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Abstract
Annotator disagreement is often dismissed as noise or the result of poor annotation process quality. Others have argued that it
can be meaningful. But lacking a rigorous statistical foundation, the analysis of disagreement patterns can resemble a high-tech
form of tea-leaf-reading. We contribute a framework for analyzing the variation of per-item annotator response distributions to
data for humans-in-the-loop machine learning. We provide visualizations for, and use the framework to analyze the variance
in, a crowdsourced dataset of hard-to-classify examples of the OpenImages archive.
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1. Introduction
With a market expected to hit $1.2 billion by 2023,
human annotation accounts for 80% of the time spent
building A.I. technology. (Metz, 2019). Whether ob-
tained by a small team of experts, or an anonymous
pool of crowdworkers, it is generally considered good
practice to obtain responses from multiple annotators
for each example in a dataset, for the reason that hu-
man annotators are unreliable and annotation tasks are
ambiguous. And so disagreement is seen as a sign of
something to be corrected. Put more formally, machine
learning problems are probability distributions over a
joint (example, response) space X×Y (Shalev-Shwartz
and Ben-David, 2014). Usually, the distribution over Y
has a Bayesian interpretation, where P(y | x) is seen as
uncertainty over the response.
An alternate view is that disagreement is meaningful
and may be the result of differences in annotator val-
ues, beliefs, or values that carries meaningful signals
(Aroyo and Welty, 2015; Liu et al., 2019; Akhtar et
al., 2019; Klenner et al., 2020; Weerasooriya et al.,
2020; Davani et al., 2022; Basile, 2020). We are partic-
ularly interested in crowdsourced settings, where there
are typically more annotators per example than with ex-
pert annotations. Taking a strictly frequentist approach,
we interpret P(y | x) as the likelihood of drawing an an-
notator who responds to example x with y. We are thus
interested in asking How confident are we that P(y | x)
represents the ground truth distribution of annotator
responses?.
We apply hypothesis tests via bootstrap sampling
(Efron, 1992) to explore this question on a dataset that
is particularly rich in annotatator disagreement. A ma-
jor design decision in this case is which test statistic
to use. If we were measuring machine performance,
we could use any number of standard evaluation mea-
sures, such as accuracy or precision. But here, we need
a statistic that can measure the difference in two proba-
bility distributions. Many exist, such as KL-divergence
and Wasserstein distance. However, these measures do

not take into account that our distributions are merely
samples. We argue that the likelihood function of the
hypothesized sampling frame is the best test statistic in
this case.
In this paper, we contribute a framework for analyzing
the variance of annotator responses in machine learning
training data when the goal is to preserve diversity in
annotator responses by treating them as a sample from
an underlying pool of respondents. We introduce two
variants of bootstrap sampling tailored to this setting
that are more efficient and/or less sensitive to sparse
data than true bootstrapping. We explore the use of
the log-likelihood as a statistic for hypothesis testing in
exploratory analyses of response distribution data. And
we apply this framework to an empirical study of a data
set rich in annotator disagreement.

