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Abstract

Layout detection is an essential step for accu-
rately extracting structured contents from his-
torical documents. The intricate and varied lay-
outs present in these document images make
it expensive to label the numerous layout re-
gions that can be densely arranged on each
page. Current active learning methods typi-
cally rank and label samples at the image level,
where the annotation budget is not optimally
spent due to the overexposure of common ob-
jects per image. Inspired by recent progress
in semi-supervised learning and self-training,
we propose OLALA, an Object-Level Active
Learning framework for efficient document lay-
out Annotation. OLALA aims to optimize the
annotation process by selectively annotating
only the most ambiguous regions within an im-
age, while using automatically generated labels
for the rest. Central to OLALA is a perturbation-
based scoring function that determines which
objects require manual annotation. Extensive
experiments show that OLALA can significantly
boost model performance and improve anno-
tation efficiency, facilitating the extraction of
masses of structured text for downstream NLP
applications.1

1 Introduction

When working with historical documents, social
scientists have often used keyword methods that
do not require the recognition of structured layouts
(see e.g. Hanlon and Beach (2022) for a review of
the literature on historical newspapers). To apply
neural NLP methods to these documents, it is essen-
tial to accurately detect the layouts and extract the
structured content. For example, a historical news-
paper scan contains a mixture of article regions,
headlines, captions, advertisements, etc. Commer-
cial OCR software will typically read the multi-

∗ Work done when working as a Data Science Fellow at
Harvard University.

1Our source code is available at https://github.
com/lolipopshock/detectron2_al.

Figure 1: Three exemplar document layouts from Pub-
layNet (Zhong et al., 2019), HJDataset (Shen et al.,
2020), and PRImA (Antonacopoulos et al., 2009). There
are numerous layout objects per page, and many of them
are very similar. Directly labeling them all will result in
wasted labeling budget.

column document as if it is a single column book,
unable to distinguish content in different regions
and producing scrambled text that leads to poor
performance for downstream NLP applications.

Deep learning-based approaches can be used
for document layout analysis and content pars-
ing (Shen et al., 2021; Zhong et al., 2019; Schreiber
et al., 2017). Figure 1 illustrates that document lay-
out object detection, like image object detection,
requires identifying content regions and categories
within images. A key distinction, however, is that
it is common for dozens to hundreds of content
regions to appear on a single page in documents, as
opposed to only several objects per image in natural
image datasets (e.g. 5 on average in the MS-COCO
Dataset (Lin et al., 2014)). Additionally, the region
category distribution is often heavily imbalanced
and requires more pages to be annotated to allow
for reasonable exposure of uncommon categories
(e.g. footnotes, watermarks, or mastheads). Hence,
the manual labeling process used on natural im-
ages to create high-quality labeled datasets can be
prohibitively costly to replicate for documents of
central interest to social scientists, who typically
have heavily constrained annotation budgets. As a
result, extracting structured text is often infeasible,
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Figure 2: Illustration of the OLALA framework. [1] During labeling, for an input image, a trained model predicts the
layout with various errors. An object scoring function f evaluates the informativeness for each object prediction. [2]
OLALA selects the regions of top scores and sends them for manual labeling to correct the wrong object category (a)
and bounding box (b). [3] A semi-automatic prediction correction algorithm is applied to rectify duplicated objects
(c) and recover false-negatives (d) with minimal extra supervision. [4] After this process, the final annotation is
obtained from labeling only a portion of the objects.

limiting the application of modern NLP techniques
in historical document applications.

Active Learning (AL) has been widely adopted
in image object detection for optimizing labeling ef-
ficiency via prioritizing the most important samples
to annotate (Aghdam et al., 2019; Haussmann et al.,
2020; Brust et al., 2018; Roy et al., 2018). How-
ever, while the end goal is to annotate individual
objects within an image, these AL methods typi-
cally score and select samples at the image level,
rather than at the object level. Yao et al. (2012)
study an annotator-centered labeling cost estima-
tion method and prioritize labeling for high-cost
images. In the context of deep learning, image level
scores are generated via aggregation of marginal
scores for candidate boxes (Brust et al., 2018) or
applying query by committee (Seung et al., 1992)
to features maps (Roy et al., 2018). Aghdam et al.
(2019) propose a pixel level scoring method us-
ing convolutional backbones and aggregate them
to informativeness scores for image ranking. For
category-imbalanced layouts, common in docu-
ments, such image level selection can suffer from
the over-exposure of common objects.

Recent advances in Semi-Supervised Learning
(SSL) and self-training can boost model perfor-
mance using unlabeled data (Rosenberg et al.,
2005; Xie et al., 2020). The Self-supervised Sam-
ple Mining (SSM) algorithm (Wang et al., 2018)
proposes to stitch high-confidence patches from
unlabeled data to labeled data to improve both la-
beling efficiency and model performance. It en-
ables object-level prediction selection but requires
objects to be sparsely distributed, making it inappli-
cable to our case where content is densely arranged.

