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Abstract
With the rise of social media platforms, we need to ensure that all users have a secure online experience by eliminating and
identifying offensive language and hate speech. Furthermore, detecting such content is challenging, especially in the Arabic
language, due to several challenges and limitations. Generally, one of the challenging issues in real-world datasets is long-tailed
data distribution. We report our submission to the Offensive Language and hate-speech Detection shared task organized with
the 5th Workshop on Open-Source Arabic Corpora and Processing Tools Arabic (OSACT5). In our approach, we focused on
how to overcome such a problem by experimenting with alternative loss functions rather than using the traditional weighted
cross-entropy loss. Finally, we evaluated various pre-trained deep learning models using the suggested loss functions to determine
the optimal model. On the development and test sets, our final model achieved 86.97% and 85.17%, respectively.
Keywords: Arabic, Offensive Language Detection, Class imbalance

1. Introduction

Offensive speech has expanded at an unprecedented rate
in today’s digital age since most communication has
transitioned to digital. Because of the lack of limits on
users on social media platforms, the role of detecting
offensive speech arises. In general, offensive speech is
a public communication that displays hatred or urges
violence against a person or group based on characteris-
tics such as race or religion. Detecting offensive speech
can be beneficial for filtering out inappropriate content.
However, the detection process is difficult for several
reasons. First, offensive information is classified into
several categories, and not all of them have the same neg-
ative impact. Second, most research efforts are directed
toward the English language (Hada et al., 2021), (Gupta
et al., 2021), (Agrawal and Awekar, 2018), (Davidson et
al., 2017); however, offensive detection research in the
Arabic language is still in its early stages, with very few
notable works (Mubarak and Darwish, 2019), (Mubarak
et al., 2017), (Mubarak et al., 2020), (Mubarak et al.,
2022). This is due to several challenges, namely a lack
of pre-trained models, a small dataset size, and mul-
tiple dialects with no dataset that spans all of them;
additionally, most social media content is written in
Colloquial Arabic, which is not a formal language. It
is written in Colloquial Arabic, which differs signifi-
cantly from Modern Standard Arabic (MSA) since it
does not always follow certain grammatical rules and
has various word pronunciations. Finally, the Arabic of-
fensive datasets have a long-tailed data distribution (i.e.,
a few classes account for the majority of the data, while
most classes are under-represented), which adds diffi-
culty because most learners will exhibit bias towards
the majority class, and in extreme cases, may ignore
the minority class entirely. Most offensive/hate speech

classification researches ignore this issue since they uti-
lize the traditional/naive technique of assigning sample
weights inversely proportionately to the class frequency
in the cross-entropy loss. This basic heuristic strategy
is commonly used (Huang et al., 2016), (Wang et al.,
2017). However, when training deep neural networks on
large-scale, real-world, long-tailed datasets, weighted
cross-entropy reveals poor performance (Mahajan et
al., 2018), (Mikolov et al., 2013). In addition, recent
studies (Cao et al., 2019) (Kini et al., 2021) suggest
that weighted cross-entropy has little value for balanced
accuracy and that alternative strategies based on margin
adjustment can be more beneficial, mainly by ensuring
that minority classes are further away from the decision
boundary. As a result of the aforementioned causes, an
important question is raised: How can we address this is-
sue through improved class-balanced loss? In this study,
we analyze five distinct loss functions and their vari-
ants in the text classification task across three different
pre-trained Arabic language models. The experiments
revealed that employing the suggested loss functions
instead of standard weighted cross-entropy improved
the model’s macro f1 score metric by 0.5-2.0%. To sum-
marise, our final model was an ensemble learning model
composed of three different models (MARBERT, MAR-
BERTV2, and QARiB) (Abdul-Mageed et al., 2021),
(Abdelali et al., 2021a), all of which were trained us-
ing suggested loss functions and achieved 86.97% and
85.17% on the development and test sets, respectively.

