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Abstract
Large-scale pre-trained language models have
shown remarkable results in diverse NLP ap-
plications. However, these performance gains
have been accompanied by a significant in-
crease in computation time and model size,
stressing the need to develop new or comple-
mentary strategies to increase the efficiency
of these models. This paper proposes DACT-
BERT, a differentiable adaptive computation
time strategy for BERT-like models. DACT-
BERT adds an adaptive computational mecha-
nism to BERT’s regular processing pipeline,
which controls the number of Transformer
blocks that need to be executed at inference
time. By doing this, the model learns to com-
bine the most appropriate intermediate repre-
sentations for the task at hand. Our experi-
ments demonstrate that our approach, when
compared to the baselines, excels on a reduced
computational regime and is competitive in
other less restrictive ones. Code available at
https://github.com/ceyzaguirre4/dact_bert.

1 Introduction

The use of pre-trained language models based on
large-scale Transformers (Vaswani et al., 2017) has
gained popularity after the release of BERT (Devlin
et al., 2019). The usual pipeline consists of fine-
tuning BERT by adapting and retraining its classi-
fication head to meet the requirements of a specific
NLP task. Unfortunately, the benefits of using a
powerful model are also accompanied by a highly
demanding computational load. In effect, current
pre-trained language models such as BERT have
millions of parameters, making them computation-
ally intensive both during training and inference.

While high accuracy is usually the ultimate goal,
computational efficiency is also desirable. The
use of a demanding model not only causes longer
processing times and limits applicability to low-
end devices, but it also has major implications

*Work done at Pontificia Universidad Católica de Chile.

in terms of the environmental impact of AI tech-
nologies (Schwartz et al., 2020). As an example,
Strubell et al. (2019) provides an estimation of the
carbon footprint of several large NLP models, in-
cluding BERT, concluding that they are becoming
unfriendly to the environment.

Recent works have shown that behind BERT’s
immense capacity, there is considerable redun-
dancy and over-parametrization (Kovaleva et al.,
2019; Rogers et al., 2020). Consequently, others
works have explored strategies to develop efficient
and compact versions of BERT. One such strategy
known as dynamic Transformers consists of provid-
ing BERT with an adaptive mechanism to control
how many Transformers blocks are used (Xin et al.,
2020; Liu et al., 2020; Zhou et al., 2020).

In this paper, we present DACT-BERT, an al-
ternative to current dynamic Transformers that
uses an Adaptive Computation Time (ACT) mech-
anism (Graves, 2016) to control the complexity
of the processing pipeline of BERT. This mecha-
nism controls the number of Transformer blocks
executed at inference time by using additional clas-
sifiers. This allows resulting models to take advan-
tage of the information already encoded in inter-
mediate layers without the need to run all layers.
Specifically, our model integrates DACT, a fully
differentiable variant of the adaptive computation
module (Eyzaguirre and Soto, 2020) that allows
us to train a halting neuron after each Transformer
block. This neuron indicates the confidence the
model has on returning the correct answer after
executing said block. We use the DACT algorithm
to determine when the answer stabilizes in a given
output using the halting neuron and halt once it is
sure running more blocks cannot change the output.

2 Related Work

Several architectures have been designed to avoid
overcomputing in Transformer-based models. Ac-
cording to Zhou et al. (2020), there are two groups.
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Figure 1: DACT-BERT adds an additional classification layer after each Transformer block, along with a sigmoidal
confidence function. DACT-BERT combines the Transformer hidden state and the outputs and confidences of all
earlier layers into an accumulated answer an. Later, during inference, the model is halted once an ≈ aN .

2.1 Static Efficient Transformers
One such strategy is to use lightweight architec-
tures that are trained from scratch. As an example,
ALBERT (Lan et al., 2020) and Universal Trans-
former (Dehghani et al., 2019) propose cross-layer
parameter sharing as a way to improve model ef-
ficiency. The latter also includes an ACT-based
(Graves, 2016) halting mechanism that is not fully
differentiable as DACT-BERT is.

