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Abstract

Retailing combines complicated communica-
tion skills and strategies to reach an agreement
between buyer and seller with identical or dif-
ferent goals. In each transaction a good seller
finds an optimal solution by considering his/her
own profits while simultaneously considering
whether the buyer’s needs have been met. In
this paper, we manage the retailing problem
by mixing cooperation and competition. We
present a rich dataset of buyer-seller bargain-
ing in a simulated marketplace in which each
agent values goods and utility separately. Var-
ious attributes (preference, quality, and profit)
are initially hidden from one agent with respect
to its role; during the conversation, both sides
may reveal, fake, or retain the information un-
covered to come to a final decision through nat-
ural language. Using this dataset, we leverage
transfer learning techniques on a pretrained,
end-to-end model and enhance its decision-
making ability toward the best choice in terms
of utility by means of multi-agent reinforce-
ment learning. An automatic evaluation shows
that our approach results in more optimal trans-
actions than human does. We also show that our
framework controls the falsehoods generated
by seller agents. The code and dataset are avail-
able on https://github.com/ckiplab/Fruit_Stand.

1 Introduction

Retailing is a mixture of cooperation and competi-
tion between buyer and seller. The construction of
virtual retailers has received widespread attention
due to their broad applications in the E-commerce
era. If the focus of the conversational retailer is
limited to the buyer’s needs, the retailer is actually
a conversational recommendation system. How-
ever, if the conversational retailer’s purpose is to
maximize his/her own profit, the retailer is in fact a
negotiation system, which typically must use dis-
course with opponents to perceive their intent and
build strategies to achieve the retailer’s own goals
(Keizer et al., 2017; Afantenos et al., 2012).

Previous NLP research on negotiation concerns
closed-domain scenarios in games such as Settlers
of Catan (Asher and Lascarides, 2013), goods dis-
tribution (DeVault et al., 2015; Lewis et al., 2017),
and open-ended settings, for example, price bar-
gaining on a single item in a zero-sum, second-hand
market (He et al., 2018). However, these scenarios
do not attempt to find an optimal solution for both
sides, which crucially defines a good retailer who
always takes into account future transactions.

Therefore, inspired by Shapiro (1983), we pro-
pose a positive-sum setting in this paper: a buyer
and a seller negotiate to achieve a transaction, and
the seller not only considers his/her profit but also
takes into account whether the buyer’s needs have
been met, thus seeking a mutually optimal solution.
To simulate such a real-world vending scenario and
provide enough motivation to start a conversation,
both buyer and seller are given incomplete infor-
mation prior to the conversation. The buyer knows
what he/she prefers among multiple products but
does not know the quality of the product prior to
the conversation, and the seller does not know in
advance the buyer’s preferences but is aware of
the quality of the product and its profit. The seller
seeks a mutually optimal solution by which to build
his/her own reputation for future business while si-
multaneously making a profit. Thus we propose
separate utility functions for buyers and sellers.

To facilitate end-to-end fine-tuning for this sce-
nario, we collected a large dataset of 4232 dia-
logues between two people negotiating on goods in
a simulated market on Amazon Mechanical Turk
(AMT). Our model is based on the Transformer
architecture (Vaswani et al., 2017), which is pre-
dominant in recent NLP research, due in part to its
inherent parallelism, which facilitates the use of
large-scale datasets to train complex models such
as GPT2 (Radford et al., 2019), evolved Trans-
former (So et al., 2019), and T5 (Raffel et al., 2020).
Further, these complex models are often pre-trained
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in an unsupervised fashion, yielding powerful per-
formance in downstream tasks in an end-to-end,
supervised manner, which lays the foundation for
training two acceptable conversational agents to fit
the proposed scenario. The supervised fine-tuning
maximizes the likelihood of human utterances in
the dataset. To maximize agent targets, we lever-
age reinforcement learning (RL) to direct the fine-
tuning process.

In addition, due to the increasing saturation of
machine learning algorithms in contemporary so-
ciety, there has been a surge in interest in building
truthful AI, a system that avoids stating falsehoods,
thus enhancing transparency and helping to estab-
lish trust between system and human (Evans et al.,
2021). To achieve such truthful AI, we attempt
to reduce a certain type of statement against the
ground truth in our negotiation scenario. First, we
build a falsehood detector with respect to such state-
ments. Second, we formulate a deduction mecha-
nism in the RL stage to decrease the generation of
falsehoods.