To address these challenges, we propose a

novel AL framework, OLALA, Object-Level Active
Learning for efficient layout Annotation. Shown
in Figure 2, critical objects, rather than images,
are individually evaluated and selected for labeling.
During the labeling process, OLALA trains a model
to generate object predictions. Within an image,
only the most ambiguous predictions are chosen
for human inspection and annotation, addressing
the inefficient use of annotation budget on common
objects or categories. Central to this process is a
semi-automatic prediction correction algorithm. In-
spired by previous endeavors of automated layout
dataset generation (Zhong et al., 2019; Li et al.,
2019; Shen et al., 2020), OLALA incorporates prior
knowledge about layout structures to ensure the
high quality of the created dataset. It can identify
false-positives and false-negatives in the unselected
model predictions, and correct them with minimal
extra supervision.

Additionally, we design a novel object-level scor-
ing function governing the region selection process.
The perturbation-based scoring method evaluates
consistency of both object position and category
predictions between the original and perturbed in-
puts. Compared to prior work, it is carefully de-
signed for layout datasets with unique arrangement
of content regions, and can identify errors of criti-
cal importance to layout analysis tasks.

In other contexts where predictions on unlabeled
images (Wang et al., 2018; Xie et al., 2020) or
weak labels (Desai et al., 2019) are used to boost
model performance, the predicted labels are dis-
carded after model training. OLALA includes a
rigorous process to validate the accuracy of predic-
tions, meaning that the full labeled dataset - created
by human and machine - can be released publicly
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and potentially used by social scientists for transfer
learning on other applications.

Through extensive experiments, we study how
the proposed approach can improve labeling effi-
ciency in two different scenarios. We show that
OLALA can create datasets with better trained
model performance compared to image-level AL
baselines, for a given limited annotation budget.
On the other side, as only part of an image requires
annotation in our method, we demonstrate that our
method can create datasets of the same size with
far less human effort.

To the best of our knowledge, this is the first
AL method dedicated to document layout analysis.
OLALA was motivated by our need to automate the
extraction of structured text from millions of his-
torical documents, to enable modern NLP analyses
on information trapped in hard copy. We are using
it extensively on real world documents for this pur-
pose, with the OLALA labeling interface described
in the supplementary material.

Section 2 introduces the OLALA framework,
and Section 3 describes the perturbation based ob-
ject scoring method. Sections 4 and 5 demonstrate
how OLALA can improve labeling efficiency and
model performance under different scenarios.

2 The OLALA Framework

2.1 Object-Level Active Learning Setup

In layout object detection problems, a detection
model Θ is trained to identify ni objects within an
input image Xi, where the bounding box bj and
category distribution cj is estimated for the j-th ob-
ject. Yi = {(bj , cj)}ni

j=1 are the object annotations
for Xi. Θ is initially trained on a small labeled
dataset L0 = {(Xi, Yi)}li=1, and it receives a large
unlabeled dataset U0 = {Xi}u+l

i=1+l.
The goal of typical image-level AL meth-

ods (Aghdam et al., 2019; Brust et al., 2018;
Roy et al., 2018) is to optimally sample images
from U for annotation to maximally improve the
model’s performance on given metrics. This pro-
cess could be iterative: at each round t, it se-
lects m samples Mt = {Xi}mi=1 from Ut−1 to
query labels, obtains the corresponding labeled
set M̄t = {(Xi, Yi)}mi=1, and updates the exist-
ing labeled set Lt = Lt−1 ∪ M̄t. The new model
Θt is obtained by training (or fine-tuning) on Lt.
For the next round, the unlabeled set becomes
Ut = Ut−1 \Mt.

In this process, annotators need to create all ob-

ject labels Ȳi = Yi for the images in Mt. This is
not optimal for layout object detection, where many
objects could appear on a single image. Because
of the uneven distribution of objects, sometimes
only a small portion of object predictions in an im-
age are inaccurate. Labeling whole images wastes
budget, which could be otherwise used for labeling
less common and accurate objects.

Consider an alternative setup illustrated in Fig-
ure 2: the AL agent prioritizes annotation for a
portion of objects in Yi within each image. An
object-level scoring function f evaluates the am-
biguities of predictions generated by Θ. Object
regions of top scores, the selected objects, will
be sent for manual annotation to create labels Ȳi.
To wisely use human efforts, the ratio of selected
objects r is dynamically adjusted during the label-
ing process (Section 2.2). And after correcting
possible errors (Section 2.3), the remaining uns-
elected objects constitute the complement labels
Ŷi and are merged with the human labels. The
Objects Selection Scheduling and Semi-automatic
Prediction Correction ensure the combined anno-
tation Ỹi = Ȳi ∪ Ŷi is close to Yi. Therefore, accu-
rate dataset annotations can be created with only
|Ȳi|/|Ỹi| of time (| · | being the cardinality of the
set), and more images can be annotated given the
same labeling budget. This is our object-centered
labeling setup in OLALA.