A second strategy is to distill the knowledge
of pretrained models into a more compact “stu-
dent". Models such as PKD-BERT (Sun et al.,
2019), TinyBERT (Jiao et al., 2020), and Distil-
BERT (Sanh et al., 2020) compress the knowledge
of large models, the “teachers", into more compact
or efficient ones to obtain similar performance at a
reduced computation or memory cost. While these
approaches effectively reduce the total calculation
needed to execute the model, they are limited in the
same way as BERT, they do not take into account
that some examples could be less complicated than
others and use the same amount of computation.

2.2 Dynamic Transformers
Recently, a series of algorithms have been proposed
to reduce computation in Transformer language
models based on early exiting (Kaya et al., 2019;
Han et al., 2021). Models such as DeeBERT (Xin
et al., 2020), FastBert (Liu et al., 2020), PABEE
(Zhou et al., 2020), and Depths Transformers (El-
bayad et al., 2020) introduce intermediate classi-
fiers after each Transformer block. At inference,
a “halting criterion” is used to dynamically deter-
mine the number of blocks needed to perform a

specific prediction. Instead of using a confidence
approach (Guo et al., 2017) to determine when to
stop, recent approaches rely on computing a partic-
ular heuristic (such as Shannon’s entropy or Mutual
Information) (Liu et al., 2020; Xin et al., 2020; Liu
et al., 2021), an agreement between intermediate
classifiers (Zhou et al., 2020), a trained confidence
predictor (Xin et al., 2021), or directly the amount
of steps based on an heuristic based training (El-
bayad et al., 2020).

Unlike previous works that use heuristic prox-
ies of models confidence to decide when to halt,
DACT-BERT is based on a learning scheme that
induces the model to halt when it predicts that its
current answer will not change with further process-
ing. As an illustrative example consider a difficult
input. Here, our model could “understand” that fur-
ther processing steps are superfluous and decide to
stop early, even if its current answer has a low con-
fidence. On the other hand, existing early stopping
models would keep wasting computation because
their confidence is low.

3 DACT-BERT: Differentiable Adaptive
Computation Time for BERT

Dynamic early stopping methods use a proxy of
model confidence to decide when it is safe to cut
computation. In this work our signaling module,
DACT, approximates this gating mechanism with a
soft variant that allows our model to independently
learn the confidence function. This mechanism
can then be used to detect when stable results are
obtained, allowing for the reduction of the total
number of steps necessary for a given prediction.
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The original formulation of DACT (Eyzaguirre and
Soto, 2020) applies this module to recurrent models.
In our case, we adapt the formulation to the case of
Transformer based architectures, mainly BERT.

3.1 Method Description

As shown in Figure 1 and detailed in Algorithm
1, DACT-BERT introduces additional linear layers
after each computational unit, similar to the off-
ramps in DeeBERT (Xin et al., 2020) or the student
classifiers in the work of Liu et al. (2020). However,
differently from previous approaches, each n-th
DACT module also computes an scalar confidence
score, or halting value hn, in addition to the output
vector yn. Following Devlin et al. (2019), both, yn
and hn, are estimated by using the classification
token ([CLS]) that is included in BERT as part of
the output representation of each layer.

During training, all the output vectors and halt-
ing values are accumulated to obtain an i.e., en-
coding the model’s best guess after unrolling n
Transformer layers. It is combined using the fi-
nal predicted probabilities pn, allowing it to be
rewritten as the weighted average of all interme-
diate outputs yn multiplied by a function of the
confidences of earlier blocks. Line 8 shows how
the output vectors are combined using a function
of the halting values, to obtain the final predicted
probabilities.