In summary, the contributions of our study are
the following:

• We propose a simplified market setting where
vendor and purchaser are in a “coopetitive” re-
lation with information asymmetry. To this
purpose we gathered FruitStand, a rich dataset
of human-human negotiations under this sce-
nario on Amazon Mechanical Turk (AMT).

• We propose an RL framework by which to
cause a virtual retailer to learn how to find op-
timal solutions under positive-sum situation.

• The experiments demonstrate the effective-
ness of reinforcement learning in improving
the ability to achieve optimal transactions.

• We analyze the lies in a crowd-sourced dataset
and the falsehoods generated by the seller
model, based on which we propose an ap-
proach to reduce falsehoods.

2 Data Collection

In this paper, we discuss the behavior of two con-
versational agents negotiating given imperfect in-
formation. To promote end-to-end training, we
collected FruitStand, a dataset of human-human
dialogues designed around a novel scenario which
simulates a fruit stand at which the negotiation
takes place. In FruitStand, one agent plays the role

of the buyer and the other that of the seller, commu-
nicating in natural language, developing strategies
and eventually making a deal.

2.1 Task
The scenario simulates two agents transacting
at a fruit stand. In each dialogue, the agents
are first assigned a role, either buyer or seller,
and the order of turns in which to send natu-
ral language messages. There are 3 item types—
apples, bananas, and oranges—each of which has
three attributes—preference, quality, and profit—
as shown in upper left corner of Fig. 2. These 9
attributes determine the initial condition o. The
buyer and seller each have an individual utility.
The buyer’s utility Ub(item) to an item is defined
as preference(item) × quality(item), following
the intuition that the buyer is satisfied by purchas-
ing what he/she likes in excellent condition (e.g.,
red, sweet, and juicy apples). Likewise, the seller’s
utility Us(item) is defined as Ub + profit(item),
taking into account the seller’s current profit and
the buyer’s satisfaction for future profit, since the
buyer might become a regular if he/she is satisfied.
Each agent’s best option is that which provides
the highest utility. Depending on the best options,
the agents’ goals may be identical, or may con-
flict, which leads to opportunities for cooperation
or competition, respectively.

In each dialogue, buyer and seller bargain turn
by turn, trying to make a deal on their own best
option(s). Agents possess imperfect information.
Initially, the buyer knows only its preference, and
the seller only the quality and profit of an item.
During the conversation, they must estimate the
other’s exclusive attributes by skill of speech, all
the while not revealing any exact values. Absolute
honesty is not required; agents can be deceptive. In
particular, the seller may mislead the buyer when
a given item is more profitable; however, the final
decision lies with the buyer. Each conversation
ends when the buyer makes a decision; typically
this occurs within 5 to 20 turns. The design of the
utility functions and the right to choose compen-
sates for the buyer’s inferior position in terms of
the amount of information.

2.2 Collection
We collected the FruitStand dataset based on the
above task via AMT with the interface shown in
Figures 1 and 3. Workers were paid per dialogue,
with a bonus for achieving the best option in terms
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of utility. The starter of a dialogue could be ei-
ther a seller or buyer, and we kept the number of
starters from both sides roughly balanced. The
dataset statistics in Table 1 show that FruitStand has
longer and more variant dialogues than DealorN-
odeal(Lewis et al., 2017). FruitStand has a total
of 4232 dialogues with unique initial conditions,
76.1% of which have mutually optimal solutions
(the overlapping best options from two sides), as il-
lustrated in Table 2. We partitioned 80%/10%/10%
of the dialogues for training/validation/testing.

(a) Buyer

(b) Seller

Figure 1: At the start of each conversation, the buyer
knows only his/her preferences, and the seller knows
only the quality and profit.

FS DN
Number(#) of Dialogues 4232 5808

Average Turns per Dialogue 7.8 6.5
Average Words per Turn 11.6 7.6

Vocabulary Size 4318 2719
Vocabulary Size without Numbers 4229 2623

% Agreed 100 80.1

Table 1: Comparison of dataset statistics of FruitStand
and DealorNodeal. FruitStand contains longer, more
variant dialogues on average.