2. Related Work
Although not as commonly used as in other scientific
fields, hypothesis tests has a long history in machine
learning (Mitchell, 1997).
Dietterich (Dietterich, 1998) provides a taxonomy of
use cases for hypothesis testing on machine learning
problems. He focuses on one particular case: that of
choosing between two learning algorithms A and B
with a small amount (n ≈ 300) of data. He defines
the p-value to be the probability that A’s error is less
than B’s by at least the observed error difference δ(x),
where x is a sample from the test population. assuming
as the null hypothesis H0 that A and B have equal er-
ror rates in the population from which x was sampled.
Formally, this is denoted p(δ(x∗) > δ(x)|H0), where
x∗ is a population sample of size n drawn according
to H0. Thus, in contrast to our paper, he is interested
in paired hypothesis tests, as is frequently the case in
machine learning.
He compares five different approximations of the p-
value on experiments where A and B are simulated
and by design have the same error rate, though their
responses differ on specific items. He repeats these
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experiments using two actual (i.e., nonsimulated) ma-
chine learning algorithms, where one is “hobbled” to
have exactly the same error rate as the other. In this
setting he tests the approximations’ resistance to Type
I errors, as well as their statistical power in the event
that the two algorithms do have different error rates.
Berg-Kirkpatrick et al. (Berg-Kirkpatrick et al., 2012)
perform an empirical investigation of hypothesis test-
ing across a seven natural language processing (NLP)
problems. They survey prior work on these problems
where the systems were available for evaluation, and
study the relationship between metric gain, δ(x), sta-
tistical significance, and p-values. They argue that the
best approach is to bootstrap from the input sample and
then consider p(δ(x∗) > 2δ(x)|H0). Søgaard et al.
(Søgaard et al., 2014) study the practical impact of var-
ious estimators on p-values.
Reidsma and Carletta (Reidsma and Carletta, 2008) ex-
plore the relationship between interrater reliability and
machine learning performance. They show that high
reliability scores (> .8) predict good machine learning
performance as long as noise is unbiased. If noise is
biased, the machine learning algorithm may learn the
bias pattern and overfit.
Szymański and Gorman (Szymański and Gorman,
2020) apply a Bayesian framework due to (Corani et
al., 2017) to evaluate the performance of English part-
of-speech taggers. Rather than p-values based on H0,
their framework estimates the likelihood that system A
outperforms system B, using k-fold cross evaluation
(across multiple datasets). Zhang et al. (Zhang et al.,
2004) use bootstrapping to construct confidence inter-
vals for BLEU scores.
Welty et al. (Welty et al., 2019) study the prob-
lem of measuring AI systems from the perspective of
metrology, the science of measurement and its applica-
tion. They demonstrate these principles on WordSim
(WS353),1 a crowd-powered dataset for word similar-
ity. They show that the dataset can be instrumentalized
by describing procedures for (1) collecting the human
or crowd data (2) using this data to evaluate the per-
formance of an AI system. The introduce a number of
key concepts in metrology and show how they apply in
this context. For instance, the principle of measurement
translates into understanding the limits and opportuni-
ties of the measurement frame and how the measure-
ment procedure works, and indication translates into
the itemwise statistics gathered from asking multiple
annotators about the same question. A crucial element
of metrology is the recognition that ground truth is fun-
damentally unknowable, and that one must test and as-
sess the accuracy of any instrument used to measure
performance.

1https://aclweb.org/aclwiki/
WS353ilarity-353_Test_Collection_(State_
of_theart)

Figure 1: Bootstrapping is a stochastic method for ana-
lyzing variance in samples. It treats the sample as an es-
timate of the underlying (original) sampling frame, and
then repeatedly samples with replacement from the em-
pirical sample, obtaining a sample of samples. Anno-
tator sampling is itself a two-stage process, where the
empirical sample consists of first drawing from a set of
data items (in our case image/label pairs from the Open
Images Dataset) and, for each item, sampling from a
pool of annotators. However, when the space of anno-
tator responses is relatively simple, we can marginal-
ize over the data items to create a collapsed, one-stage
bootstrap sampling frame.

3. Annotator sampling
Here, we describe three variants of bootstrapping that
we explore in this paper. We adapt notation from
(Efron, 1992). Suppose we have a set of m data items
x = (x1, . . . , xm), sampled from some domain FI . For
each item i, we also have a sample yi of r annotator re-
sponses, where each response comes from a discrete
domain of q options, indexed by l. There are multiple
ways to represent ŷi. For each response l, we can count
the number of annotators what respond with l, which
we denote ŷi,l. Or we can indicate the response that
annotator j provides, which we denote yi,j . Note that
we use y with and without the ·̂ in part to distinguish
these two representations, but also to stress that ŷi,l is
not necessarily representative of the underlying popu-
lation’s value for the number of l responses (assuming
the underlying population of annotators is much larger
than the number of responses in yi, it is most certainly a
much larger number), where yi,j is in fact annotator j’s
response to item i. We can extend this latter represen-
tation to the set of all annotations as a matrix, where
the data examples are aligned along the vertical axis
and the responses along the horizontal. See Figure 1.

https://aclweb.org/aclwiki/WS353ilarity-353_Test_Collection_(State_of_theart)
https://aclweb.org/aclwiki/WS353ilarity-353_Test_Collection_(State_of_theart)
https://aclweb.org/aclwiki/WS353ilarity-353_Test_Collection_(State_of_theart)
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Finally, we can represent yi as a distribution F̂yi
.