The model output is built inductively by using
a monotonically decreasing function of the model
confidence, pn, to interpolate between the current
step’s answer and the result of the same operation
from the previous step. We then train the model
to reduce the classification loss of the final output
with a regularizer that induces a bias towards re-
duced computation. Unlike the regularizer used
by Eyzaguirre and Soto (2020), we use:

L̂(x, y) = L(x, y) + τ

n∑

i=1

hi (1)

where τ is a hyper-parameter used to moderate the
trade-off between complexity and error. We find
empirically that our changes help convergence and
further binarize the halting probabilities.

Notably, the formulation is end-to-end differen-
tiable. This allows to fine-tune the weights of the
underlying backbone, i.e. the Transformer and em-
bedding layers, using a joint optimization with the
process that trains the intermediate classifiers.

Algorithm 1 DACT

Input: M model with N blocks
Input: is_training ∈ {True,False}

1: pn ← 1
2: an ← 0⃗
3: for step n = 1, 2, . . . N do
4: # Get output and confidence
5: yn ← GetOutputModule(M,n)
6: hn ← GetHaltModule(M,n)
7: # Combine with previous outputs
8: an ← (yn ∗ pn−1) + (an ∗ (1− pn−1))
9: # Update halting probability

10: pn ← pn−1 ∗ hn
11: # Stop computation during inference
12: if not is_training then
13: if AnsCantChange() then
14: break loop
15: end if
16: end if
17: end for
Output: Approximate final answer an

3.2 Dynamic Computation at Inference
The inductive formulation of an lends itself to cal-
culating upper and lower bounds on the probabili-
ties of the output classes. At inference, execution
halts once the predicted probabilities for the top-
class c∗ in an after running all N − n remaining
steps is still higher than the highest value for the
runner-up class cru, and by extension of any other
class, then halting doesn’t change the output:

Pr(c∗, n)(1− pn)
N−n ≥ Pr(cru, n)+ pn(N −n)

(2)
That is, the model stops executing additional

blocks once it finds that doing so will not change
the class with maximum probability in the output
because the difference between the top class and
the rest is insurmountable. Therefore, the halting
condition remains the same as the original DACT
formulation (Eyzaguirre and Soto, 2020).

3.3 Training
The training of the module follows a two step pro-
cess. First, the underlying Transformer model must
be tuned to the objective task. This ensures a good
starting point onto which the DACT module can
then be adapted to and speeding up convergence.
This is followed by a second fine-tuning phase
where the complete model is jointly trained for
the task. This differs slightly from existing dy-

95



namic Transformer methods, which first pre-train
the backbone and then freeze it to modify only the
classifier weights.

4 Results

4.1 Experimental Setup
We tested our method using both BERT and
RoBERTa backbones, evaluating both models on
six different tasks from the GLUE benchmark
(Wang et al., 2018). We use DeeBERT (Xin et al.,
2020) and PABEE (Zhou et al., 2020) as our dy-
namic baselines, using the same backbones for a
fair comparison, and the respective non-adaptive
backbones along with DistilBERT (Sanh et al.,
2020) as static baselines.

4.2 Implementation Details
Our model was developed using PyTorch (Paszke
et al., 2017) on top of the implementations released
by Xin et al. (2020) and Zhou et al. (2020), as well
as the HuggingFace Transformers library (Wolf
et al., 2020). Because the focus of this paper was
to introduce an alternative architecture of dynamic
Transformers and not achieve state of the art results
we use the default parameters and architectures
from the Transformers library.

Both DeeBERT and DACT-BERT experiments
were repeated three times to obtain the confidence
intervals (95% confidence) shown in Figure 2, each
time using a different random initialization for
the weights in the auxiliary classifiers 1. Results
for FastBERT (Liu et al., 2020) are not reported
since both DeeBERT and FastBERT use the same
entropy-threshold halting criterion.

Each experiment was run using a single 11GB
NVIDIA graphics accelerator, which allows for
training on the complete batch using 32-bit preci-
sion and without needing gradient accumulation.