The rest of the paper is organized as follows. section 2
provides a review of previous Arabic offensive text
detection literature. section 3 describes the proposed
dataset. section 4 proposes the model of the offensive
detection. section 5 discusses the results and perfor-
mance evaluation. Finally, we conclude in section 6.
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2. Related Works
This section discusses previous research addressing of-
fensive detection challenges in the Arabic language, the
methodologies, strengths, and drawbacks. All of the fol-
lowing studies were conducted on SemEval 2020 Arabic
offensive language dataset (Mubarak et al., 2020).
(Husain, 2020) An intensive cleaning strategy was pro-
posed. First, emojis and emoticons are converted to an
Arabic textual label that explains their content. Second,
they normalise Arabic words with diacritics. Then, stop-
words, HTML tags, URLs, mentions, and punctuation
marks are removed. Finally, they employ Count Vector-
izer as a feature extractor and character-based features
to train a Support Vector Machine (SVM)-based classi-
fier. For offensive language detection, they obtained an
F1 score of 89.82%.
(Hassan et al., 2020), An ensemble learning model was
proposed using four distinct classifiers, two of which
are SVM as a classifier and a combination of Maza-
jak word embedding, character level, and word-level
features. The Feed-forward Neural Network (FFNN)
was the third classifier, and it used a combination of
character-level and word-level features. The final clas-
sifiers were Convolutional Neural Network (CNN) and
Mazajak as pre-trained word embeddings. As an ensem-
ble learning technique, they used Majority voting and
achieved an F1 score of 90.51%.
(Keleg et al., 2020) BERT-generated contextualised
word embeddings were used for Arabic offensive de-
tection. Furthermore, a morphological technique for
augmentation strategy was used to increase the dataset
sample size by employing a list of 87 bad words that
were augmented to reach 5497 unique terms. Their strat-
egy yielded an 89.57% of F1 score.
(Saeed et al., 2020) As the stacking classifier, they
propose an ensemble of multiple models created from
four different Deep Learning models. First and fore-
most, CNN, Bi-LSTM, Bi-GRU, and CNN-Bi-LSTM
are trained as Deep Learning Architectures. Second,
they experiment with several word embeddings to see
which one may improve the classifier’s performance.
According to their findings, they combined FastText
word embeddings (Bojanowski et al., 2017) with exist-
ing Deep Learning architectures. Finally, they use an
ensemble stacking approach using five distinct Machine
Learning classifiers to obtain the final predictions. Their
methodology received an F1 score of 87.37%.
(Haddad et al., 2020) A Deep Learning technique for
detecting offensive language is proposed. With the
Word2Vec Arabic embedding, they use a bidirectional
Gated Recurrent Unit (GRU) with attention layers (Ar-
aVec) (Soliman et al., 2017). Also, they employed an
oversampling strategy. They added some offensive and
inoffensive comments from an already created Arabic
dataset derived from YouTube comments (Alakrot et al.,
2018). Their strategy received an F1 score of 85.90%.
(Abdellatif and Elgammal, 2020) They proposed ULM-
FiT (Howard and Ruder, 2018) pre-trained from scratch