Bootstrapping (Efron, 1992) is a stochastic method for
estimating the variance of a test statistic ϕ from any
empirical sample x. It constructs a sample of B sam-
ples x∗1,x∗2, . . . ,x∗B , where each of these latter sam-
ples is the same size as the empirical sample and is
drawn with replacement from the empirical sample, ef-
fectively using the empirical sample as an estimate F̂I

of the original sampling frame FI . Thus, in our set-
ting, each bootstrap sample x∗j = (x∗j

1 , x∗j
2 , . . . , x∗j

m )
consists of m items sampled with replacement from
x = (x1, . . . , xm). In this way it can account for
the impact of sample size on the variance of any test
statistic, though if the empirical sample is too small
to be representative of the original sampling frame the
method can be ineffective.
In the past, when bootstrapping was used to analyze
variance in machine learning datasets (Mitchell, 1997;
Dietterich, 1998; Zhang et al., 2004; Berg-Kirkpatrick
et al., 2012; Søgaard et al., 2014), it was performed
over the items only, i.e., in the vertical direction only
according to the matrix-style representation shown in
Figure 1. In the parlance of our notation, each item
x∗j
i in each bootstrap sample x∗j is associated with the

same label y∗ji as its corresponding empirical item. Of
course, in most past settings, yi represented a single
response value, as all annotator disagreement was typ-
ically resolved before the data was used, and so this
vertical-only approach made perfect sense.
As a baseline, we adapt this strategy to our case, i.e.,
we associate each item x∗j

i in each bootstrap sample
x∗j with the empirical distribution y∗ji associated with
the corresponding empirical item. We call this vertical-
only baseline process a naive bootstrap.
However, in case of annotator modeling, where we
care about the ground truth distribution of annotator
responses, the empirical sample is really the result of
two-stage process. See Figure 1. First, choose a data
item i in the vertical direction, then choose r annotators
in the horizontal direction to annotate it.2

In many datasets the number of annotators r varies
from item to item. But (as in the case of the data we
analyze here) if r is the same for each item, then the
number of possible response distributions is

(
q+r−1
r−1

)
,

and when this number is sufficiently small we can sim-
plify boostrapping over this two-stage process by pre-
computing the horizontal bootstrap and marginalizing
over the examples i. Thus, we construct a distribution
F̂q,r over all annotator response distributions y∗ of size

2This is a simplification of how annotation works in prac-
tice. Typically, annotators are not chosen independently for
each item, as we assume here. However, for large datasets, as
long as the number of items any one annotator sees is small—
as is often the case for crowdsourced annotations—we do not
believe dependencies between annotators have a significant
impact on the analysis described here, although this is cer-
tainly a topic worthy of future research.
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Figure 2: Counts of image/label pairs by machine
score.

r:

F̂q,r(y
∗) =

m∑
i=1

F̂yi,r(y
∗)F̂I(xi) =

1

m

m∑
i=1

F̂yi,r(y
∗),

(1)

where F̂I(xi) =
1
m per the rules of bootstrap sampling,

and F̂yi,r(y
∗) is the likelihood of drawing the distribu-

tion y∗ by drawing (with replacement) a sample of size
r from F̂yi . We call this approach collapsed bootstrap-
ping. Collapsing can greatly speed up the sampling
process by eliminating one stage of sampling. More-
over, it removes some of the stochasticity from the pro-
cess. This, in turn, means that a smaller bootstrap sam-
ple is needed.

Finally, many of the annotator response distributions
themselves may have no mass on some of the re-
sponses (e.g., cases where all five annotators agree on
a single response). Therefore, it may make sense to
add smoothing to the collapsed distribution. We use
Laplace smoothing, with α = 1, which assumes a uni-
form prior over all choices, and we apply this to both
stages (i.e., to each F̂yi,r and to F̂q,r in Equation 1).
We call this smoothed bootstrapping.