2.2 Objects Selection Scheduling

The ratio of selected objects during training can in-
fluence the labeling efficiency as well as the trained
model accuracy. A ratio near 1 approximates the
full human labeling process (less efficient), while
a zero ratio resembles full self-training (Rosen-
berg et al., 2005) settings (less accurate). To opti-
mally balance efficiency and accuracy, r is dynam-
ically adjusted at different rounds of labeling via
a scheduling function. According to Curriculum
Learning (Bengio et al., 2009), we set high initial
values of r to rely more on human labeling and ease
model training in the beginning. Linear or exponen-
tial decay is then applied to gradually decrease r,
increasing the trust in the model predictions as their
accuracy improves during training. From an opti-
mization perspective, r can be seen as a “learning
rate” for the OLALA AL process. We demonstrate
the effectiveness of the proposed scheduling mech-
anism in the experiments (Section 5.3).
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2.3 Semi-automatic Prediction Correction

Compared to recent work (Wang et al., 2018;
Xie et al., 2020) using self-training for improving
model performance, OLALA contains an additional
component to fix possible errors in the utilized
model predictions. Inspired by recent efforts for
creating large-scale layout analysis datasets (Zhong
et al., 2019; Li et al., 2019; Shen et al., 2020), we
propose a semi-automatic prediction correction al-
gorithm to ensure the quality of the model predic-
tions. This method relies on the unique structures
of document data: layout objects are densely ar-
ranged, and there is usually no overlap between
content regions. It can identify duplicated predic-
tions and false-negative predictions based on this
prior knowledge, and requests minor supervision
to fix them. Shown in Section 5.1 and 5.2, this
algorithm both improves the final trained model
accuracy and enables the creation of an accurate
large dataset based on these predictions.2

Duplicate Removal In practice, models could
generate multiple close predictions for a large ob-
ject, yet only one or some of the predictions are
sent for user inspection. Thus, if naively merg-
ing the user’s labels with the remaining predic-
tions, it can lead to overlapping labels for the
same object. We fix this error by filtering out
predictions overlapped with any human annota-
tions over a score threshold ξ. Different from IOU
scores, we use the the pairwise Overlap Coefficient,
Overlap(A,B) = |A ∩B|/min(|A|, |B|), to bet-
ter address scenarios where a predicted box is con-
tained within a labeled box. The threshold ξ is set
to 0.25 empirically.

Missing Annotation Recovery False-negatives
occur when no prediction is generated for a given
object. In typical object detection tasks, predictions
are dropped when the confidence is under some
threshold, which might lead to false negatives. It is
an implicit signal from the model, requesting extra
supervision from human annotators and is a key
step for improving dataset accuracy (Section 4). It
is implemented by highlighting the regions with-
out model predictions, such that human annotators
(or a simulated agent) can easily identify the mis-
predicted objects and add the annotations.

The implementation of this algorithm is differ-
ent between real-world human annotation and sim-
ulated labeling experiments (with oracle before-

2Self-training methods (e.g. (Wang et al., 2018)), usually
discard the model predictions (pseudo labels) after training.

Algorithm 1: Object-level Active Learning
Annotation

Input :Initial sets U0, L0; labeling budget m; object
selection ratio r

Initialize U = U0, L = L0, and model weights Θ;
for t = 0 to T − 1 do

Calculate budget m and selection ratio r for at t
Update the model Θ using L
Let M̄ = {}
for i = 0 to |U| do

Generate object predictions Ŷi for Xi ∈ U
Let mi = min{r|Ŷi|,m}, m = m−mi

if m ≤ 0 then break;
Calculate object scores f(ŷj) ∀ŷj ∈ Ŷi

Select mi objects of top scores and label Ȳi

Correct errors in unselected predictions Ŷ −
i

Merge Ȳi with Ŷi for image annotations Ỹi

Remove Xi from U and add (Xi, Ỹi) to M̄
end
Update L ← L ∪ M̄

end
Update the model Θ using L

hand). For human annotations, we carefully design
a user interface which incorporates the three func-
tions and augments human labeling, and we refer
readers to Figure 6 in the supplementary material
for more details. In simulations, we build a labeling
agent that can automatically query the oracle for
ground-truths under different scenarios (see Sec-
tion 4).

2.4 Overview of the Proposed Algorithm

We now present the OLALA Algorithm 1. Given an
initial labeled set L0, it aims to use the predictions
from a model Θ to optimally label the remaining
unlabeled set U0 given some labeling budget. Dif-
ferent from existing work, we define the labeling
budget per round m as the number of objects -
rather than images - that human annotators can la-
bel. The algorithm iteratively proposes the most
informative objects to label for a total of T rounds.
At each round t, it selects up to m objects. For
each image Xi from the existing unlabeled set U ,
r percent of predicted objects are selected for user
labeling according to some object scoring function
f . The rest of the labels are created by correct-
ing errors in the unselected model prediction Ŷ −

i

based on the semi-automatic prediction correction
algorithm. The labeled image Xi will be removed
from U and the annotated samples (Xi, Ỹi) will be
added to L. After each round, the selection ratio r
decays as the model accuracy improves.
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3 Perturbation-based Scoring Function