Number (Ratio)
Buyer’s optimal selection chosen 2767 (65.4%)
Seller’s optimal selection chosen 2966 (70.1%)

Mutually optimal occasion 3222 (76.1%)
Mutually optimal selection chosen 2464 (58.2%)

Table 2: Statistics of final deals in the whole FruitStand
dataset.

3 Retailer

3.1 Data Representation

Every turn in a dialogue is transformed into a train-
ing pair—input sequence X and label sequence Y —
from the perspective of the agent. For exam-
ple, as illustrated in Figure 2, the buyer starts
the conversation, and its preferences and utter-
ance in this turn are converted into the first train-
ing pair of the dialogue, ⟨XB

1 , Y B
1 ⟩. Note that

Y B
1 = {yB11, yB12, ..., yB1T }, where yij is a token and

T is the length of the utterance at this turn. Next,
the seller’s scenario along with the buyer’s previous
utterance and its response in this turn become the
second training pair, ⟨XS

1 , Y
S
1 ⟩, the seller’s first.

The process continues until the end of the conver-
sation. A similar technique has been used, see, e.g.,
Wolf et al. (2019). Note that we take the natural
form for the agents’ scenario, oB and oS , instead of
merely numbers, to leverage the words’ underlying
information from pretrained models.

3.2 Baseline Models

For the first training stage, we fine-tune a T5
model (Raffel et al., 2020) pretrained on our Fruit-
Stand dataset. T5 is a standard encoder-decoder
Transformer (Vaswani et al., 2017) which regards
all NLP tasks as a text-to-text format. We leverage
its baseline version (T5-base) as described in Raf-
fel et al. (2020) as our starting point. T5-base is a
composite of 12 Transformer blocks (each block
combines self-attention, optional encoder-decoder
attention, and a feedforward layer with a hidden
size of 3072). It performs well on downstream
tasks as varied as machine translation, document
summarization, and sentiment classification.

The pretrained model is then fine-tuned as
in supervised learning (SL), i.e., by minimizing
the cross-entropy loss between the generated se-
quence Z and the label sequence Y described in
Sec. 3.1. We have two transfer paths: one for the
buyer and one for the seller. The buyer path uses
labels from the buyer’s perspective, and the seller
path uses its part in the dialogue. The pair of the

23



Figure 2: Transforming a crowd-sourced dialogue (left) into a series of training pairs (input, label) from perspectives
of the two agents. The buyer only knows its own preference, while the seller only knows the quality and profits of
fruits

two picked models, denoted as ⟨MB
ϕ ,MS

θ ⟩, forms
the baseline for later evaluation, where ϕ and θ
are the learned parameters of the buyer and seller
model, respectively. See Sec. 4.1 for more details.

3.3 Goal-oriented Reinforcement

The goal of supervised learning is to imitate av-
erage human behavior; however, not every per-
son is good at making deals. We further fine-tune
the agents via reinforcement learning to improve
the choice of—or the persuasion of the buyer to
choose—the best option through a dialogue. This
two-stage learning strategy has been widely used to
enhance pretrained models toward a specific goal,
e.g., Stiennon et al. (2020); Lewis et al. (2017); Li

et al. (2016).

In reinforcement learning, we utilize self
play (Lewis et al., 2017) to enhance our baseline
models MB

ϕ and MS
θ by making one agent talk to

the other turn by turn. Each turn ends when an
agent outputs the END-OF-SENTENCE token, and
the dialogue finishes when the buyer outputs the
SELECTION token in a turn, or when the dialogue
length limit is reached, as in the human case de-
picted in Fig. 2. A buyer’s utterance in the i-th
turn of a dialogue is denoted as ZB

i , with ZS
i for

the seller’s. We denote the trajectory τB or τS as
the sequence of all tokens generated by buyer or
seller during a dialogue. For instance, the buyer’s
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trajectory is

τB = ZB
1 ||...||ZB

i ||...||ZB
N

= {zB11, ..., zB1T1
, ...zBi1, ...z

B
iTi

, ...zBNTN
},

where || denotes concatenation and N is the num-
ber of turns.