Beyond the sampling process itself, bootstrapping is
often used for hypothesis testing. This involves choos-
ing test statistics and hypotheses. The mean of some
quantity of interest is by far the most common test
statistic used. But when the data under consideration
(representing the sampling frame) is categorical, or if
we are interested qualitatively in the shape of the dis-
tribution, KL-divergence or Wasserstein distance might
be more appropriate choices. The best statistic and hy-
potheses to use depends what one is trying to learn from
the test. So let us first introduce the dataset we are an-
alyzing, and some of the questions we seek to answer,
before considering this question further.
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Figure 3: Histograms of annotator response distribu-
tions. Each image/label is indicated by the number of
Yes and No annotator responses. The number of Don’t
know responses can be calculated from the number of
Yes and No annotator responses and so is not shown.
For instance, the (0, 0) corner represents the number
of images where all five responses were Don’t know.
The two large peaks in the corners are the item-label
pairs on which all annotators agreed on No (respec-
tively, Yes). The much smaller peak in the left-hand
corner are the item-label pairs on which all annotators
agreed on the Don’t know. Note that there appears
to be more disagreement among the image/pairs with
Machinei = 1.

4. Data
The CATS4ML (Crowdsourcing Adverse Test Sets for
Machine Learning) Data Challenge3 asked participants
to find machine learning blind spots, i.e., data instances
that humans can easily classify, but on which machine
learning algorithms fail.
The data consists of 6, 393 examples of image/label
pairs from the Open Images Dataset (OID). The labels
in these image/label pairs were selected from among
23 label classes, which were sampled from 30K classes
available in the OID. Note that “label” often refers to
the annotator responses yi. Here and throughout this
paper, we use “label” only to refer to the label class,

3https://github.com/
google-research-datasets/
cats4ml-2021-dataset. See also https:
//cats4ml.humancomputation.com/.

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0

0.1

0.2

0.3

0.4

American football

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Athlete

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1
0.2

0.3

0.4

0.5

Bird

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Bus driver

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.05
0.10
0.15
0.20

0.25

Canoe

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1

0.2

0.3

0.4

0.5

Chef

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Child

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Chopsticks

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.02
0.04
0.06
0.08
0.10

Coach

Yes

0 1 2 3
4

5

No

0
1

2
3

4
5

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

Construction worker

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Croissant

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00

0.05

0.10

0.15

0.20

Firefighter

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Funeral

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Graduation

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Lipstick

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Muffin

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Nurse

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Physician

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1
0.2
0.3

0.4

0.5

Pizza

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Selfie

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Smile

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Teacher

Yes

0 1 2 3 4 5

No

0
1

2
3

4
5

0.00
0.05
0.10
0.15
0.20
0.25

Thanksgiving

Figure 4: Annotator response distributions by label
class.

which is part of the input, and not the annotator re-
sponses.
As for the responses, for each image in each im-
age/label pair, five annotators were asked whether the
label matched the image. Each image/label pair i
has a distribution Fyi

over q = 3 annotator response
choices: Yes , No, ¬Know , which indicate the num-
ber of annotators who respond Yes, No, or Don’t know,
respectively. There is also Machinei ∈ {0, 1}, a
machine response, chosen by randomly sampling the
output from two machine-based classifiers (variants
of the InceptionV2-based classification that are inter-
nal to Google). These human and machine responses
were used to adjudicate the submissions to the contest.
Figure 2 shows the distribution of images/pairs in the
dataset by machine score.
Since there are only three possible label responses, the
space of annotator response distributions forms a 2-
simplex (or triangle), where, since each image/label

https://github.com/google-research-datasets/cats4ml-2021-dataset
https://github.com/google-research-datasets/cats4ml-2021-dataset
https://github.com/google-research-datasets/cats4ml-2021-dataset
https://cats4ml.humancomputation.com/
https://cats4ml.humancomputation.com/
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Machine rating
Annotator rating 0 1 total

Plurality Yes 2552 1024 3576
No 1578 853 2431

Majority Yes 2423 964 3387
No 1284 729 2013

≥ 4
Yes 2171 840 3011
No 998 502 1500

Unanimous Yes 1820 667 2487
No 708 298 1000

(a) Distribution of Yes and No annotator responses based on
various disagreement resolution/exclusion policies: only those
where the number of yes (respectively, no) responses exceeds
no (respectively, yes), those with a majority of yes vs. no votes,
those with at least four votes in agreement, and those with unan-
imous agreement.

Machine rating
Annotator rating 0 1 total

Plurality Yes 2479 1119 3599
No 1640 740 2380

Majority Yes 2341 1057 3398
No 1391 628 2018

≥ 4
Yes 2094 945 3040
No 1096 495 1591

Unanimous Yes 1855 837 2692
No 836 377 1213

(b) Estimated number of data items by user and machine re-
sponse according to the collapsed boostrap frame.