The scoring function f also plays an important role
in the OLALA framework. It evaluates prediction
ambiguity and determines which objects to select
for labeling. We propose a perturbation scoring
method based on both the bounding box and cat-
egory predictions. Inspired by the self-diversity
idea in Jiang et al. (2020) and Zhou et al. (2017),
the proposed method hypothesizes that the adja-
cent image patches share similar features vectors,
and the predicted object boxes and categories for
them should be consistent. Therefore, any large
disagreement between the original and perturbed
predictions indicates that the model is insufficiently
trained for this type of input, or there are anomalies
in the sample. Both cases demand user attention.

Specifically, for each object prediction ŷj =

(b̂j , ĉj) ∈ Ŷi, we take the bounding box predic-
tion b̂j = (x, y, w, h) and apply some small shifts
to perturb the given box, where x, y are the coordi-
nate of the top left corner, and w, h are the width
and height of the box. The new boxes are created
via horizontal and vertical translation by a ratio of
α and β: pjk = (x ± αw, y ± βh,w, h), where
pjk is the k-th perturbed box for box prediction
b̂j , and a total of K perturbations will be gener-
ated. Based on the image features within each pjk,
the model generates new box and category predic-
tions (qjk, vjk). We then measure the disagreement
between the original prediction (b̂j , ĉj) and the per-
turbed versions {(qjk, vjk)}Kk=1, and use it as a
criterion for selecting objects for labeling.

In practice, we build this method upon a typi-
cal object detection architecture composed of two
stages (Ren et al., 2015): 1) a region proposal net-
work estimates possible bounding boxes, and 2)
a region classification and improvement network
(ROIHeads3) predicts the category and modifies the
box prediction based on the input proposals. We
use the perturbed boxes {pjk}Kk=1 as the new inputs
for the ROIHeads, and obtain the new box and class
predictions {(qjk, vjk)}Kk=1. For object regions of
low confidence, the new predictions are unstable
under such perturbation, and the predicted boxes
and category distribution can change drastically
from the original version. To this end, we formu-
late the position disagreement Dp and the category

3It’s a module name in Detectron2 (Wu et al., 2019).

disagreement Dc for the j-th object prediction as

Dp(b̂j) =
1

K

∑
k

(
1− IOU(b̂j , pjk)

)

Dc(ĉj) =
1

K

∑
k
L(ĉj ||vjk),

where IOU calculates the intersection over union
scores for the inputs, and L(·||·) is a measure-
ment for distribution difference, e.g., cross en-
tropy. The overall disagreement D is defined as
D(ŷj) = Dp(b̂j)+λDc(ĉj), with λ being a weight-
ing constant. Objects of larger D will be prioritized
for labeling, and users will create annotations Ȳi
for them in the i-th image.

The proposed method can effectively identify
false-positive object predictions. Based on the self-
diversity assumption, incorrect category prediction
ĉj will cause high Dc because of the divergence
of the new class prediction vjk for nearby patches.
When the predicted box b̂j is wrong, the perturbed
box pjk is less likely to be the appropriate proposal
box. The generated predictions (qjk, vjk) are unre-
liable, causing higher overall disagreement D.

Applicability to Layout Datasets Compared
to previous work, the perturbation-based scoring
function aims to solve two challenges unique to
layout analysis tasks. First, layout regions are
boundary-sensitive: a small vertical shift of a text
region box could cause the complete disappear-
ance of a row of texts. However, existing meth-
ods designed for image-level selection usually fo-
cus on the categorical—rather than positional—
information in outputs (i.e. Brust et al. (2018)
considers the marginal score of the object cate-
gory predictions and does not use the bounding
boxes, and Aghdam et al. (2019) indirectly uses
the positional information based on a pixel map for
image-level aggregation). By contrast, our method
identifies samples that lead to ambiguous boundary
predictions via Dp.

Moreover, document images usually contain nu-
merous objects per page and content regions are
densely arranged. Hence, we cannot adapt the
object-level scoring function in Wang et al. (2018),
which requires cropping an object, randomly past-
ing it to another image, and evaluating the consis-
tency between the original and the newly detected
boxes for this object. The random pasting will in-
troduce non-existing structures (e.g. , overlaying a
figure over tables or texts), and the calculated score
cannot reliably assess the prediction. With OLALA,
the original document structures are untouched.
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4 Experimental Setup

Objective Several experiments are designed to
study the validity of the proposed OLALA frame-
work and evaluate how it can improve the efficiency
of the labeling process. Methods are considered
better if they achieve similar accuracy while using
less labeling budget m than their counterparts, or
obtain higher accuracy given the same m. In the
experiments, we measure object detection accuracy
using mean Average Precision (AP) scores (Lin
et al., 2014), and the labeling budget refers to the
number of objects to label by default.