After a complete dialogue has been generated,
we update the agents’ parameters based on the
negotiation results. Agents get the final reward
R(τ) when the dialogue is terminated. We define
R(τ) = 1 if the buyer selects the item with highest
utility, R(τ) = 0 if the buyer selects an item other
than the best one, and R(τ) = −1 otherwise. Note
that the best item for a buyer is not necessarily the
same that for a seller. Similar to AlphaGO (Silver
and Huang et al, 2016), R(τ) is then assigned to
tokens generated at each previous, non-terminal
time step. We use REINFORCE (Williams, 1992)
to optimize the baseline models separately toward
the best options. Given a sampled trajectory τ and
the final reward R(τ), let ai be the i-th token gen-
erated in a turn; we update the model’s parameters
θ by

θ ← θ − η
∑

i

(R(τ)− b)∇θ log pθ(ai|a<i, o),

(1)
where η is the learning rate and b is the baseline
calculated by the average reward of the previous 3
updates.

Whereas the canonical Transformer is diffi-
cult to optimize in the RL setting, often result-
ing in performance comparable to a random pol-
icy (Parisotto et al., 2020), or leading to meaning-
less results (Lewis et al., 2017; He et al., 2018), we
find the pretrained T5 model works well with pa-
rameter updates by policy gradient when we simply
set a smaller learning rate.

3.4 Falsehood Control
One way to increase one’s integrity is to tell no
lies. We follow this notion to build a more trust-
worthy conversational agent, especially a seller, by
decreasing the possibility that an agent produces
an untruthful utterance. In the FruitStand task, the
seller might claim that one type of fruit is the best
in quality when it really is not, attempting to attract
a buyer to choose a more profitable item, and vice
versa, to keep a buyer away from a less lucrative
one.

Motivated by these observations, we construct
a simple rule-based falsehood detector that first

Claim Parser
SUP: best/worst
FRUIT: apple/banana/orange

Matching Pattern
SUP are the FRUIT
SUP FRUIT
FRUITs are your SUP
FRUITs are my SUP
FRUITs are the SUP

<Ignore> FRUITs are the best seller
Falsehood Type
Claim a type of fruit is the best or worst
but actually not.

Table 3: The falsehood detector is consisted of a claim
parser and falsehood type. If the claim from a seller
disobeys any fact derived from a scenario o, the detector
will catch a falsehood

parses the claim for two superlatives, as shown in
Table 3, and then determines whether the seller’s
claim conflicts with any known fact based on a
given scenario o. We further use this to establish
a deduction mechanism D(τ) on the final reward
in the reinforcement learning stage. Given a trajec-
tory τ , D(τ) = −2 if any of the seller’s utterances
conflict with the facts about the quality of an item;
D(τ) = 0 if none of this kind of falsehood is de-
tected. The updated final reward then becomes
R(τ) +D(τ); we term this approach RL (w/DM).

4 Experiments

4.1 Training Details
We used PyTorch to implement our models, and
used the pretrained T5-base model from Hug-
ging Face.1 We added the special tokens BUYER,
SELLER, and SELECTION as self-defined tokens
to T5Tokenizer.1 For the baseline models, we
fine-tuned the pretrained T5-base for 20 epochs;
after each epoch we set a checkpoint, and then
picked that with the least perplexity on the val-
idation set: for the buyer this yielded model
MB

ϕ and for the seller MS
θ separately. We used

AdamW (Loshchilov and Hutter, 2019) to opti-
mize models with a learning rate of 6.25 × 10−5,
β1 = 0.9, β2 = 0.999, and a mini-batch size of 4.
We clipped gradients above 1.0. Supervised fine-
tuning was run on a single RTX 2080Ti GPU.

In reinforcement learning, we estimated the ex-
pected final reward under an initial condition by

1https://huggingface.co/transformers/model_doc/t5.html
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Fine-tuned SL RL RL RL Human
Baseline Interleave Otrain′ Random Testing set

Buyer’s optimal 62.6% 71.9% 69.3% 65.5% 69.0%
Seller’s optimal 59.1% 73.5% 70.0% 63.6% 66.4%

Mutually optimal (if possible) 64.2% 78.8% 75.2% 68.2% 75.8%

Table 4: Rate of the optimal items being chosen in final deals. The RL approach that interleave REINFORCE and
SL to update parameters reaches the highest performance among all, even better than average humans.