on the Arabic Wikipedia corpus, then they fine-tuned
their model on the Arabic offensive dataset achieving a
77.83% F1 score.
(Djandji et al., 2020) Due to the limited sample size in
both tasks, they presented a multi-task learning strat-
egy to train jointly offensive and hate speech detection.
Their multi-task learning architecture goes as follows:
They apply data pre-processing methods to the offen-
sive tweet input before using the AraBERT model as a
shared layer between the two tasks. Finally, for each
task, two dense layers are used as task-specific layers.
Their architecture achieved an f1 score of 90.04%.
(Elmadany et al., 2020) They used the BERT Multilin-
gual model to leverage an effective offensive detection
method. In addition, they use an oversampling approach
to obtain negative sentiment tweets and label them as
offensive or hate speech based on a lexical seed. Their
method received 77.38% of the f1 score.
(Farha and Magdy, 2020) They presented a CNN-
BiLSTM-based multi-task learning architecture. Their
architecture is as follows: First, they used pre-trained
skip-gram word2vec embedding on a corpus of 250 mil-
lion tweets to embed the input tweets. Second, they
pass the embedding to the CNN layer and performed
Max Pooling. Third, pass the feature vectors to the BiL-
STM layer; all previous stages are considered shared
layers. Finally, three dense layers are employed as task-
specific layers, one for offensive speech detection, one
for hate speech identification, and one for the sentiment.
The reason for incorporating sentiment in offensive and
hate speech detection is that sentiment may include
additional information for the model since offensive
language or hate speech are often sentimental and ex-
press negative emotion towards the target. Their model
achieved 87.87% of the f1 score.
According to the findings of this survey, most studies
did not make further research to address the problem
of data imbalance; instead, they relied on the standard
weighted cross-entropy. However, only two of them
addressed the issue in data-level methods with over-
sampling techniques by augmenting the dataset to the
positive class (offensive class). The purpose of this re-
search is to overcome previous limitations by using and
assessing various loss functions to better address the
problem of data imbalance.

3. Dataset
The proposed dataset (Mubarak et al., 2022) for the
OSACT-2022 Shared challenge comprises 13k Arabic
tweets collected using a set of emojis with a high mali-
cious effect independent of the tweet text. As a result,
they chose tweets that had one or more emojis. The
data is classified into three categories: offensive, hate
speech, and fine-grained hate speech, and divided into
70% for training, 10% for development, and 20% for
testing. However, the dataset’s distribution is severely
imbalanced and skewed, with 35% being offensive and
11% being hate speech. Offensive tweets and violent
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account for 1.5% and 0.7% of the total corpus, respec-
tively. To address this challenge, we used the proposed
approach of experimenting with different loss func-
tions rather than simply adopting standard weighted
loss cross-entropy.

4. Methodology
In this section, we will go over the key components
of the proposed method, starting with the data pre-
processing techniques used, then a discussion of the
suggested loss functions, followed by an overview of the
pre-trained models used, finally the ensemble learning
approach of the three pre-trained models is presented.

4.1. Data Pre-Processing
We eliminated non-Arabic letters, punctuation marks,
digits, and Arabic diacritics during the pre-processing.
Following the removal of unnecessary characters, the
text is normalized into its unified form. Because social
media material is written in unconventional ways and is
not a formal language, some users choose to repeat the
same word characters to emphasize its meaning, such
as ”Èððððñk. ” instead of ”Èñk. ” which means GOAL.
We addressed this problem by eliminating duplicate let-
ters from each word (elongation removal) (Hegazi et al.,
2021). We did not remove emojis or emotions as they
can significantly aid the tweet classification decision.
The final step is to replace selected terms with meaning-
ful tokens in order to unify them throughout the dataset,
as seen below:

• Replace URL with ”¡�. @P”

• Replace mentions @USER with ”ÐY 	
j
�
J�Ó”

• Replace Email with ”YK
QK.”

4.2. Loss Functions
In this subsection, we discuss five different loss func-
tions with their variations as follows :

• Weighted Cross-Entropy loss(CE)

• Weighted CE combined with label smoothing

• Focal Loss

• Focal Loss combined with label smoothing

• Dice Loss

• Tversky Loss

• Focal Tversky Loss

• Vector Scaling(VS) Loss

• VSLoss combined with label smoothing

• Weighted VSLoss

• Weighted VSLoss combined with label smoothing

4.2.1. Weighted Cross-Entropy Loss

Standard Cross-Entropy loss: is calculated as follows:

CE = − 1

N

∑
i

∑
j∈{0,1}

yij log pij (1)

As shown in Eq.1, each xi contributes equally to the
overall objective. The standard technique for dealing
with the case when we don’t want all xi to be regarded
equally is to provide various weighting factors to distinct
classes. Eq.1 is modified as follows for the former:

Weighted CE = − 1

N

∑
i

αi

∑
j∈{0,1}

yij log pij (2)

where αi ∈ [0, 1] may be set by assigning sample
weights inversely proportionately to the class frequency.
Empirically, these methods are extensively used
as the training objective for data-imbalanced NLP
problems(Lample et al., 2016), (Meng et al., 2019),
(Devlin et al., 2018), (Yu et al., 2018), (McCann et al.,
2018), (Ma and Hovy, 2016), (Chen et al., 2017).