Machine rating
Annotator rating 0 1 total

Plurality Yes 2490 1124 3614
No 1636 739 2375

Majority Yes 2307 1042 3349
No 1357 613 1970

≥ 4
Yes 1968 888 2856
No 1012 457 1469

Unanimous Yes 1287 581 1868
No 584 264 848

(c) Estimated number of data items by user and machine re-
sponse according to smoothed (α = 1) bootstrap frame.

Table 1: According to various bootstrap methods, the
distribution of Yes and No annotator responses based
on various disagreement resolution/exclusion policies:
only those where the number of yes (respectively, no)
responses exceeds no (respectively, yes), those with a
majority of yes vs. no votes, those with at least four
votes in agreement, and those with unanimous agree-
ment.

pair i has exactly five annotator responses, i.e., yi,Yes+
yi,No + yi,¬Know = 5, the vertices of the triangle rep-
resent unanimous responses (i.e., EITHER yi,Yes = 5
OR yi,No = 5 OR yi,¬Know = 5, and the remaining
response choices equal to zero), and the edges and in-
terior space represent responses that have at least some

level of annotator disagreement. It is a discrete space
of cardinality 21 and so it is easy to precompute the
bootstrapping, as shown in Equation (1).
The three-option response schema used in this dataset
lends itself very well to visualization. Figure 3 shows
histograms in this triangle-like structure of annota-
tor response distributions over, respectively, the entire
dataset, just those image/label pairs with Machinei =
0, and just those with Machinei = 1, respectively. The
differences between the three are very small, though
there appears to be slightly more disagreement among
the pairs with machine score 1, suggesting that the
CATS4ML contestants had mixed (though reasonable
given the sparsity of blind spot data) success against
the reference machine responses.
Figure 4 shows these same distributions by label class.
Here, in contrast to Figure 3, there appear to be signif-
icant patterns. For instance, in the Muffin label class
there is substantial annotator disagreement among an-
notators between Yes and No, with very few annota-
tors responding Don’t Know. This may be because
muffins are only well-known in the US, Canada, and
Great Britain, and in the US and Canada they are sweet
snacks resembling cupcakes, but in Great Britain they
are flat, savory rounds of bread (known as ‘English
Muffins’ in the US and Canada). And so in this case
disagreement is not the result of a poorly formed ques-
tion, and it is not even “ambiguous” in the sense that a
single annotator would necessarily recognize that there
are multiple interpretations.
In short, there are two obvious ways to partition the
data: by the machine score used to adjudicate the
CATS4ML contest, and by the label classes. The hy-
pothesis tests we consider in this paper will help us
determine whether the patterns of annotator responses
seen in Figures 3 and 4 are significant.
But before we get to hypothesis testing, one reason why
annotator disagreement is sometimes questioned as a
useful signal is because the tasks for which machine
classifiers are trained often require discrete decisions
(Gordon et al., 2022). But even then, the presence of
disagreement requires some sort of resolution process,
and the choice of a particular resolution strategy can
lead to bias.
Table 1a shows how several common strategies for
resolving annotator disagreement affects the distribu-
tion of the responses over examples, after resolution
over the empirical annotator response distributions.
Table 1b (respectively, Table 1c) shows what hap-
pens when we use collapsed (respectively, smoothed)
bootstrapped frames instead (and taking the expected
counts of the image/label pairs, rounded to the near-
est whole number, given the sample sample size as the
original dataset). The differences between the three
sets are very small when the plurality response is used.
This is in keeping with conventional wisdom that the
number of annotators need not be very large if plural-
ity is used to resolve disagreement (Snow et al., 2008).
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(g) Smoothed bootstrap (p <
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(h) The alternative hypothe-
sis is that the data associated
with each label class came
from a distinct distribution.

Figure 5: Bootstrap samples where the test statistic is
the log-likelihood of annotator response distributions
under the null hypothesis, with the null hypothesis is
that the data was generated from a single distribution
and the alternative hypothesis that the data associated
with each machine score (left) label class (right) was
generated from a distinct distribution.

However, the differences between the samples became
increasingly stark as the aggregation methods become
stricter.