Item\Attr. Preference Quality Profit Buyer’s Utility Seller’s Utility
Apples 2 4 16 8 24
Bananas 1 1 7 1 8
Oranges 2 10 11 20 31
a. Fine-tuned SL (baseline) b. RL (interleaved on Otrain′)
B: hello, i am looking for some fresh fruit. B: hello, i would like to buy some fruit.
S: i have some great oranges. S: i have some great oranges.
B: are they fresh? B: are they fresher than your apples?
S: they are very fresh and juicy. S: they are fresher than the apples.
B: great! B: ok. i will take some oranges then
S: great! S: great. thank you for your business
B: <selection> oranges B: <selection> oranges
c. RL (random initialized O) d. RL (directly on Otrain′)
B: hello, i’m looking for some apples. B: hello, i am looking for some fresh fruit.
S: i have some great apples. what do you have that is fresh?

they are very fresh and juicy. S: my oranges are the freshest i have today.
B: great! i love apples! B: oh great, i love oranges. how are your apples?
S: great.. how many would you like? S: my apples are ok
B: i will take a dozen please but my oranges are the freshest i have today.
S: great.. here you go. B: ok. i will take some oranges then. thank you.
B: <selection> apples S: great! i will get them ready for you.

B: <selection> oranges

Table 5: Cherry picked examples under the same scenario of bot-bot chats on FruitStand. Fine-tuned SL produces
general response, and RL approaches get more specific and various.

sampling N turns of utterances from self-play dia-
logue. In each turn, at the T5 decoding phase, the
next token at was randomly chosen according to
its conditional probability distribution

at ∼ P (a|a1:t−1)

using top-K sampling (Fan et al., 2018), in which
the K most likely next tokens are filtered in and
the pmf of the output tokens is redistributed among
the K tokens. We empirically chose N = 32 and
K = 50 for a given o and set the mini-batch size
to N . We also used AdamW for the parameter
updates but reduced the learning rate to one-tenth
of that used in the supervised fine-tuning. We chose
the number of dialogues in the validation dataset as
the amount of dialogues used in an epoch for RL
approaches. We updated the parameter per mini-

batch for 10 epochs. This took about 40 hours on a
single Quadro RTX 8000.

4.2 Comparison

We compare the performance of the following mod-
els:

• Fine-tuned SL: our baseline models de-
scribed in Sec. 3.2: a pair of pretrained T5
models fine-tuned on FruitStand.

Given Otrain ′ , the initial conditions of the dia-
logues randomly picked from the training set to the
size of the validation set, we evaluated the variants
derived from Sec. 3.3:

• RL (interleaved on Otrain ′): Direct optimiza-
tion of the agent goals via RL often results in
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language that differs from human language.
Similar to Lewis et al. (2017), we fine-tuned
the baseline models with RL followed by SL
in each epoch. The learning rate was one-tenth
of that for Fine-tuned SL.

• RL (directly on Otrain ′): Under the same
initial conditions, we evaluated the scenario
without the following SL part. The learning
rate was one-tenth of that for Fine-tuned SL.

• RL (random initialized O): The baseline
models self play under randomly initialized
scenarios. Since the outputs of the baseline
models diverge from human language during
the RL process for unseen initial conditions,
we further reduced their learning rate to one-
hundredth of that for Fine-tuned SL.

4.3 Evaluation

We evaluated the performance of the proposed ap-
proaches on FruitStand by the proportion of the
best options being chosen after self play, denoted
as the p-score, with respect to the unseen initial
conditions in the testing dataset. Note that in the
evaluation stage, for fair competition, we used not
top-K sampling but instead greedy search, which
simply selects the token with the highest probabil-
ity as the next token:

at = argmax
a

P (a|a1:t−1).

For each RL variant described in Sec. 4.2, we
first evaluated our models on the validation set, pair
by pair at each checkpoint, and chose that pair with
the highest average p-score for testing.