Datasets To validate our approach, we run
simulations on three representative layout anal-
ysis datasets: PubLayNet (Zhong et al., 2019),
PRImA (Antonacopoulos et al., 2009), and HJ-
Dataset (Shen et al., 2020). PubLayNet is a large
dataset of 360k images. The images and annota-
tions are generated from noiseless digital PDF files
of medical papers. As the original training set in
PubLayNet is too large to conduct experiments ef-
ficiently, we use a downsampled version. PRImA
is created by human annotators drawing bounding
boxes for text regions in both scanned magazines
and technical articles, resulting in greater hetero-
geneity in this dataset than in PubLayNet. HJ-
Dataset contains layout annotation for 2k historical
Japanese documents. HJDataset was established
using noisy image scans, and the creation method
is a combination of rule-based layout parsing from
images and human correction. Table 1 shows a
thorough comparison among them.

Labeling Simulation When running simula-
tions, we build two additional helper algorithms
to imitate human labeling behavior. First, for the
selected objects, the corresponding ground-truths is
found via a best-matching algorithm. For each pre-
diction, we calculate the IOU with all ground-truth
objects and choose the top one to substitute the pre-
diction. Duplicated ground-truths selected in an im-
age will be removed by this process. In real-world
labeling experiments, we also notice human anno-
tators do not need to correct an object prediction if
it is accurate (high IOU with the ground-truth and
category is the same). To best simulate this phe-
nomena, if a selected prediction has an IOU>0.925
(determined empirically) with a ground-truth object
of the same category, we do not substitute it with
the ground-truth and only use a discounted budget
η = 0.2. Finally, to mimic annotators’ search for
false-negative regions, we compute the pairwise

Datasets PubLayNet HJDataset PRImA

Data Source Digital PDF Image Scan Image Scan
Annotation Automatic Combined Manual

Dataset Size 360,000 2,048 453
Train Size 8,896⋆ 1,433 363
Test Size 2,249 307 90

Avg / max O 10.72 / 59 73.48 / 98 21.63 / 79

Labeling budget m 21,140 51,436 5,623
Equivalent Images 2,000 700 240

Total rounds T 10 8 4
Initial / last r 0.9 / 0.4 0.9 / 0.5 0.9 / 0.75

⋆ We used a downsampled version of PubLayNet in our experi-
ments.

Table 1: Statistics and parameters for the PubLayNet,
HJDatasets, and PRImA. O is the number of objects in
each image.

IOU between the ground truth Yi and the combined
labeling objects Ỹi. Ground-truth objects whose
maximum IOU with predicted objects is less than
ζ are chosen to add to Ỹi, and the remaining bud-
get is reduced accordingly. ζ is set to 0.05 in the
following experiments to allow minor overlapping
caused by noise in the predictions.

Implementation The proposed algorithms are
implemented based on Detectron2 (Wu et al.,
2019). The same object detection model (Faster R-
CNN (Ren et al., 2015) with ResNet-50 (He et al.,
2016) backbone and FPN (Lin et al., 2017)) is used
for all experiments. The optimizer is based on SGD
with Momentum (Sutskever et al., 2013) and Multi-
Step learning rate warmup (Goyal et al., 2017) with
a 0.00025 base learning rate. We train each model
on a single Tesla V100 GPU with a batch size of 6.

The total labeling budget m and the total rounds
T are set per dataset to account for different dataset
sizes, and the labeling budget is evenly distributed
for each round. For the object selection ratio, we
use a linear decay function with a given initial and
last value. These hyperparameters are initialized
as indicated in Table 1. When calculating the ob-
ject scores, we set λ to 1 and L as the cross en-
tropy function. In addition, unless otherwise men-
tioned, we use four pairs of (α, β)’s: (0.08, 0.04),
(0.08, 0.16), (0.12, 0.04), (0.12, 0, 16), and for
each pair, four boxes are created (moving towards
top left, top right, bottom left, and bottom right).
A total of K = 16 perturbed boxes are generated
per object prediction for comprehensive analysis
of prediction performance under small and large
perturbations in different directions.
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PubLayNet HJData PRImA⋆

Experiments Final AP Labeled I / O Final AP Labeled I / O Final AP Labeled I / O

Image-Random [a] 60.73 2,046 / 21,430 69.82 709 / 51,959 31.49 244 / 4,799
OLALA-Random [c] 64.21(+3.48)† 3,187 / 21,412 72.16(+2.34) 1,105 / 51,626 32.08(+0.59) 277 / 4,785

Image-Marginal [b] 67.91 2,465 / 21,574 73.25 709 / 51,937 30.99 243 / 4769
OLALA-Marginal [d] 69.23(+1.31)‡ 3,661 / 21,467 71.48(-1.77) 1,075 / 51,804 32.85(+1.86) 306 / 4,721

OLALA-Pertubation [e] 69.13(+1.21) 3686 / 21430 73.40(+0.15) 1,159 / 51,656 33.87(+2.88) 286 / 4,764
⋆ The results in PRImA are averaged from the 5-folds in cross validation to account for possible noise due to the small dataset size.
†,‡ The OLALA-Random percentages are compared against Image-Random, and others are compared against Image-Marginal.