Weighted Cross-Entropy loss + Label Smoothing:
The use of a smoothing parameter ϵ ∈ [0, 1] is the only
difference between standard weighted cross-entropy and
weighted cross-entropy paired with label smoothing
(Szegedy et al., 2016), (Müller et al., 2019). Label
smoothing is a regularization technique that solves the
overconfidence and overfitting issues. The cross-entropy
with label smoothing is calculated as follows:

H(yi,j , pi,j) = (1− ϵ)H(y, p) + ϵH(y, p) (3)

4.2.2. Focal Loss

Standard Focal Loss: (Lin et al., 2017) it is a dynami-
cally scaled cross-entropy loss created by adding a mod-
ulating term to the cross-entropy loss so that the scaling
factor decays to zero as confidence in the correct class
increases (easily classified examples) and increases on
low confidence cases (hard misclassified, examples).
This procedure is used to quickly focus the learning
process on difficult examples. The modulating factor
(1− pt)

γ is added to the cross-entropy loss. Configure
γ > 0 lowers the relative loss for cases that have been
correctly classified pt > .5, emphasising challenging,
misclassified cases. There is a focusing parameter that
may be adjusted here γ ≥ 0. The equation of Focal loss
as follows:

FL(pt) = −(1− pt)
γ log (pt) (4)

Focal loss + Label Smoothing: The Focal loss is edited
to add label smoothing parameter, as stated before the
label smoothing aids to tackle the problem of overconfi-
dence.
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Model Weighted CE Weighted CE + LS‡ Focal Loss Focal Loss+LS‡ Dice Loss Tversky Loss Focal Tversky Loss VS Loss
F1 PR - RR F1 PR - RR F1 PR - RR F1 PR - RR F1 PR - RR F1 PR - RR F1 PR - RR F1 PR - RR

MARBERT 83.7 83.2 - 84.2 83.6 83.3 - 84.1 84.5 84.4 - 84.6 84.4 84.3 - 84.4 83.2 82.8 - 83.5 84.1 84.7 - 83.6 83.7 84.6 - 83.0 85.6 85.8 - 85.4

MARBERT(v2) 84.5 83.6 - 85.9 84.7 83.8 - 86.1 84.9 84.8 - 85.1 85.2 85.1 - 85.2 84.3 84.0 - 84.8 83.7 83.1 - 84.5 83.7 83.0 - 84.6 84.6 84.3 - 85.0

QARiB 85.4 84.7 - 86.3 85.2 84.6 - 86.1 85.4 85.2 - 85.6 85.4 85.2 - 85.6 85.7 85.5 - 85.8 84.9 84.8 - 85.1 85.0 85.7 - 84.3 83.6 84.8 - 82.6

Table 1: Comparsion Between Different Loss Functions. ‡ Refer to Label Smoothing, PR for Precision rate, and RR
for Recall rate.

4.2.3. Dice Loss

The Sørensen–Dice coefficient (Dice, 1945), (Sorensen,
1948), often known as the dice coefficient (DSC), is a
harmonic mean of precision and recall thus weighs false
positives (FPs) and false negatives (FNs) equally. Fur-
thermore, (Milletari et al., 2016) proposed to convert the
denominator to the square form for faster convergence,
which results in the dice loss (DL) shown below:

DL = 1−
2
∑

i pi1yi1 + γ∑
i p

2
i1 +

∑
i y

2
i1 + γ

(5)

In our context, p is the set of all positive cases predicted
by a certain model, and y is the set of all golden positive
examples in the dataset. When applied to boolean data,
the definitions of true positive (TP), false positive (FP),
and false-negative (FN) are used (FN). It is usual to ap-
ply a γ factor to both the nominator and the denominator
for smoothing reasons.