5. Tests
We now construct tests for whether the differences ob-
served in annotator response distributions between the
data with machine scores of zero versus one, as shown
in Figure 3, or with different label classes, as shown
in Figure 4, are significant. For any partitioning of the
dataset D = D1 ∪ · · · ∪ Ds (where the partitioning
might represent the different machine scores or the var-
ious label classes), let the null hypothesis be that the
annotator response distributions yi were sampled from
the same underlying distribution FD, as estimated by
the bootstrap sampling frame over all the label distri-
butions D. In our dataset, for naive bootstrapping this
is the distribution shown in Figure 3a.
This is a very strong null hypothesis. It is much more

common to define the null hypothesis in terms of a test
statistic and not worry about the underlying distribu-
tions. This is because, when the null hypothesis is re-
jected, such weaker hypotheses tend to confer a more
positive view of the test statistic, and often it is the test
statistic that is of primary interest, because it is a mea-
sure of performance. But our motivation here is not to
evaluate performance; rather, it is exploratory in nature.
And so we are simply interested in whether the differ-
ences in the distributions we observed are meaningful.
The downside to this approach is that if we reject the
null hypothesis, we can only conclude that the differ-
ences observed are significant; we cannot reasonably
conclude anything positive about the nature of the dis-
tributions.
As our test statistic, we use the log-likelihood of the
null hypothesis:

logFD(D∗
1) + logFD(D∗

2) + · · ·+ logFD(D∗
s)

(2)

Where D∗
1 , . . . , D

∗
s are samples of each partition under

the null hypotheses, i.e., they are samples of the boot-
strap frame FD.
As for computing the p-value, we could, for each boot-
strap sample, compare the value of Equation (2) to the
log-likelihood of the original sample logFD(D1) +
logFD(D2) + · · · + logFD(Ds). However, this
does not take into account that there is sample vari-
ance in the alternative hypothesis i.e., that each
D1, D2, . . . , Ds was drawn from a unique distribution,
FD1

, FD2
, · · · , FDs

, respectively, that is estimated by
sampling with replacement only from the response dis-
tributions in each partition.
And so we compute a second bootstrap, using the
alternative hypothesis as the sampling frame, sam-
pling each D∗

1 , D
∗
2 , . . . , D

∗
s directly from the boot-

strapping frame associated with its partition’s original
sample FD1

, FD2
, · · · , FDs

and for each sample com-
pute its log-likelihood logFD(D∗

1) + logFD(D∗
2) +

· · ·+ logFD(D∗
s) under the null hypothesis.

We then take the p-value to be the point at which the
the observed test statistic is more likely under the alter-
native hypothesis than the null hypothesis, according to
the bootstrap samples.
In each of the subfigures in of Figures 5d and 5h, the
orange (leftmost) distributions are the values of the test
statistic under the alternative hypothesis and the blue
(rightmost) distributions are same values under the null
hypothesis. The p-value is the area under the blue dis-
tribution’s curve to the left of where the two curves in-
tersect (when they intersect).

6. Experiments
Figures 5d and 5h show the results of these tests for par-
titioning by machine score and label class, respectively,
along with the p-values associated with each test. The
size of each bootstrap sample was 100K.
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Smoothed Collapsed Naive KL Wasserstein
Precision 9/9 9/9 8/9 6/9 5/9

1 Muffin Muffin Muffin Muffin Teacher
2 Canoe Canoe Canoe Canoe Athlete
3 Chopsticks Chopsticks Chopsticks Teacher Physician
4 Chef Chef Chef Graduation Chopsticks
5 Athlete Athlete Athlete Chopsticks Coach
6 Lipstick Coach Coach Chef Funeral
7 Smile Lipstick Lipstick Athlete Smile
8 Coach Smile Selfie American football Selfie
9 Child Child Smile Coach Child

10 Selfie Bird Child Lipstick Graduation
11 Firefighter Selfie Firefighter Nurse Construction worker
12 American football Firefighter Bird Selfie American football
13 Construction worker American football American football Smile Lipstick
14 Teacher Construction worker Construction worker Construction worker Thanksgiving
15 Bird Teacher Funeral Child Firefighter
16 Funeral Funeral Teacher Firefighter Canoe
17 Physician Physician Physician Physician Bird
18 Pizza Pizza Pizza Pizza Nurse
19 Graduation Croissant Croissant Funeral Pizza
20 Croissant Graduation Graduation Croissant Muffin
21 Nurse Nurse Thanksgiving Thanksgiving Chef
22 Thanksgiving Thanksgiving Nurse Bus driver Croissant
23 Bus driver Bus driver Bus driver Bird Bus driver