Table 2: The final AP and number of total labeled images I and objects O given the same object budget m.
OLALA achieves strong performance improvements in model accuracy in all experiments, and creates datasets with
considerably more images given the same labeling budget.

5 Results and Discussion

5.1 Better AP with the Same Budget

OLALA based labeling settings are compared
against image-level AL and other labeling base-
lines: [a] Image-Random: randomly select im-
ages in each round, [b] Image-Marginal: image-
level Active Learning baselines (Brust et al., 2018)
with marginal scoring and mean aggregation, [c]
OLALA-Random: randomly select objects in each
round, [d] OLALA-Marginal: select objects using
marginal scoring for object category prediction, [e]
OLALA-Perturbation: select objects using the pro-
posed perturbation-based scoring function.

5.2 Similar AP with a Lower Budget

Table 3 shows that OLALA-based methods consider-
ably reduce the object budget expense. We observe
at most a 50% reduction in the number of labeled
objects compared to random image labeling cases
in the PubLayNet experiments (7496 vs. 15980).
Moreover, with this level of reduction, OLALA-
based models manage to maintain a comparable
level of accuracy. Similarly, the marginal scoring
baseline is less stable and the performance is worse
compared to the perturbation-based scoring method
in OLALA settings.

In Figure 3, we visualize the model validation
accuracy (line plot) and the budget expense (bar
plot) for the PubLayNet dataset labeling simula-
tions. Given the same object budget (dashed hor-
izontal line), image-AL methods can only label 5
rounds, and the model AP is around 45 (indicated
by the vertical line), significantly lower than 58.9
in OLALA models.

5.3 Analysis of the OLALA framework

In the OLALA framework, there are three sources of
objects in the created dataset, namely, human anno-

PubLayNet HJData

Exps⋆ AP Labeled I/O AP Labeled I/O

[a]† 59.89 1,503 / 15,980 63.42 603 / 44,156
[c] 57.96(-1.93) 1,503 / 10,228 65.72(+2.30) 603 / 29,191

[b] 59.21 1,503 / 11,848 69.04 603 / 44,251
[d] 53.33(-5.88) 1,503 / 6,829 65.84(-3.19) 603 / 30,251
[e] 58.90(-0.31) 1,503 / 7,496 67.68(-1.36) 603 / 28,899

⋆ The parameters in these experiments are slightly different from those mentioned
in Table 1, and we report the details in the supplementary materials.
† The indexing is the same as Table 2.

Table 3: The final AP and number of total labeled im-
ages I and objects O when labeling the same number of
images. OLALA maintains a similar level of AP while
labeling significantly fewer objects. Similar results are
observed in PRImA and abbreviated to save space.

tations, directly used model predictions (unselected
in the AL step), and unchanged model predictions
(they are selected for manual check, but remain
unchanged as they are accurate). OLALA strategi-
cally chooses objects to label and thus optimizes
the overall efficiency.

Figure 4 shows the proportion of object sources
in the three OLALA settings in the PublayNet Label-
ing experiments. The Object Selection Scheduling
(Section 2.2) sets a high selection ratio r when train-
ing begins and r decays during training. Thus, the
averaged percentage of manually labeled objects
(blue line) is initially high but gradually decreases
while the portion of model predictions (orange line)
steadily grows in the labeling process. As the mod-
els becomes more accurate as training progresses
(reflected in Figure 3), “annotators” find more ac-
curate objects in the model-selected predictions,
and include them in the dataset without changing
them (green line). Though more than 50% of ob-
jects are directly from model prediction, the created
datasets maintain the same high level of accuracy4,
indicated by grey bar plots in the background.

4The dataset accuracy is measured in AP via comparing
the created version with the oracle.
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Figure 3: Model validation accuracy (line plot) and bud-
get expenses (bar plot) at different rounds of PubLayNet
labeling. OLALA methods (blue) require labeling fewer
objects compared to image AL methods (red), while
maintaining similar AP. If the same number of objects is
allowed (horizontal dashed line), the image AL method
stops at round 5, and the model AP is around 25% lower
compared to OLALA.

We study how the semi-automatic prediction cor-
rection algorithm, mentioned in Section 2.3, con-
tributes to the OLALA process. Shown in Figure 5,
we compare the model validation AP (line plot)
and accuracy of the created dataset (bar plot) with
and without the Duplication Removal and Missing
Annotation Recovery components in PubLayNet an-
notation. Without these components, models suffer
from different levels of accuracy reduction com-
pared to the OLALA-Perturbation baseline (green).
We observe the most severe accuracy reduction
when removing the missing annotation recovery
components (red), indicating the necessity of ex-
tra supervision for correcting high ratios of false
negatives. Interestingly, when removing both cor-
rection methods (orange), the model appears to
perform better than when only discarding the miss-
ing annotation recovery component. Duplicated
predictions add more instances per image for calcu-
lating the loss, thus reinforcing the signal to train
the model and improve the initial performance. Un-
fortunately, without extra supervision, the models
are trained on a dataset with many false negatives,
and tend to generate fewer predictions. The error
accumulates and finally both models collapse and
stop improving. In both cases, the models exhaust
all the training samples at round 5.

