLOPsfine tune

CEI
Patent
EU-Leg

43.5B 57.9B 43.5B

GPU usage 1 2 1

inal BERT model size). The exBERT model is pre-
trained based on the same vocabulary with VART
model. Moreover, there are two pre-training modes
for exBERT: training the extended model only and
training the whole model. We test the both pre-
training modes in this work.

4.4 Experiment Results and Analysis
The overall experiment results are listed in Table 3.
From the results, we can observe that the fine-
tuning method greatly improves the performances
with respect to the networks without BERT model.
This confirms the effectiveness of BERT model, not
surprisingly. Task adapted BERT model further
improves the performance of fine-tuning method,
which demonstrates that the adaptation of PTLMs
is essential to improve the performance for specific
tasks. VART achieves best scores on CEI and Patent
datasets. Although exBERT produces the best result
on EU-Leg dataset with training extended encoder
mode, the result from VART on EU-leg is close to
exBERText and is better that other baselines includ-
ing exBERTwhole.

From the results we can also see the problems
of exBERT. Firstly, the two training modes perform
differently on different datasets. Moreover, the re-
sults of the two modes are also significantly differ-
ent. On the CEI dataset, exBERTwhole is signifi-
cantly better than exBERText, while the result is op-
posite on EU-Leg dataset. This indicates that it is
difficult for exBERT to balancing the performances
of the original BERT encoder and the extended en-
coder. On the contrary, VART model can be easily
trained as a result of its simple structure.

Secondly, the training efficiency hinders the uti-
lization of exBERT. Table 5 lists the comparison

of the training efficiency and the computational re-
source cost between exBERT and VART. We can see
that, although exBERT yields equivalent results on
CEI and Patent datasets and produces the best re-
sult on EU-Leg dataset, VART is more efficient than
exBERT in both pre-training and fine-tuning. For
instance, as to the real running time, it took about
22 hours with VART on the Patent dataset com-
paring to 36 hours with exBERText and 40 hours
with exBERTwhole. In the fine-tuning process, it
took about 19 hours with VART model on EU-Leg
dataset comparing to 40 hours with exBERT. Be-
sides, VART has about 17% fewer parameters than
exBERT without sacrificing performances. As to the
computational resource cost, VART only requires
1 GPU for both pre-training and fine-tuning, while
exBERT needs 2 GPUs under the same setting. All
the evidences demonstrate that VART is able to fur-
ther improve the performance on basis of conven-
tional PTLM adaptation methods with a high effi-
ciency and a low computational resource cost.

4.5 Impact of Vocabulary Size
We further conduct experiments to test VART
model with different vocabulary sizes. API
BertWordPieceTokenizer is used for extracting
vocabularies from the target datasets. By setting the
parameter vocab_size with different values, we
can control the extracted vocabulary size. For each
training dataset, we extract four vocabularies by set-
ting vocab_size with 10k, 20k, 30k and 40k sep-
arately. The settings for pre-training and fine-tuning
with different vocabularies remain the same as Sec-
tion 4.2.

The detailed results of different vocabulary sizes
are listed in Table 4, which is also visualized in Fig-



ure 3. From the results we can observe that VART
model produces better results than BERTtapt model
in most cases. This indicates that extending the vo-
cabulary is beneficial to the MLDC task.

On the other hand, we could arrive at a similar
conclusion with Tai et al. (2020) that increasing the
vocabulary size may not always produce better re-
sults. The best score coming from the largest vo-
cabulary can be only seen on the EU-Leg dataset.
On the CEI and Patent datasets, the best scores are
achieved with 10k and 20k vocabularies instead of
using their largest vocabularies.

We hypothesis that the vocabulary size and the
dataset size should to be proportional. Since larger
vocabularies from smaller datasets may contain
more low frequency words which provide less in-
formation for the MLDC task. However, the rela-
tionship between the vocabulary size and the train-
ing sample number is worth studying in the further.

5 Conclusion

We introduced VART, a concise pre-training method
to extend the BERT model with domain OOV words.
With a minor modification of adding an extra em-
bedding layer to the original BERT model, we can
adapt the BERT model to the target task datasets.
Comparing with the conventional method such as
exBERT, our approach maximizes the use of general
domain BERT model with much higher efficiency,
such as less pre-training time and lower computa-
tional resource requirements. Experiment results in-
dicate that our approach leverages the domain gap
of PTLMs for MLDC tasks. Since our approach is
a general solution for adapting the BERT model, in
the future we would like to examine VART in other
NLP tasks.
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