Table 2: Label classes ranked by most-to-least distant from the null hypothesis distribution, according to p-value
by bootstrap strategy (smoothed, naive, collapsed), KL-divergence, or Wasserstein distance. In the smoothed test,
all items above line 9 reject the null hypothesis at the p = .05 level, with Bonferroni correction. Note that the first
seven results in the first column (and more in the second and third columns) all have a p-values of less than 10−5,
which is beyond the precision of the bootstrap to handle. And so we used the order of the items in the KL column
to settle ties in those cases.
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Figure 6: p-values from smoothed bootstrap samples
where the test statistic is the log-likelihood of annota-
tor response distributions under the null hypothesis, for
each class independently, with the null hypothesis that
the data was generated from a single distribution and
the alternative hypothesis that data associated with each
label class was generated from a distinct distribution.
Values with no bar have estimated p-values < 10−5.
The nine classes above “Selfie” are significant at the
.05 level after Bonferroni correction for 69 (3 × 23)
tests.

As we expect, as we move from naive to collapsed
to smoothed bootstrapping, the variance in each boot-
strap sample increases and the null and alternative dis-
tributions move closer together. In the case of la-
bel class partitioning (Figure 5h), these trends are too
small to have a measurable impact on the p-values,
which were too small to measure anyway. But Figure
5d shows that for machine score the choice of boot-
strap strategy makes a big difference. There, both the
naive and collapsed bootstraps yield very low p-values
(p = 3 × 10−5 and p = .003, respectively) and so re-
ject the null hypothesis at very low levels, whereas the
p-value for the smoothed bootstrap (p = .3) is too high
to reject the null hypothesis at any conventional level.
However, recall that we used a smoothing parameter
α = 1 that is higher than what is typically used, and
smaller values can significantly decrease the p-value.
For instance for α = .5 the p-value was .18. So prior
knowledge about what constitutes meaningful smooth-
ing can be important here.
We can take these tests further and use them to dis-
cover label classes that are particularly unlikely under
the null hypothesis, i.e., they are label classes that seem
to invoke particularly anomalous annotator responses.
Figure 6 shows the p-values for hypothesis tests using
the same null and alternate hypotheses and statistical
test as above, but applied one label class at a time only
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to the subset of the data associated with that label.
Table 2 ranks the label classes by p-value in ascending
order. For comparison to standard probability distance
measures, we also show the ranked (in descending or-
der) KL-divergence and Wasserstein distance between
the class distributions (i.e., the alternative hypothesis)
and the null hypothesis.
These results show that the null hypothesis distribu-
tion of all annotator distributions from all label classes
combined does not represent the distributions from in-
dividual label classes. Thus it makes sense to compare
label classes directly to each other. That is, we can
repeat the above experiments with two label classes,
where one class plays the role of the null hypoth-
esis, the other plays the alternative hypothesis, and
we use the likelihood under null hypothesis as the
test statistic. In this way, p-values can be used as a
similarity measure between classes. Figure 7 shows
the p-values between each these pairwise tests, for
smoothed bootstrapping and, for comparison purposes,
KL-divergence and Wasserstein distance.
The likelihood tests above are effective for showing
that conditioning on certain variables leads to mean-
ingful distinctions in annotator response distributions.
However, they tell us little about the quality of those
distinctions. So, turning now on the label class con-
dition only, we use the entropy of the annotator re-
sponse distributions in each class, averaged over all of
the classes.
Figure 8 shows the results of these experiments. One
might expect that, as one moves from naive to collapsed
to smoothed that the entropy of both the null and alter-
nate distributions would be higher and the two distribu-
tions would move closer together. But instead, some-
what unexpected things occur. First, the entropy distri-
butions decrease slightly between the naive (p < 10−5)
and collapsed (p < .16) bootstraps. And then, when
smoothing (p = .0095) is added, the entropies both in-
crease and the distributions separate. We believe this is
due to the presence in the collapsed sample of annotator
distributions with no mass on certain responses (e.g.,
[yYes , yNo , y¬Know ] = [5, 0, 0]. With no smoothing,
such distributions cannot during bootstrapping gener-
ate all distributions (for instance, bootstrapping over
[5, 0, 0] will only ever generate [5, 0, 0], whereas boot-
strapping on [1, 2, 2] can potentially generate any 5-
annotator response). This creates biases toward these
distributions, which also happen to be where most of
the annotator distribution mass is located in the first
stage. And so bootstrap sampling from them tends
to drive entropy down. Smoothing seems to correct
this, even when less smoothing is present. For instance
smoothing with α = .5 yields a p-value of .0074, which
is still acceptably low by most standards.