The results are shown in Table 4. The RL ap-
proaches considerably enhance the ability to select
the best item from the baseline models. Compared
to human-human negotiation in the FruitStand test-
ing set, RL (interleaved on Otrain ′), the best model,
achieves even better performance. This success
provides evidence that maximizing the reward out-
plays average humans and constitutes an acceptable
imitation.

For falsehood detection, we compared the num-
ber of a typical kind of detected falsehood produced
by a seller from dialogues in the testing dataset (Hu-
man), the number from baseline models (Baseline
models), and the number from the RL (interleaved
on Otrain ′) variant, RL (w/o DM).

Checkpoints 1 2 3 4 5
RL(w/o DM) 18 8 8 7 41
RL(w/ DM) 0 0 0 0 0
Checkpoints 6 7 8 9 10
RL(w/o DM) 9 6 16 7 11
RL(w/ DM) 0 0 1 0 1

Human: 18
Baseline models: 32

Size of testing dataset: 423

Table 6: RL(interleave) with/without deduction mecha-
nism in each checkpoint. Each number in a cell (expect
for those horizontal to ’Checkpoints’) shows how many
falsehoods found by the detector in each checkpoint.

The results are shown in Table 6. In the crowd-
sourced testing dataset, the specific type of false-
hood exists in 18 out of 423 dialogues. In the
baseline, falsehoods were detected in 32 out of 423
dialogues. RL (interleaved) on Otrain ′) performs
poorly on falsehood detection with 6 to 41 false-
hoods among all the checkpoints. In contrast, our
approach, RL (w/DM), significantly reduces the
falsehoods in the pattern.

5 Analysis and Discussion

Goal-based models are more task-centered. Al-
though the fine-tuned T5-base model can generate
fluent and reasonable utterances, it tends to output
generic responses such as “great!” which poorly
reflect the task setting. See Table 5. In comparison,
RL approaches generate utterances that better fit
the simulated scene. A general phenomenon is that
they generate long utterances, similar to humans,
who show their interest in goods by asking more
questions, and vendors, who show their passion by
promoting their products. We also find that models
learn to compare goods; comparison is an effective
way to determine which item to choose.

Behavior Control Besides falsehood, we also
investigated how to control virtual sellers’ other
behaviors. Four different sellers are investigated:
Balanced Seller is the standard seller described all
over the paper, which utility is the sum of buyer’s
utility plus items’ profits. Win-win Seller’s util-
ity is based on whether mutual optimality was
achieved. Recommender’s utility is exactly the
same as buyer’s utility. Profit-oriented Seller’s
utility base on only items’ profits. Appendix C
shows their vending results accordingly. We found
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that in general, Balanced Seller remains a certain
level of profitability and satisfy customers at the
same time. Actually, the decision of choose what
kind of virtual seller to employ in practice would
depend on employers’ willingness and needs. Here
we just demonstrate that how virtual sellers can be
customised by just adjusting their utility design.

Deduction mechanism silences all. The false-
hood detector is meant to prevent the seller from
generating untruthful claims, and ensure that only
factual claims are made. However, we find that the
deduction mechanism suppresses not only such
falseness, but also expressions containing such
claims. That is, it prevents the seller from gen-
erating any utterances with matching patterns. For
example, at some checkpoints, the seller does not
even produce the string ‘the best’, which is clearly
not a desired consequence.

Checkpoints 1 2 3 4
RL(w/o DM) 18/44 8/32 8/21 7/18
RL(w/ DM) 0/0 0/0 0/0 0/0
RL(DMB) 6/17 5/12 3/7 0/0
RL(DMR) 2/10 8/23 0/3 0/0

Checkpoints 5 6 7 8
RL(w/o DM) 41/131 9/42 6/21 16/40
RL(w/ DM) 0/0 0/0 0/0 1/1
RL(DMB) 0/0 0/0 11/37 1/3
RL(DMR) 0/0 0/0 2/10 0/0

Checkpoints 9 10
RL(w/o DM) 7/12 11/48
RL(w/ DM) 0/0 1/3
RL(DMB) 6/26 0/6
RL(DMR) 0/0 0/0

Human: 18/58
Baseline models: 32/82

Size of testing dataset: 423

Table 7: RL(w/o DM) denotes the RL(interleave) model
without deduction mechanism; RL(w/ DM), RL(DMB),
and RL(DMR) stand for the RL(interleave) model with
the deduction mechanism or its adjustment. Each num-
ber in a cell (expect for those horizontal to ’Check-
points’) shows how many falsehoods found by the de-
tector in each checkpoint.