6 Conclusion

The objective of this paper is to develop rigorous
methods that can increase the efficiency of extract-
ing structured texts - required for downstream NLP
applications - from social science documents. We
propose the object-level active learning annotation
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Figure 4: The created object sources (line plot) and
dataset accuracy (bar plot) during the training process.
The number of manually labeled objects (blue) de-
creases and directly used model predicted objects (or-
ange) increases. As the model becomes more accurate,
a higher portion of selected objects become accurate
(green). Results shown are averaged from the three
OLALA methods in the PubLayNet experiments.
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Figure 5: Influence of the prediction correction com-
ponents on the model validation accuracy (line plot)
and dataset accuracy (bar plot). Model performance
suffers from removing the components, and dataset ac-
curacy decreases accordingly. The Missing Annotation
Recovery component, which corrects false negatives, is
critical for model performance. Results shown are from
experiments on PubLayNet.

framework, OLALA, for efficiently labeling docu-
ment layouts. With a novel prediction correction
algorithm and perturbation object scoring function,
annotators only need to label a fraction of layout
objects in each image. Through simulated labeling
experiments on real-world data, we show that our
proposed algorithms significantly improve dataset
creation efficiency relative to image-level meth-
ods. Different components of OLALA are also care-
fully studied to demonstrate their validity and ne-
cessity. In summary, this work explores how to
improve cooperation between human and machine
intelligence, in order to unlock the structured text
required for conducting modern NLP analyses at
scale on historical documents.
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(a) Full Model Predictions (b) Selected Model Predictions (c) Highlight False-Negative Regions (d) Final Created Annotation

Model Prediction Selector False-Negative Highlighter

Figure 6: Illustration of the annotation interface with OLALA features. (a) Given an input scan, a pre-trained model
generates object predictions, and they are highlighted as rectangular boxes on the original image. The color denotes
the category of the given object. (b) The Model Prediction Selector enables hiding predictions of low object scores.
In this case, objects of top 25% (the 4th Quartile, Q4) scores are presented. Two of the objects (pointed to by red
arrows) have minor errors in object location predictions. Human annotators check only the displayed objects and
modify inaccuracies. (c) The False-Negative Highlighter helps recognize mis-identified objects from the model
predictions. When enabled, it converts all predicted regions to a dummy color, and regions without predictions are
highlighted. Annotators can easily spot false-negatives regions and have them labeled. (d) After these steps, the full
image annotation is created with less effort.

Appendix

A OLALA Implementation Details

Different from image-level labeling, annotating ob-
jects within images is fundamentally a search task:
“annotators”5 need to scan through the image and
find objects matching specific criteria. The nature
of object-based labeling leads to different objec-
tives in simulated labeling experiments and real-
world human annotation. In labeling simulations,
the ground-truth objects are known ex-ante. The
labeling agent only needs to query the oracle and
choose objects that meet certain conditions. As
the search space is pre-defined, the core challenge
is to construct such query conditions for finding
ground-truths. By contrast, when humans annotate
objects, there is no ground-truth known beforehand,
and the object search space is yet undefined. Their
vision systems are capable of efficiently identify-
ing correct objects within the space. Hence, the
objective for human annotation is to reduce the ob-
ject search space, and annotators will select valid
objects within the space. To this end, as mentioned
in the main paper, the OLALA framework is imple-
mented differently for real-world human annotation
(Section A.1) and simulated labeling experiments
(See Section 4 in the main paper).

A.1 OLALA Annotation User Interface

To help with human annotation, we build a labeling
interface incorporated with OLALA functionalities

5We use the general term annotator to refer to a human
annotator or a simulated labeling agent.

based on label-studio (Wu et al., 2020). Figure 6
shows an example of annotating newspaper layouts
using this tool6.

a Given an input scan, a pre-trained model gen-
erates object predictions {(bj , cj)}nj=1, which
are highlighted as rectangular boxes on the
original image. The color denotes the cate-
gory cj of an object. Within the outputs, du-
plicated object detections are precluded using
Duplication Removal.

b A Model Prediction Selector is implemented
for hiding objects with low scores generated
by the object scoring function f . In this case,
objects of top 25% (the 4th Quartile, Q4)
scores are presented. Two selected objects
(pointed by red arrows) have minor errors in
object location predictions by missing one line
or one column of text (see Section 3 “Applica-
bility to Layout Datasets” in the main paper),
while others being correct. Human annotators
can focus on checking the displayed objects
and only need to modify the two incorrect pre-
dictions while other accurate ones are kept
untouched.

c We also develop a False-Negative Highlighter
to help annotators find mis-identified objects
from the model predictions. After enabled, it