4.2.4. Tversky Loss
The Tversky index (Tversky, 1977), (Hashemi et al.,
2018) is a broadening of the Dice similarity coefficient
and Fβ scores. The Tversky index is defined as where
and govern the level of penalties for FPs and FNs. One
of the Dice loss function’s shortcomings is that it equally
weights false positive (FP) and false negative (FN) detec-
tions. To improve the recall rate, FN detections should
be weighted higher than FPs. The following formulation
is used to define the Tversky loss function:

T (α, β) =
∑N

i=1 p0ig0i∑N
i=1 p0ig0i+α

∑N
i=1 p0ig1i+β

∑N
i=1 p1ig0i

(6)

4.2.5. Focal Tversky Loss
The focal Tversky loss function (FTL) is a combination
of the regular Tversky loss and focal loss (modulating
term). FTL is parametrized by γ, for control between
easy and hard training examples. In (Lin et al., 2017),
the focal parameter exponentiates the cross-entropy loss
to focus on hard classes detected with a lower probabil-
ity. The focal Tversky Loss (FTL) function is defined
as follows:

FTL = (T )
1/γ (7)

4.2.6. Vector Scaling Loss
Vector-scaling (Vs) loss (Kini et al., 2021) is an im-
proved form of cross-entropy with three additional pa-
rameters that integrate additive and multiplicative logit
modifications, which had previously been proposed in

the literature but in isolation. The following is the bi-
nary VS-loss for labels y ∈ {±1}, weight parameters
ω± > 0, additive logit parameters ι± ∈ R, and multi-
plicative logit parameters ∆± > 0:

ℓVS(y, fw(x)) = ωy · log
(
1 + eιy · e−∆yyfw(x)

)
(8)

The VS-loss for imbalanced datasets with C > 2 classes
is as follows:

ℓVS(y, fw(x)) = −ωy log
(
e∆yfy(x)+ιy

/∑
c∈[C] e

∆cfc(x)+ιc
)

(9)
Here fw : Rd → RC and fw(x) = [f1(x), . . . , fC(x)]
is the vector of logits. The various modifications include
adding a label smoothing parameter, applying sample
weights inversely related to the class frequency, and
combining the previous settings together.

4.3. Pre-Trained Models
Because the dataset is a collection of tweets, selecting
pre-trained models that have been trained on Twitter
data with diverse dialects was critical. Following
the literature (Abdul-Mageed et al., 2021), utilising
models pre-trained on social media data (e.g., Twitter
data) improves finetuning performance over training
on standard data (e.g., Wikipedia) if the finetuning
procedure is done on a dataset that is mostly composed
of tweets. The details about the employed models are
described below.

QARiB: (Abdelali et al., 2021b) QCRI Arabic and
Dialectal BERT model was trained on 420 million
tweets and 180 million sentences of text comprised of
14B tokens. The data for the tweets was gathered using
the Twitter API. The text data was derived from a mix of
Arabic GigaWord, Abulkhair Arabic Corpus (El-Khair,
2016), and OPUS (Lison and Tiedemann, 2016). The
model is a bidirectional transformer encoder model
(BERT) (Devlin et al., 2018) with 110M parameters
that contains 12 encoder layers, 12 attention heads,
and 768 hidden sizes. The QARiB model trained with
Dice-Loss (Dice, 1945), (Li et al., 2019) achieved
85.717% on F1-score.