We thus adjust the mechanism using two ap-
proaches. First, we retain the -2 deduction on false-
hood, but compensate those expressions by +0.5,
denoted by RL (DMB). Second, we instead re-
duce the deduction to -1, a more conservative value

corresponding to R (τ ). This path is denoted by
RL (DMR).

The results in Table 7 show that it is difficult
to avoid mistakenly silencing non-deceptive utter-
ances. In the experiment on both paths, at some
checkpoints the seller avoids indiscriminate silenc-
ing, whereas at other checkpoints falsehoods are
generated which still use those combinations of
words. The underlying reasons for such unstable
results are poorly understood. We leave this as
future work.

6 Related Work

During the recent, rapid development of conversa-
tional agents, also known as chatbots, various appli-
cations have been created. Open-domain chatbots
such as Facebook’s BST (Roller et al., 2021) and
Google’s Meena (Adiwardana et al., 2020) seek to
be more human-like, engaging in conversation on
any topic. Closed-domain chatbots instead focus
on improved task performance, for instance Guess-
Which (Das et al., 2017), persuasion (Wang et al.,
2019; Shi et al., 2020), and negotiation (Afantenos
et al., 2012; Papangelis and Georgila, 2015; Lewis
et al., 2017; He et al., 2018).

To negotiate item distribution (book, hat, ball),
Lewis et al. (2017) apply a bi-directional GRU
model to train a language model and use reinforce-
ment learning with self play to develop data-driven
strategies. For price bargaining on a single item
(e.g., a TV), He et al. (2018) use a hybrid approach
involving rule-based and LSTM models that de-
couple natural language understanding, dialogue
act prediction, and natural language generation to
facilitate controllable negotiation strategies. How-
ever, these scenarios do not attempt to find an opti-
mal solution for both sides, and do not control the
falsehoods generated by sellers. These limitations
motivate this work.

7 Conclusion

We introduce a novel negotiation task and present
FruitStand, a rich dataset of human-human dia-
logues, for negotiation dialogue research. We
demonstrate the effectiveness of reinforcement
learning in guiding the conversational agent to-
ward a specific goal. Finally, our experiments in
falsehood suppression show the potential of RL
for truthful AI. A more robust falsehood detector
would be our first future work. In our initial obser-
vations, a strong Natural Language Inference (NLI)
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model could play this role.

8 Acknowledgements

We are grateful for the insightful comments from
anonymous reviewers. This work is supported by
the Ministry of Science and Technology of Taiwan
under grant numbers MOST111-2634-F-001-001.

References
Daniel Adiwardana, Minh-Thang Luong, David R. So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a human-like open-
domain chatbot. CoRR, abs/2001.09977.

Stergos Afantenos, Nicholas Asher, Farah Benamara,
Anaıs Cadilhac, Cedric Dégremont, Pascal Denis,
Markus Guhe, Simon Keizer, et al. 2012. Modelling
strategic conversation: model, annotation design and
corpus. In Proceedings of the 16th Workshop on the
Semantics and Pragmatics of Dialogue.

Nicholas Asher and Alex Lascarides. 2013. Strategic
conversation. Semantics and Pragmatics, 6(2):1–62.

Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan
Lee, and Dhruv Batra. 2017. Learning cooperative
visual dialog agents with deep reinforcement learning.
In Proceedings of the IEEE International Conference
on Computer Vision (ICCV).

David DeVault, Johnathan Mell, and Jonathan Gratch.
2015. Toward natural turn-taking in a virtual human
negotiation agent. In AAAI Spring Symposia.

Owain Evans, Owen Cotton-Barratt, Lukas Finnve-
den, Adam Bales, Avital Balwit, Peter Wills, Luca
Righetti, and William Saunders. 2021. Truthful ai:
Developing and governing ai that does not lie.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898. Association for Computational Lin-
guistics.

He He, Derek Chen, Anusha Balakrishnan, and Percy
Liang. 2018. Decoupling strategy and generation in
negotiation dialogues. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2333–2343, Brussels, Bel-
gium. Association for Computational Linguistics.