4.3 Computational Efficiency
To compare the trade-off that exists between com-
putation efficiency and the performances obtained
with it, we computed efficiency-performance dia-
grams for the validation set. Efficiency was mea-
sured as the proportion of Transformer layers used
compared to the total number of layers in their
static counterparts. The specific metrics for per-
formance are those suggested in the GLUE paper
(Wang et al., 2018) for each task.

1The random seeds were saved and will be published along
with the code to facilitate replicating the results.

In our experiments we fine-tune the backbone
model for the GLUE tasks using the default val-
ues of the hyper-parameters. For the second stage
we vary the value of τ in Equation (1) to com-
pute our computation-performance diagram curves,
selecting from a set of fixed values for all the ex-
periments: τ ∈ {5 · 10−5, 5 · 10−4, 5 · 10−3, 5 ·
10−2, 5 ·10−1}. By modifying this hyperparameter
in DACT we can manage the amount of computa-
tion the model will perform and record the perfor-
mance it managed to achieve at this level.

Similarly, using DeeBERT to create the
computation-performance diagrams the entropy
threshold was varied continuously in increments of
0.05. For PaBEE we fluctuate the patience value
between 1 and 12, effectively trying out the full
range. The results for the unmodified static back-
bones are also included as a reference, as are the
results obtained by the half-depth DistilBERT pre-
trained model.

The area under the curve (AUC) in the Perfor-
mance vs. Efficiency plot shown in Figure 2 shows
our approach improves the trade-off between preci-
sion and computation. As was to be expected, all
models perform similarly when saving little compu-
tation as they replicate the results achieved by the
non-adaptive BERT backbone that performs a simi-
lar number of steps. On the other hand, when using
limited amounts of computation our model outper-
forms the alternatives in almost every task, espe-
cially in tasks for with more training data available.
We attribute this advantage in trading off compu-
tation and performance to fine-tuning of the back-
bone weights for reduced computation. Intuitively,
as we move away from the 12 step regime for which
the underlying static model was trained, more mod-
ification of the weights is required. Recall that
of all the Dynamic Transformer algorithms only
DACT-BERT can modify the Transformer weights
because of its full-differentiability.

Importantly, because our model learns to reg-
ulate itself, it shows remarkable stability in the
amount of calculation saved. As the same values
of ponder penalties give rise to similar efficiency
outputs. By contrast, DeeBERT proves to be highly
sensitive to the chosen value for the entropy hyper-
parameter. The robustness of our model appears
to come from learning the efficiency mechanism
rather than relying on a somewhat arbitrary heuris-
tic for its control.

In addition, we find our model uses less lay-
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Figure 2: Performance vs efficiency trade-offs for BERT-base and RoBERTa-base models using DACT-BERT
(blue), DeeBERT (orange) and PaBEE (green). DACT-BERT and DeeBERT experiments were repeated three times
for each hyper-parameter. Individual runs are shown with colored dots, and the average along with its confidence
interval is shown using a band. In all figures the x-axis shows computation measured as the fraction of the layers
used by the respective static backbone (shown as a black diamond). DistilBERT’s relative perfomance is shown at
the 50% computation mark using a black star.

Figure 3: Frequency each Transformer block is used.

ers compared to DeeBERT (see example at Fig.
3), allowing us to prune the final layers. We ex-
plain this difference by noting that the entropy will
remain high throughout the whole model for the
case of difficult questions as it will be uncertain
about the answer. On the other hand, any layer in
DACT-BERT is capable of quitting computation if

it believes future layers cannot answer with more
certainty than its own, regardless of how certain
the model actually is.

5 Conclusions

This work explored the value of using the DACT al-
gorithm with pre-trained Transformer architectures.
This results in a fully differentiable model that ex-
plicitly learns how many Transformers blocks it
needs to perform a specific task. Our results show
that our approach, DACT-BERT, outperforms the
current dynamic Transformer architectures in sev-
eral tasks when significantly reducing computation.
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