MARBERT & MARBERTv2: MARBERT (Abdul-
Mageed et al., 2021) was trained on 1 billion Arabic
tweets by randomly picking tweets from a huge in-house
dataset of around 6 billion tweets made up of 15.6 bil-
lion tokens and with a sequence length of just 128. The
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model was trained using the same network architecture
as BERT Base (masked language model) but without
the next sentence prediction (NSP) component. Because
the model has been pre-trained on a variety of tweets,
it can recognize a variety of dialects, not only Modern
Standard Arabic (MSA). The model incorporates 163M
parameters, including 12 encoder layers, 12 attention
heads, and 768 hidden sizes. Because the model was
trained with a sequence length of just 128, it is inade-
quate for Question Answering. As a result, they re-train
the model using a different collection of MSA resources,
including Books (Hindawi), El-Khair (El-Khair, 2016),
Gigaword, OSCAR (Suárez et al., 2019), OSIAN (Zer-
oual et al., 2019), and AraNews dataset (Nagoudi et al.,
2020) with a longer sequence length of 512 tokens total-
ing 29B tokens. The MARBERT model trained using
Focal loss + Label smoothing achieved an f1 score of
85.66%, while the MARBERTV2 model trained with
VSLoss obtained an f1 score of 85.21%.

4.4. Ensemble Learning Model
We employed the ensemble learning approach to en-
hance and improve model performance. We noticed that
the three models generate different mistakes on differ-
ent samples; so, we used Ensemble learning approaches
since the ensemble’s ability to correct the errors of some
of its members is entirely dependent on the diversity
of the classifiers that comprise the ensemble. Our final
ensemble model is based on a majority voting technique
between the following models: 1). QARiB trained with
Dice loss. 2). MARBERT trained with VS loss. 3).
MARBERTV2 trained with Focal loss + label smooth-
ing.

5. Results and Discussion
5.1. Performance Metrics
We employed different metrics to assess the model per-
formance and to understand/analyse its efficiency and
errors. We calculated Precision, recall, and F1-score
in the macro setting. We used Macro F1-score instead
of Accuracy to assess the model’s performance since
the proposed dataset is highly imbalanced, making the
Accuracy unsuitable for this task.

5.2. Experimental Results
In this section, we present the results of experimenting
with various models and architectures trained with
different loss functions and the impact on performance.

Different Models: We evaluated many pre-trained
models to determine the most effective one for
achieving the best results individually or as part of
an ensemble group. The majority of the pre-trained
models that were fine-tuned on the proposed data
generated outcomes that were comparable to each other.
Among all models tested, Light Gradient Boosting
Machine (LGBM) trained on QARiB embeddings
fine-tuned on the proposed data yielded the best

results individually. In addition, we eliminated the
emojis and emotions from the proposed dataset and
trained the MARBERT model, however, the results
were not competitive. Furthermore, we tested two
versions of AraBERT, a base and a large version
trained on Twitter data, and they achieved 85.54%
and 85.15% on the F1-score measure, respectively.
Finally, we tried a different model combination in an
ensemble approach; the first experiment consisted of
Arabert-base-Twitter, MARBERT, and QARiB and
obtained 86.73% on the F1-score. The second was
a combination of MARBERTV2, MARBERT, and
QARiB that resulted in an f1-score of 87.04%. The
final experiment obtained an f1-score of 86.43% by
combining LightGBM trained on QARiB embeddings,
MARBERT, and MARBERTV2. The experiments are
shown in Table 2.

Different Loss Functions: According to the no-free
lunch, theory (Wolpert and Macready, 1997), there is
no optimum solution for all problems. Furthermore,
after experimenting with various loss functions on
the selected models, we observed that some loss
functions perform better for some models but not
others. However, under the f1-score metric, most of
the suggested loss functions exceeded the standard
weighted cross-entropy. The comparison between
different loss functions and models is presented in
Table 1.

Models Macro-F1(%)

MARBERT(Without emojis) 85.077
AraBERT-Large-Twitter 85.158
QARiB 85.424
AraBERT-Base-Twitter 85.548
MARBERT 85.574
MARBERTV2 85.723
LightGBM(QARiB Embeddings) 85.798

Ensemble(LightGBM+ MARBERT+MARBERTV2) 86.432
Ensemble(AraBERT-B-T+ MARBERT+QARiB) 86.733
Ensemble(MARBERTV2+ MARBERT+QARiB) 87.044

Table 2: Different Models With an F1-score On Devel-
opment Set.