7. Discussion
As a rule of thumb, the stronger the null hypothesis, the
weaker the test. Our null hypothesis was that the an-
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Figure 7: Similarities between the distributions of an-
notator response distribution between each pair of label
classes, according to p-value by smoothed bootstrap-
ping, KL-divergence, and Wasserstein distance, respec-
tively. For the p-value results, we zeroed out all pairs
whose p-values were less than .05 after Bonferroni cor-
rection. This is because, for the purpose of hypoth-
esis testing at the .05 level, such results are indistin-
guishable from those whose p-values were less than
our bootstrap’s precision 10−5. We apply smoothing to
the KL divergence results to avoid infinity results, and
we take the negative of KL-divergence and Wasserstein
distance.
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(a) Naive bootstrap
(p < 10−5).

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Null hypothesis
Alt hypothesis

(b) Collapsed
bootstrap
(p = .16).
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Figure 8: Bootstrap samples where the test statistic is
the mean entropy (over all label classes) of the dis-
tribution of annotator response distributions, with the
null hypothesis that the data was generated from a sin-
gle distribution and the alternative hypothesis that data
associated with each label class was generated from a
distinct distribution.

notator distributions observed in key partitions of the
CATS4ML dataset were are all drawn from the same
distribution. We showed that when the partitions are
based on machine label alone, we may not be able to re-
ject this hypothesis, depending on how we model vari-
ance. However, when the partitions are based on label
class, differences in the annotator distributions are sig-
nificant across multiple variants of bootstrapping.
We were able to use bootstrap-based hypothesis tests
to discover annotator classes that were particularly un-
likely to have been sampled from the null hypothesis,
even after Bonferroni correction. We showed that the
classes discovered differ slightly based on the variant of
bootstrap sampling used, and differed even more from
other measures of distribution similarity, including KL-
divergence and Wasserstein distance.
As for how we see these methods used in the future,
we found the p-values based on the log-likelihood un-
der the null hypothesis to be useful for quantifying how
different various subsamples were from each other, in
light of sampling error. We could see it being used as an
alternative to other distance or similarity measures, one
that has the advantage of taking sample size into ac-
count. Often, when pairwise comparing large amounts
of data, it is necessary to sparsify feature relationships,
i.e., eliminate all but the most closely related pairs. Fig-
ure 7 suggests that p-values could provide a principled
way to sparsify data.
This study had a number of limitations. It focused
solely on differences in subsets of the dataset, which
is useful for understanding the quality of data used for
training and test AI systems. We would like to use simi-
lar methods to compare the performance of different AI
systems on the same dataset. Such comparisons require
paired hypothesis testing, which has its own complica-
tions. Hypothesis testing over items (but not annotators
has long been a part of AI research (Mitchell, 1997; Di-
etterich, 1998; Zhang et al., 2004; Berg-Kirkpatrick et
al., 2012; Søgaard et al., 2014) even if it is not as com-
mon as perhaps it should be. It is not entirely clear how
much of what we learned here would apply. For in-
stance, it would not be as easy to collapse the sampling

frames in a paired setting.
We have yet to explore whether the bootstrapping
methods explored here are consistent, in the sense that
the expected estimates they provide approach the ac-
tual population statistics as the sample size approaches
the population size. Bootstrapping, for instance fails, to
have this property with respect to many statistics over
long-tailed distributions.

8. Conclusion
We explore annotator responses as a sampling frame.
Using the CATS4ML dataset, we show that annotator
response distributions form patterns related to specific
input features (labels classes in our case) that cannot
be explained by chance, as witness by our hypothesis
tests. We show that hypothesis testing can be used to
identifying particularly anomalous distributional pat-
terns and to measure the similarity between different
samples in a way that accounts for sample size. We
propose the log-likelihood of a sample under the null
hypothesis as a used test statistic for exploration in this
space. Future work will seek to extend these methods
to A/B testing of AI systems that predict annotator re-
sponse distributions.
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