Simon Keizer, Markus Guhe, Heriberto Cuayáhuitl,
Ioannis Efstathiou, Klaus-Peter Engelbrecht, Mi-
hai Dobre, Alex Lascarides, and Oliver Lemon.
2017. Evaluating persuasion strategies and deep rein-
forcement learning methods for negotiation dialogue
agents. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
480–484. Association for Computational Linguistics.

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh,
and Dhruv Batra. 2017. Deal or no deal? end-to-end
learning of negotiation dialogues. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 2443–2453. As-
sociation for Computational Linguistics.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep re-
inforcement learning for dialogue generation. CoRR,
abs/1606.01541.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Alexandros Papangelis and Kallirroi Georgila. 2015.
Reinforcement learning of multi-issue negotiation di-
alogue policies. In Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 154–158, Prague, Czech Repub-
lic. Association for Computational Linguistics.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pas-
canu, Caglar Gulcehre, Siddhant Jayakumar, Max
Jaderberg, Raphaël Lopez Kaufman, Aidan Clark,
Seb Noury, Matthew Botvinick, Nicolas Heess, and
Raia Hadsell. 2020. Stabilizing transformers for rein-
forcement learning. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 7487–7498. PMLR.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Carl Shapiro. 1983. Premiums for High Quality Prod-
ucts as Returns to Reputations*. The Quarterly Jour-
nal of Economics, 98(4):659–679.

Weiyan Shi, Xuewei Wang, Yoojung Oh, Jingwen
Zhang, Saurav Sahay, and Zhou Yu. 2020. Effects
of persuasive dialogues: Testing bot identities and
inquiry strategies. CoRR, abs/2001.04564.

David Silver and Aja Huang et al. 2016. Mastering
the game of go with deep neural networks and tree
search. Nature, 529:484–489.

29

http://arxiv.org/abs/2001.09977
http://arxiv.org/abs/2001.09977
https://doi.org/10.3765/sp.6.2
https://doi.org/10.3765/sp.6.2
http://arxiv.org/abs/2110.06674
http://arxiv.org/abs/2110.06674
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/D18-1256
https://doi.org/10.18653/v1/D18-1256
https://aclanthology.org/E17-2077
https://aclanthology.org/E17-2077
https://aclanthology.org/E17-2077
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/D17-1259
http://arxiv.org/abs/1606.01541
http://arxiv.org/abs/1606.01541
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/W15-4621
https://doi.org/10.18653/v1/W15-4621
https://proceedings.mlr.press/v119/parisotto20a.html
https://proceedings.mlr.press/v119/parisotto20a.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.2307/1881782
https://doi.org/10.2307/1881782
http://arxiv.org/abs/2001.04564
http://arxiv.org/abs/2001.04564
http://arxiv.org/abs/2001.04564
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961


David R. So, Chen Liang, and Quoc V. Le. 2019. The
evolved transformer.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates,
Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Conference on Neural Information Pro-
cessing Systems.

Xuewei Wang, Weiyan Shi, Richard Kim, Yoojung Oh,
Sijia Yang, Jingwen Zhang, and Zhou Yu. 2019. Per-
suasion for good: Towards a personalized persuasive
dialogue system for social good. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5635–5649. Asso-
ciation for Computational Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A transfer
learning approach for neural network based conver-
sational agents. CoRR, abs/1901.08149.

30

http://arxiv.org/abs/1901.11117
http://arxiv.org/abs/1901.11117
https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149


A FruitStand Interface

Figure 3: The interface we use for collecting dataset on
the Amazon Mechanical Turk.
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B FruitStand Interface (Cont.)

Figure 4: Buyer’s interface

Figure 5: Seller’s interface
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C Behavior Control

Figure 6: Rate of Buyer’s best items being chosen. ’Human’ stands for the human selections in testing. ’Before_RL’
stands for the model before reinforcement learning.

Figure 7: Seller’s average profit. ’Theoretic maximum’ stands for the average maximal profit of dialogues/scenarios
in testing set. ’Human’ stands for the human selections in testing. ’Before_RL’ stands for the model before
reinforcement learning.
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