5.3. Discussion
Results show in Table 1 that Weighted CE was not the
best performer compared to the rest of the loss functions.
Its best result was on the QARiB model, yielding an
F1 score of 84.4%, higher than MARBERT-v2’s result
of 84.5% and MARBERT’s of 83.7%. Even with the
addition of Label Smoothing, Weighted CE still failed
to outperform the rest of the loss functions while not
making any significant difference from the standard
Weighted CE. For MARBERT, results were quite sim-
ilar between the loss functions, namely Weighted CE,
Weighted CE with Label Smoothing and Focal Tversky
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� [SEP]
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NOT OFF -1 (0.20) -1.90 [CLS] P@Qå�@ ¼Y
	
J«

	
àñºK
 Ð

	PB ½
�
KAJ
m

�'
. lk

.
A
	
K

	
àñº

�
K
	
àA

�
�« [SEP]
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	P [SEP]
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Table 3: Word Attributions In Dataset’s Tweets ( Not Offensvie -1 , Offensive +1 )

loss, yielding an F1 score of 83.7%, 83.6%, and 83.7%,
respectively, while Focal loss and Focal loss with La-
bel Smoothing had close results with an F1 score of
84.5% and 84.4%, respectively. MARBERT’s best per-
former was VS loss, yielding an F1 score of 85.6. For
MARBERT-v2, results were also quite similar between
the loss functions, namely Tversky loss and Focal Tver-
sky loss, both yielding an F1 score of 83.7%, while
Weighted CE, Weighted CE with label Smoothing, Fo-
cal loss, Dice loss, and VS loss had close results with an
F1 score of 84.5%, 84.7%, 84.9%, 84.3%, and 84.6%,
respectively. MARBERT-v2’s best performer was Fo-
cal loss with Label Smoothing, yielding an F1 score of
85.2%. For QARiB, results were close between the loss
functions, but with significant improvements compared
to the other models. Weighted CE, Weighted CE with
Label Smoothing, Focal loss, and Focal loss with Label
Smoothing yielded an F1 score of 85.4, 85.2%, 85.4%,
and 85.4%, respectively. MARBERT’s best performer
was Dice loss, yielding an F1 score of 85.7%.

5.4. Model Interpretability
We used Captum (Kokhlikyan et al., 2020), a model
interpretability and understanding library for PyTorch
(Paszke et al., 2019), to interpret the final model decision
or predicted class. It allows researchers and developers
to efficiently understand which features are contributing
to the model’s outputs using tools such as integrated
gradients, smooth-grad, and others. Furthermore, Cap-
tum solves the lack of transparency in deep learning
models, or as their called, Black Boxes. This term refers
to how difficult it is to understand and explain the be-
haviour of a model. Captum looks at a single prediction
and identifies features leading to that prediction through
Integrated Gradients. In our case, the features are the
words or emojis in the tweet that led the model to a spe-

cific predicted outcome. Green indicates that the tokens
are pulling towards offensiveness, while red indicates
that they are pulling toward inoffensiveness. The colour
intensity represents the magnitude of the signal. Table 3
illustrates the word attributions for selected examples of
the proposed dataset using Captum.

6. Conclusion and Future Works
In this work, we proposed a method for dealing with
Arabic Offensive text detection. Our final model is a
Deep Learning ensemble learning system consisting of
three different Deep Learning models. Furthermore, be-
cause the dataset distribution is highly skewed, testing
with alternative loss functions to observe how they affect
model performance revealed that simply replacing the
standard weighted cross-entropy with different loss func-
tions enhanced the model’s Macro F1-score by 0.5-2%.
On the development set, the proposed pipeline achieved
87.04%, while on the test set, it obtained 85.17%. In
future work, we aim to test the effectiveness of those
loss functions on a wide range of tasks in the Arabic lan-
guage. This result would also support our findings that
standard cross-entropy loss is ineffective for long-tailed
data distribution. Because most real-world datasets in
various tasks are highly imbalanced, such a study would
assist the researcher in better addressing the problem of
highly imbalanced datasets.
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