6In this example, the used model has been trained on 200
hundred images. For illustration purpose, we reduce the num-
ber of objects generated by models to emphasize the false-
negative selection process. But in practice, the false-negative
rate is lower.
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Figure 7: The model validation AP during the labeling process under different total rounds T and labeling budget
m. The plots in row one and two are for experiments on the PubLayNet and HJDataset, respectively. Within each
plot, image-level AL results are colored in blue while OLALA results are in red. To best show results at different
stage of training, the ranges for the y-axis are set differently. Under the same budget, an increase in T can generally
lead to better model performance. For different datasets, the optimal budget and total round settings are different.
As the budget increases, image-level methods narrow the performance gap (in PubLayNet experiments) or perform
better than OLALA methods (in HJDataset experiments).

Configuration Configuration A Configuration B

Datasets PubLayNet HJDataset PubLayNet HJDataset

Labeling budget m 21,140 51,436 15,855 44,088
Equivalent image budget 2,0001 700 1,500 600

Total rounds T 10 8 9 9
Initial / last r 0.9/0.4 0.9/0.5 0.9/0.5 0.9/0.5

1 To get the number of equivalent image budget, we simply divide m by the average number of
objects per page for the given dataset.

Table 4: Different parameter configurations for labeling
settings (1) and (2). Configuration A is used for label-
ing setting (1) where the same number of objects are
labeled and B for labeling setting (2) where the number
of labeled images is fixed.

will assign a dummy color overlay to object
predictions, thus regions without predictions
will be highlighted. Annotators can easily spot
false-negatives regions and have them labeled.
And this is the Missing Annotation Recovery
step in the OLALA algorithm.

d Finally, the full image annotation will be cre-
ated with significantly less effort.

Through the interface, annotators’ labeling effort
is saved via a reduced object search space: one only
needs to check the selected model predictions and
the highlighted false-negative regions.

B Additional Experiments

B.1 Different model configurations
In the main paper, we report results under two dif-
ferent settings, namely, (1) labeling the same num-

PubLayNet HJData

Exps AP Labeled I/O AP Labeled I/O

[a] 61.65 1,558/16,123 62.73 605/44,505
[c] 63.73(+2.07) 2,501/16,122 65.75(+3.02) 980/44,260

[b] 65.52 1,961/16,108 68.16 607/44,344
[d] 69.36(+3.83) 2,995/16,104 69.13(+0.97) 956/44,398
[e] 65.53(+0.01) 2,996/16,142 69.15(+0.99) 1,041/44,398

Table 5: The final AP and number of total labeled im-
ages I and objects O when labeling the same number of
objects under model configuration B.

ber of objects and (2) labeling the same number of
images. During these experiments, the model con-
figurations for labeling settings (2) is slightly differ-
ent than those in (1), and we include the details in
Table 4. Labeling setting (1) is only experimented
under configuration A while (2) under configura-
tion B. For fair comparison, we complete another
set of experiments for labeling setting (1) using
configuration B. The results are reported in Table 5,
and similar conclusion could be made based on this
set of experiments.

B.2 Analysis of labeling budget and total
training rounds

We run additional labeling simulations to find the
optimal configurations for the labeling budget and
the total training rounds. Given the same budget,
we could perform multiple rounds of labeling and
re-training, with the optimal total round yet to be
determined. Similarly, for a given dataset, it is
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important to allocate appropriate labeling budget
such that the labeled samples can most effectively
boost the model performance. This study could
also shed light on the applicability of OLALA to la-
beling scenarios where only small labeling budget
is allowed. To this end, we experiment with object
budget m equivalent to labeling 20, 50, 150, 450,
and 1250 images (equivalent image budget 7) for
a given dataset. For each m, we also experiment
with three different total labeling rounds T of 3, 6,
and 9. The model validation accuracy during the
labeling process is visualized in Figure 7.

Given the same labeling budget, we find that
increasing the total labeling rounds T tends to im-
prove the model accuracy, especially for scenarios
where small labeling budget is available. Under
such small budget, OLALA-based annotation usu-
ally leads to models of higher accuracy than those
from image-level AL settings. However, as label-
ing budget increases, the performance gap between
OLALA and image AL models narrows. With suffi-
cient labeling budget, image AL models even per-
forms better than OLALA models in HJDataset. It
reveals that OLALA is more helpful in the initial
stage of labeling, as it exposes more images sam-
ples to the model and thus boosts the performance.
For different datasets, the optimal combination of
total labeling rounds and budget is different: T = 9
with the equivalent image budget of 450 for Pub-
LayNet, and T = 9 with 50 equivalent image bud-
get for HJDataset. Based on our observation, this
is largely determined by the diversity of samples
in the dataset. OLALA helps to explore unique
object instances in the early training stage, and
requires more labeling steps to achieve optimal per-
formance boost for datasets of diverse examples
like PubLayNet.

7Directly setting thresholds for m does not account for the
variances of objects per image for different datasets.
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